Для чего используются преобразователи?

Измери́тельный преобразова́тель — техническое средство с нормируемыми метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. ИП или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы и др.) или применяется вместе с каким-либо средством измерений.

Классификация

  • По характеру преобразования:
    Аналоговый измерительный преобразователь — измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);Аналого-цифровой измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в цифровой код;Цифро-аналоговый измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину.
  • Аналоговый измерительный преобразователь — измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);
  • Аналого-цифровой измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в цифровой код;
  • Цифро-аналоговый измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину.
  • По месту в измерительной цепи:
    Первичный измерительный преобразователь — измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым преобразователем в измерительной цепи измерительного прибора;Датчик — конструктивно обособленный первичный измерительный преобразователь;Детектор — датчик в области измерений ионизирующих излучений;Промежуточный измерительный преобразователь — измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя.
  • Первичный измерительный преобразователь — измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым преобразователем в измерительной цепи измерительного прибора;
  • Датчик — конструктивно обособленный первичный измерительный преобразователь;
  • Детектор — датчик в области измерений ионизирующих излучений;
  • Промежуточный измерительный преобразователь — измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя.
  • По другим признакам:
    Передающий измерительный преобразователь — измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации;Масштабный измерительный преобразователь — измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.
  • Передающий измерительный преобразователь — измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации;
  • Масштабный измерительный преобразователь — измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.
  • По принципу действия ИП делятся на генераторные и параметрические.

Некоторые примеры

  • Термопара в термоэлектрическом термометре
  • Измерительный трансформатор
  • Электропневматический преобразователь
  • Преобразователь угол-код

Литература

  • ГОСТ Р 51086-97. Датчики и преобразователи физических величин электронные. Термины и определения.
  • РМГ 29-99 ГСИ. Метрология, Основные термины и определения.
  • ГОСТ 30606-98. Преобразователи цифрового кода в напряжение или ток измерительные.
  • ГОСТ 30605-98. Преобразователи измерительные напряжения и тока цифровые.

средство измерений, преобразующее измеряемую физическую величину в сигнал для последующей передачи, обработки или регистрации. В отличие от измерительного прибора, сигнал на выходе И. п. (выходная величина) не поддаётся непосредственному восприятию наблюдателя. Обязательное условие измерительного преобразования — сохранение в выходной величине И. п. информации о количественном значении измеряемой величины. Измерительное преобразование — единственный способ построения любых измерительных устройств. Отличие И. п. от других видов преобразователей — способность осуществлять преобразования с установленной точностью. Измерительное преобразование одного и того же вида (например, температуры в механическое перемещение) может осуществляться различными И. п. (ртутным термометром, биметаллическим элементом, термопарой с милливольтметром и т. п.). Концепция представления измерительных устройств как устройств, осуществляющих ряд последовательных преобразований от восприятия измеряемой величины до получения результата измерения, первоначально была выдвинута в СССР М. Л. Цукерманом и окончательно сформулирована применительно к измерению неэлектрических величин Ф. Е. Темниковым и Р. Р. Харченко в 1948. В 60-х гг. эта концепция стала общепризнанной во всех областях измерительной техники, приборостроения и метрологии.

Принцип действия И. п. может быть основан на использовании практически любых физических явлений. Господствующей тенденцией в 40—70-х гг. 20 в. стало преобразование любых измеряемых величин в электрический сигнал. По виду преобразуемых величин различают И. п. электрических величин в электрические, электрических — в неэлектрические, неэлектрических — в электрические, неэлектрических — в неэлектрические. Примерами первых могут служить делители напряжения и тока, измерительные трансформаторы (См. Измерительный трансформатор), измерительные усилители тока и напряжения; примерами вторых — механизмы электроизмерительных приборов, преобразующие изменение силы тока или напряжения в отклонение стрелки или светового луча, датчики ультразвуковых расходомеров и т. п.; примерами третьих — термопары (См. Термопара), Терморезисторы, тензорезисторы, фотоэлементы, реостатные, ёмкостные и индуктивные датчики перемещения; примерами четвёртых — пневматические И. п., рычаги, зубчатые передачи, мембраны (См. Мембрана), Сильфоны, оптические системы и т. п.

Конструктивное объединение нескольких И. п. является также И. п. Примерами такого объединения могут служить: датчик — совокупность И. п., вынесенных на объект измерения; так называемый промежуточный И. п. — совокупность И. п., преобразующих выходные сигналы датчиков в другие сигналы, более удобные для передачи, обработки или регистрации. По структуре составные И. п. подразделяют на И. п. прямого преобразования и уравновешивающего преобразования. Первые характеризуются тем, что все преобразования величин производятся только в одном (прямом от входной величины к выходной) направлении. В этом случае результирующая погрешность определяется суммой погрешностей (с учётом их корреляционных связей) всех составляющих И. п. Для вторых характерно применение обратного преобразования выходной величины в однородную с входной и уравновешивающую её величину. Результирующая погрешность при этом определяется лишь погрешностью обратного преобразования и степенью неуравновешенности. И. п. уравновешивания подразделяются на следящие преобразователи с обратной связью (См. Обратная связь), статическим или астатическим уравновешиванием и преобразователи с программным уравновешиванием. Следящие И. п. с обратной связью обеспечивают непрерывность преобразования во времени; их недостаток — опасность потери устойчивости, проявляющейся в возникновении автоколебаний при увеличении глубины обратной связи. И. п. с программным уравновешиванием свободны от этого недостатка, но их особенностью является прерывность выходной величины, т. е. появление выходной величины лишь в отдельные дискретные моменты времени.

В 60-х гг. наметилась тенденция преобразования измеряемых величин в частоту электрических импульсов с помощью так называемых частотных И. п. Такие И. п. разработаны почти для всех известных физических величин. Основные достоинства частотных И. п. — простота и высокая точность передачи их выходной величины (частоты) по каналам связи, а также относительная простота цифрового отсчёта результата измерения с помощью цифровых частотомеров. В цифровых измерительных устройствах широко применяются И. п. аналоговых величин в цифровой код и наоборот. В них используются принципы как частотных И. п. (интегрирующие аналого-цифровые), так и программного уравновешивания (время-импульсные и поразрядного кодирования аналого-цифровые преобразователи).

Лит.: Гитис Э. И., Преобразователи информации для электронных цифровых вычислительных устройств, М. — Л., 1961; Орнатский П. П., Автоматические измерительные приборы аналоговые и цифровые, К., 1965; Туричин А. М., Электрические измерения неэлектрических величин, 4 изд., М. — Л., 1966; Нуберт Г. П., Измерительные преобразователи неэлектрических величин, пер. с англ., Л., 1970.

П. В. Новицкий.

Большая советская энциклопедия. — М.: Советская энциклопедия.
.

Общие сведения. Измерительные преобразователи представ­ляют собой многочисленную группу средств измерений, предна­значенных для выполнения различных измерительных преобразо­ваний. В зависимости от допускаемой погрешности для измери­тельных преобразователей устанавливают соответствующий класс точности.

Ниже рассматриваются преобразовате­ли электрических величин, которые называются масштабные преобразователи.

Масштабные измерительные преобразователи Масштабным называют измерительный преобразователь, предназначенный для изменения величины в заданное число раз. К ним относят шунты, делители напряжения, измерительные усилители, измери­тельные трансформаторы тока и напряжения.

Шунты. Для уменьшения силы тока в определенное число раз применяют шунты. Например, такая задача возникает в том случае, когда диапазон показаний амперметра меньше диапазона изменения измеряемого тока.

Про анемометры:  «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 гкал в час»

Шунт представляет собой резистор, включаемый параллель­но средству измерений. Если сопротив­ление шунта Rш=R/(п— 1), где R — сопротивление средства измерений; п=I1/I2 — коэффициент шунтирования, то ток I2 в п раз меньше тока I1.

Шунты изготавливают из манганина. В амперметрах для измерения небольших токов (до 30 А) шунты обычно помещают в корпусе прибора, для измерения больших токов (до 7500 А) применяют наружные шунты. Шунты могут быть многопредель­ными, т. е. состоящими из нескольких резисторов, или имеющими несколько отводов, что позволяет изменять коэффициент шунтирования. Классы точности шунтов от 0,02 до 0,5.

Шунты используют в цепях постоянного тока в магни­тоэлектрических приборах Шунты с измерительными механизмами других типов не применяют из-за малой чувстви­тельности этих механизмов, что приводит к существенному увели­чению размеров шунтов и потребляемой ими мощности. Кроме того, при использовании шунтов на переменном токе возникает дополнительная погрешность от изменения частоты, так как с из­менением частоты сопротивления шунта и измерительного меха­низма изменяются неодинаково.

Делители напряжения. Для уменьшения напряжения в опре­деленное число раз применяют делители напряжения, которые в зависимости от рода напряжения могут быть выполнены на элементах, имеющих чисто активное сопротивление, емкостное или индуктивное сопротивление. Делители выполняют из резисторов на основе манганина. Они имеют нормированные коэффициенты деления и классы точности от 0,0005 до 0,01.

Для увеличения верхнего предела измерения средства изме­рений, например предела измерения вольтметра, имеющего внут­реннее сопротивление RV, применяют добавочные резисторы, включаемые последовательно с вольтметром. При этом добавоч­ный резистор и вольтметр образуют делитель напряжения. Добавочные резисторы делают из манганиновой проволоки и используют в цепях постоянного и переменного тока (до 20 кГц). Они бывают встраиваемые внутрь прибора и наруж­ные. Серийно выпускают калиброванные добавочные резисторы, применяемые с любым прибором, имеющим указанный номинальный ток. Классы точности калиброванных добавочных резисторов от 0,01 до 1. Добавочные резисторы применяют для преобразова­ния напряжения до 30 кВ. Номинальный ток добавочных резисто­ров от 0,5 до 30 мА.

Измерительные усилители. Для усиления сигналов постоян­ного и переменного тока, т. е. для расширения пределов измере­ния в сторону малых сигналов, применяют измерительные усили­тели. По диапазону частот усиливаемых сигналов измерительные усилители бывают для постоянного тока и напряжения, низкоча­стотными (20 Гц—200 кГц), высокочастотными (до 250 МГц) и селективными, усиливающими сигналы в узкой полосе частот. Измерительные усилители выполняют с нормированной погреш­ностью коэффициента передачи. Находят применение электрон­ные и фотогальванометрические усилители.

Применение электронных измерительных усилителей позво­ляет измерять сигналы от 0,1 мВ и 0,3 мкА с погрешностью от 0,1 до 1 %. Для усиления токов и напряжений от источников с большим внутренним сопротивлением используют электромет-рические усилители, отлича­ющиеся большим входным сопротивлением (до 1012Ом). Серийно выпускаемые измерительные усилители имеют унифицированный номинальный выходной сигнал 10 В или 5 мА.

Измерительные трансформаторы переменного тока. Измери­тельные трансформаторы тока и напряжения используют как преобразователи больших переменных токов и напряжений в от­носительно малые токи и напряжения, допустимые для измерений приборами с пределами измерения 5 А и 100 В. Измерительные трансформаторы в цепях высокого напряжения обеспечивают безопасность для персонала, обслуживающего приборы, так как приборы при этом включаются в цепь низкого напряжения.

Измерительные трансформаторы состоят из двух изолирован­ных друг от друга обмоток: первичной и вто­ричной, помещенных на ферромагнитный сердечник.

Первичную обмотку трансформатора тока включают в изме­ряемую цепь последовательно, а трансформаторов напряжения параллельно. Измерительные приборы включают во вторичную обмотку трансформаторов.

По показаниям приборов можно определить значения измеря­емых величин. Для этого необходимо показания приборов умно­жить на коэффициенты трансформации.

Коэффициент трансформации трансформатора тока это отношение тока первичной обмотки к току вторичной обмотки.

Коэффициент трансформации трансформатора напряжения это отношение напряжения первичной обмотки к напряжению вторичной обмотки.

Действительные коэффициенты трансформации зависят от зна­чений токов и напряжений, характера и значения нагрузки вто­ричной цепи, частоты тока, а также от конструкции трансформа­тора и материала сердечника и неизвестны. Поэтому показания приборов умножают не на действительные, а на номинальные коэффициенты трансформации.

Определение измеряемых величин по номинальным коэффи­циентам трансформации приводит к погрешностям. Погрешность токовая трансформаторов тока, погрешность напряжения трансформаторов напряжения и угловая погрешность из-за неточно­сти передачи фазы первичной величины вторичной величине. Угловая погрешность измерительных трансформаторов оказыва­ет влияние на показания ваттметров, счетчиков электрической энергии, фазометров.

Трансформатор тока работает в режиме, близком к режиму короткого замыкания, так как в его вторичную обмотку включаются приборы с малым со­противлением. Полное суммарное сопротивление при­боров и подводящих проводов является нагрузкой трансформато­ра тока.

Размыка­ние вторичной цепи трансформатора тока вызовет значительное увеличениемагнитного потока в магнитопроводе. Размыкание вторичной цепи — аварийный случай, так как возрастание потока в сердечнике приводит к большому увеличению ЭДС (до несколь­ких сотен вольт), что опасно для обслуживающего персонала и может вызвать электрический пробой изоляции вторичной об­мотки. Увеличение потока сопровождается ростом потерь на перемагничивание и вихревые токи, повышением темпе­ратуры сердечника, а следовательно и обмоток, и может служить причиной термического разрушения изоляции.

Для измерительных трансфор­маторов тока переносных установлены классы точности от 0,01 до 0,2. Их изготовляют на номинальную частоту или область номинальных частот от 25 Гц до 10 кГц. Трансформаторы тока выпускают на номинальные значения первичного тока от 0,1 А до 30 кА и на номинальное значение вторичного тока 5 А.

Стационарные трансформаторы тока для частоты 50 Гц дела­ют на номинальные первичные токи от 1 А до 40 кА. Классы точности от 0,2 до 10. Допускаемое значение токовой погрешности, со­ответствующее классу точности, имеет место при значении пер­вичного тока 50 – 120 % номинального. При других значениях первичного тока погрешность увеличивается.

Трансформаторы тока изготовляют на определенную номи­нальную нагрузку, например, для стационарных трансформато­ров от 2,5 до 100 В-А.

Трансформаторы напряжения. Измеритель­ные трансформаторы напряжения работают в режиме, близ­ком к режиму холостого хода, так как во вторичную обмотку включают приборы с относительно большим внутренним со­противлением.

Погрешности напряжения и угловая зависят от нагруз­ки во вторичной цепи трансформатора. Поэтому во вторичную цепь нужно включать такое количество приборов, чтобы потребляе­мая мощность не превышала номинальной мощности трансфор­матора.

Трансформаторы напряжения изготовляют на номинальные первичные напряжения от 220 В до 35 кВ при вто­ричном напряжении 150,100 и 100/Ö3 В для номинальной нагруз­ки от 5 до 25 В-А. Для трехфазных цепей изготовляют трехфазные трансформаторы напряжения.

ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРИБОРЫ С ПРЕОБРАЗОВАТЕЛЯМИ

Общие сведения. Высокая чувствительность, точность и ма­лое потребление энергии выгодно отличают магнитоэлектриче­ские приборы от других электромеханических приборов. Ввиду этого стремятся использовать магнитоэлектрические приборы для измерений на переменном токе. Эта задача решается путем преобразования переменного тока в постоянный с последующим его измерением с помощью магнитоэлектрического измерительно­го механизма.

В качестве преобразователей переменного тока в постоянный используют выпрямительные и термоэлектрические преобразова­тели. а также преобразователи на электронных элементах – элек­тронных лампах, транзисторах, интегральных микросхемах. В соответствии с этим различают выпрямительные, тер­моэлектрические и электронные приборы. Ниже рассматриваются выпрямительные и термоэлектрические прибо­ры.

Выпрямительные приборы представляют собой со­единение выпрямительного преобразователя и магнитоэлектриче­ского измерительного механизма с отсчетным устройством.

В выпрямительных преобразователях ис­пользуют полупроводниковые диоды. Недостатком полупроводниковых диодов как выпрямитель­ных преобразователей является нелинейность вольт-амперной характеристики, нестабильность этой характеристики во времени и зависимость ее от температуры и частоты.

В выпрямительных приборах используют одно- и двухполупериодные схемы выпрямления. При использовании однополупериодного выпрямления через измерительный механизм проходит только одна полуволна переменного тока, а обратная пропускается через диод и резистор.

При использовании двухполупериодного выпрямления выпрямленный ток проходит через измерительный механизм в обе половины периода, чувствительность этих схем выше, чем однополупериодных. Наиболее распространена двухполупериодная схема выпрямления — мостовая.

Про анемометры:  ОКОФ 330.26.51.6 — Инструменты и приборы прочие для измерения, контроля и испытаний

Отклонение подвижной части выпрямительных приборов пропорционально среднему измеряемому току.

При измерениях в цепях переменного тока обычно нужно знать действующий ток (напряжение). Выпрямительный прибор может быть градуи­рован в действующих значениях тока (напряжения) только для заданной формы кривой (для синусоиды коэффициент формы Кф=1,11). Если же форма кривой измеряемого тока (напряжения) отлична от задан­ной, в показаниях прибора появляется погрешность.

Если коэффициент формы известен, то действующий ток несинусоидальной формы, измеренный прибором, градуирован­ным по синусоидальному току, может быть определен как показание прибора, умноженное на отношение коэффициентов форм измеряемого тока и синусоидального.

Зависимость коэффициента выпрямления диодов от темпера­туры, приложенного напряжения и частоты протекающего тока, а также влияние формы кривой измеряемого тока приводит к зна­чительным погрешностям выпрямительных амперметров и вольт­метров. Снижение погрешностей обычно производится путем включения дополнительных элементов в цепи приборов.

Сочетание магнитоэлектрического измерительного механиз­ма, схемы выпрямления, шунта или добавочного резистора обра­зует выпрямительный амперметр или вольтметр.

Выпускаемые в настоящее время выпрямительные приборы могут практически применяться только для измерения синусои­дальных токов и напряжений из-за большого влияния формы кривой.

Выпрямительные приборы в большинстве случаев выполняют многопредельными и комбинированными. Этими приборами пу­тем переключении элементов прибора можно измерять как постоянные, так и переменные токи и напря­жения, а также измерять сопротивления по схеме омметра. Верхний предел измерений для выпрямительных при­боров, выпускаемых отечественной промышленностью, составля­ет: тока — от 3 мА до 10 А, напряжения — от 75 мВ до 600 В (предел 75 мВ — только для постоянного напряжения), сопротивления — от 0,5 кОм до 5 МОм.

Основные достоинства выпрямительных приборов — высо­кая чувствительность, малое потребление мощности от измеря­емой цепи, возможность работы на повышенных частотах. Выпря­мительными приборами можно поль­зоваться для измерения токов и напряжений до частот 5000—10000 Гц, в приборах с частотной компенсацией рабочий диапазон частот расширяется до 50 кГц. Точность выпрямитель­ных приборов относительно невысока — класс точности обычно 1,5; 2,5.

Измерительными преобразователями (ИП) называются устройства, предназначенные для преобразования разного рода не электрических величин в электрические сигналы.

Основные параметры измерительных преобразователей

Градуировочная характеристика ИП это зависимость между входной и выходной величинами

Коэффициентом преобразования называется отношение сигнала на выходе измерительного преобразователя Dу, к изменению сигнала на входе Dх. (Определено ГОСТ 16263-70),

Диапазон преобразования это область изменения измеряемой величины, для которой нормированы допускаемые погрешности преобразователя (абсолютная и относительная).

По назначению ИП делятся на преобразователи механических, тепловых, химических, магнитных, биологических и других физических величин.

По принципу действия ИП делятся на генераторные и параметрические.

Краткая классификация измерительных преобразователей

В качестве примера рассмотрим электромагнитные ИП, а именно тахогенераторы.

Тахогенераторы применяются для измерения скорости вращения объекта. Используются в устройствах электропривода, в транспортных средствах, станкостроении и пр. Тахогенераторы бывают с подвижными и неподвижными катушками. Общее устройство показано на рисунке.

В соответствии с ГОСТ 18303-72 выходное напряжение тахогенераторов определяется как

, где k- статический коэффициент тахогенератора.

Однако значение выходного напряжения должно быть скорректировано с учетом падения напряжения в цепи якоря и на щеточном контакте ТГ.

где Uщ – падение напряжения на щетках, Rя – сопротивление цепи якоря, Rц – сопротивление измерительной цепи.

График, иллюстрирующий функцию

В тахогенераторах переменного тока, которые в лекциях не рассматриваются, выходная ЭДС равна:

где Ф – основной поток, p – число пар полюсов, n – частота вращения машины.

Оптические преобразователи, как правило, построены на использовании явления фотоэффекта. По физической сущности различают два типа фотоэффекта – внутренний и внешний.

Внутренний фотоэффект – явление, происходящее внутри кристаллической решетки твердого тела при воздействии светового потока. При этом происходит изменение энергетического состояния носителей зарядов, приводящее к их концентрации и перераспределению внутри кристалла. Этот тип фотоэффекта характерен только для полупроводников и диэлектриков. Внешний фотоэффект состоит в эмиссии электронов под действием светового потока. Рассмотрим основные характеристики фотоэлектрических преобразователей – световую, спектральную и вольтамперную.

На рисунке представлены зависимости, характерные для фоторезистора (Фр), фототранзистора (Фт), фотодиода (Фд) и фотоэлемента (Фэ).

Iф- фототок, Фс- световой поток, S- чувствительность полупроводникового прибора, l- длина волны падающего светового потока. К измерительным преобразователям относятся также математические устройства. Например, устройство сложения и вычитания сигналов. Структурные схемы этих устройств показаны на рис.

D- датчик, УС- устройство сложения, УВ- устройство вычитания.

Преобразователь реализует следующее уравнение

Преобразователь заменяет нелинейную функцию изменения входного сигнала Uвх рядом линейных функций. Принцип действия и схема апроксимирующего преобразователя показаны на рис.

Датчики неэлектрических величин

Для электрических измерений не электрических величин применяются специальные датчики. Принцип их действия основан на различных физических явлениях. Основной квалификационной характеристикой является заложенный физический принцип измерения и построения датчиков.

Резистивные датчики – преобразуют измеряемую величину в омическое сопротивление. Наиболее часто такие датчики применяются для измерения перемещений, для измерения уровня жидкости и пр. На первом этапе измеряемая величина преобразуется в перемещение движка переменного резистора.

При этом R1+R2=R0. Если обозначить Х- угловое или линейное перемещение движка тогда:

. Резистивные преобразователи применяются в системах, где прилагаемое усилие ³10-2 Н. Величина перемещения ³2 мм. Частота питания £5 Гц.

Общий вид и рабочие характеристики резистивного датчика показаны на рис.

Тензодатчики – используют для исследования механических напряжений.

Пьезорезистивные преобразователи сил давления и деформации

Устройство датчика следующее: между металлизированными обкладками находится пьезочувствительный элемент. Если приложить силу к обкладкам, сопротивление элемента будет изменяться (на практике это изменения бывают в несколько раз). По изменению сопротивления судят о приложенной силе или деформации. Устройство датчика показано на рисунке.

Электромагнитные датчики перемещения и деформаций

Принцип действия этих датчиков основан на взаимодействии магнитных потоков. О величине перемещения или деформации судят по изменению тока в катушке индуктора. Различные схемы электромагнитных датчиков приведены на рисунке.

На рис. а показан датчик линейных перемещений. На рис. б – угловых перемещений. Для повышения точности измерений применяют трансформаторную схему подключения (рис. в) и дифференциальную схему (рис. Г).

Стандартизация – это установление и применение правил с целью упорядочения деятельности в определённой области на пользу и при участии всех заинтересованных сторон, в частности для достижения всеобщей оптимальной экономии при соблюдении условий эксплуатации и требований безопасности. Стандартизация, основанная на объединённых достижениях науки, техники и передового опыта, определяет основу не только настоящего, но и будущего развития промышленности.

Из определения следует, что стандартизация – это плановая деятельность по установлению обязательных правил, норм и требований, выполнение которых обеспечивает экономически оптимальное качество продукции, повышение производительности общественного труда и эффективности использования материальных ценностей при соблюдении требований безопасности.

Стандарт – нормативно-технический документ по стандартизации, устанавливающий комплекс норм, правил, требований к объекту стандартизации и утверждённый компетентным органом. Стандарт, разработанный на основе науки, техники, передового опыта, должен предусматривать оптимальные для общества решения. Стандарты разрабатывают как на материальные предметы (продукцию, эталоны, образцы веществ и т. п.), так и на нормы, правила, требования к объектам организационно-методического и общетехнического характера. Стандарт – это самое целесообразное решение повторяющейся задачи для достижения определённой цели. Стандарты содержат показатели, которые гарантируют возможность повышения качества продукции и экономичности её производства, а также повышения уровня её взаимозаменяемости.

ЦЕЛИ И ЗАДАЧИ СТАНДАРТИЗАЦИИ

Главная цель Государственной системы стандартизации (ГСС) – с помощью стандартов, устанавливающих показатели, нормы и требования, соответствующие передовому уровню отечественной и зарубежной науки, техники и производства, содействовать обеспечению пропорционального развития всех отраслей народного хозяйства страны. Эта система имеет также следующие цели:

Про анемометры:  Какая предельно допустимая концентрация углекислого газа в воздухе закрытого склада

· улучшение качества работы, качества продукции и обеспечение его оптимального уровня;

· обеспечение условий для развития специализации в области проектирования и производства продукции, снижения её трудоёмкости, металлоёмкости и улучшения других показателей;

· обеспечение увязки требований продукции с потребностями обороны страны;

· обеспечение условий для широкого развития экспорта товаров высокого качества, отвечающих требованиям мирового рынка;

· рациональное использование производственных фондов и экономия материальных и трудовых ресурсов;

· развитие международного экономического и технического сотрудничества;

· обеспечение охраны здоровья населения, безопасности труда рабочих, охраны природы и улучшения использования природных ресурсов.

Для достижения указанных целей необходимо решить следующие задачи:

· установление прогрессивных систем стандартов на основе комплексных целевых программ, определяющих требования к конструкции изделий, технологии их производства, качеству сырья, материалов, полуфабрикатов и комплектующих изделий, а также создающих условия для формирования требуемого качества конечной продукции на стадии на стадии её проектирования, серийного производства и эффективного использования;

· определение единой системы показателей качества продукции, методов и средств контроля и испытаний, а также необходимого уровня надёжности в зависимости от назначения изделий и условий их эксплуатации;

· установление норм, требований и методов в области проектирования и производства продукции с целью обеспечения её оптимального качества и исключения нерационального многообразия видов, марок и типоразмеров продукции;

· развитие унификации промышленной продукции и агрегатирования машин как важнейшего средства специализации, повышения экономичности производства, производительности труда, уровня взаимозаменяемости, эффективности эксплуатации и ремонта изделий;

· обеспечение единства и достоверности измерений в стране, создание и совершенствование государственных эталонов единиц физических величин, а также методов и средств измерений высшей точности;

· установление единых систем документации, в том числе унифицированных систем документации, используемых в автоматизированных системах управления, установление систем классификации и кодирования технико-экономической информации, форм и систем организации производства и технических средств научной организации труда;

· установление единых терминов и обозначений в важнейших областях науки и техники, а также в отраслях народного хозяйства и др.

Одной из основных задач Госстандарта является разработка мер по повышению эффективности стандартизации в улучшении качества выпускаемой продукции и экономичности её производства путём внедрения систем стандартов при комплексной и опережающей стандартизации, развития межотраслевой унификации, создания общетехнических систем стандартов, обеспечения единства и достоверности измерений в стране и др.

Руководство стандартизацией в каждой отрасли осуществляют: отделы стандартизации министерств, а также отделы в главных управлениях министерств; головные организации по стандартизации, создаваемые при наличии в системе министерства нескольких базовых организаций по стандартизации; базовые организации по стандартизации, выделяемые из ведущих научно-исследовательских, проектно-конструкторских организаций и предприятий; научно-исследовательские и конструкторские отделы (лаборатории, бюро) стандартизации в НИИ, КБ и на предприятиях.

В зависимости от сферы действия ГСС предусматривает следующие категории стандартов: государственные (ГОСТ), отраслевые (ОСТ), республиканские (РСТ) и стандарты предприятий (СТП). Государственные стандарты обязательны для всех предприятий, организаций и учреждений страны в пределах сферы их действия. Отраслевые стандарты используют все предприятия и организации данной отрасли (например, станкостроительной), а также другие предприятия и организации (независимо от ведомственной принадлежности), разрабатывающие, изготовляющие и применяющие изделия, которые относятся к номенклатуре, закреплённой за соответствующим министерством. Республиканские стандарты обязательны для предприятий республиканского и местного подчинения данной республики независимо от их ведомственной принадлежности. Стандарты предприятий (объединений) действуют только на предприятии, утвердившем данный стандарт.

Государственные стандарты устанавливают требования преимущественно к продукции массового и крупносерийного производства широкого и межотраслевого производства, к изделиям, прошедшим государственную аттестацию, экспортным товарам; они устанавливают также общие нормы, термины и т. п. Исходя из этого, можно указать на следующие объекты государственной стандартизации: общетехнические и организационно-методические правила и нормы; нормы точных изделий межотраслевого применения; требования к продукции, поставляемой для эксплуатации в различных климатических условиях, методы их контроля; межотраслевые требования и нормы техники безопасности и производственной санитарии; научно-технические термины, определения и обозначения; единицы физических величин; государственные эталоны единиц физических величин и общесоюзные поверочные схемы; методы и средства поверки средств измерений; государственные испытания средств измерений; допускаемые погрешности измерений; системы конструкторской, технологической, эксплуатационной и ремонтной документации; системы классификации и кодирования технико-экономической информации и т. д.

Отраслевые стандарты устанавливают требования к продукции, не относящейся к объектам государственной стандартизации, к технологической оснастке, инструменту, специфическим для отрасли, а также на нормы, правила, термины и обозначения, регламентация которых необходима для обеспечения взаимосвязи в производственно-технической деятельности предприятий и организаций отрасли и для достижения оптимального уровня качества продукции. Объектами отраслевой стандартизации могут быть машины, оборудование, приборы и другие изделия серийного производства, детали и составные части этих изделий; сырьё, материалы, топливо, полуфабрикаты, применяемые в отрасли; типовые технологические процессы внутриотраслевого применения и др. ОСТы разрабатывают также для ограничения, например, типоразмеров крепёжных деталей, полей допусков и посадок и др.

Республиканские стандарты устанавливают требования к продукции, выпускаемой предприятиями союзно-республиканского и местного подчинения республики. Номенклатура продукции, на которую утверждают республиканские стандарты, должна быть согласована с Госстандартом и соответствующими ведущими министерствами и ведомствами по закреплённым группам продукции. Объектами республиканской стандартизации могут быть сырьё, материалы, топливо и полезные ископаемые внутриреспубликанского производства и применения; отдельные типы изделий массового или серийного производства, относящиеся к профилю республиканских министерств, товары народного потребления и др.

Стандарты предприятий (объединений) распространяются на нормы, правила, методы, составные части изделий и другие объекты, имеющие применение только на данном предприятии; на нормы в области организации и управления производством; на технологические нормы и требования, типовые технологические процессы, оснастку, инструмент и т. п. Стандарты предприятий могут также устанавливать ограничения по применяемой номенклатуре деталей, составных частей, материалов, предусмотренные государственными, отраслевыми или республиканскими стандартами.

МЕТОДИКА РАЗРАБОТКИ И УТВЕРЖДЕНИЯ СТАНДАРТОВ

Целесообразность разработки каждого стандарта обосновывается потребностями народного хозяйства и ожидаемым техническим и экономическим эффектом. Для этого предварительно подбирают и анализируют литературные и производственные данные, устанавливают тенденции развития и перспективные потребности промышленности по стандартизуемым объектам или параметрам. Обязательным этапом является анализ зарубежного опыта и достигнутого там уровня качественных показателей стандартизуемых объектов.

Номенклатура показателей качества должна быть достаточной, чтобы всесторонне и полно характеризовать изделие не только с точки зрения изготовителя, но и с точки зрения потребителя. Например, для покупателя телевизора важны размеры экрана, четкость изображения, гарантийный срок, внешний вид и его ремонтопригодность, т.е. возможность быстрого обнаружения повреждений и замены неисправных элементов. Для завода- изготовителя, кроме указанного, важное значение имеют совершенство конструкции и технологичность составных частей телевизора, определяющих трудоемкость и экономичность его производства, и т.д.

ГСС устанавливает шесть стадий разработки стандартов:

· организация разработки стандарта, составление и утверждение технического задания;

· разработка проекта стандарта и рассылка его на отзыв;

· анализ отзывов и разработка окончательной редакции проекта стандарта;

· подготовка, согласование и представление стандарта на утверждение;

· рассмотрение, утверждение и регистрация стандарта;

· издание стандарта и информации о нем.

1. Основы метрологии и электрические измерения. Под ред. Б.М. Душина – Л Энергоатомиздат 1987г. 480 c.

2. Электрические измерения. Под ред. А.В. Фремке – Л: Энергия,1980 г.

1. Электрические измерения. Под ред. В.Н.Малиновского. М:Энергоатомиздат,1985 г. – 416с.

2. Задачи и примеры расчетов по электроизмерительной технике /Р.Н.Демидова-Панферова, В.Н.Малиновский, Ю.С. Солодов М: Энергоатомиздат 1990 г. – 192 с.

3. Оценка погрешностей результатов измерений П.В.Новицкий, И.А.Зограф. Л:Энергоатомиздат 1985 г.- 248 с.

4. Справочник по электроизмерительным приборам /под ред. К.К. Илюнина Л: Энергия 1977г.

Оцените статью
Анемометры
Добавить комментарий