▷ Купить метеостанции с отображением скорости и направления ветра с E-Katalog – цены интернет-магазинов России на метеостанции с отображением скорости и направления ветра – в Москве, Санкт-Петербурге

▷ Купить метеостанции с отображением скорости и направления ветра с E-Katalog - цены интернет-магазинов России на метеостанции с отображением скорости и направления ветра - в Москве, Санкт-Петербурге Анемометр

Анемометры, термоанемометры

Анемометры — приборы для измерения скорости движения ветра, либо скорости движения воздуха.

Термоанемометры — это приборы, применяемые для измерения скорости воздушных потоков c функцией дополнительного измерения температуры.

Определение скорости воздушного потока (ветра) играет решающую роль не только при метеорологических наблюдениях, но и в различных отраслях промышленной деятельности, таких как:

  • горнодобыча. Особые условия рудничной атмосферы, присущие для горных выработок типы воздушных потоков, диапазон их скоростей, регламентируемый правилами безопасности при проведении горных работ, и другие факторы делают применение анемометров незаменимыми для безопасного функционирования горнодобывающих предприятий;
  • сельское хозяйство. Диагностика скорости движения ветра является необходимым условием в сельскохозяйственной деятельности, особенно во время опрыскивания культурных растений различными химическими препаратами от болезней и вредителей. Скорость ветра играет решающую роль в точности нанесения препарата;
  • строительство. Анализ работы систем вентиляции, кондиционирования и отопления, а также при осуществлении контроля соответствия рабочих помещений санитарным нормам и стандартам.

Скорость воздуха является значимой величиной, характеризующей состояние воздушного потока, которую необходимо планировать и принимать во внимание при выполнении проектно-монтажных работ, а также при испытании, регулировке систем вентиляции и кондиционирования любого уровня сложности в жилых и производственных помещениях.

В настоящее время большое количество производственных и офисных помещений не соответствуют санитарно-гигиеническим и эпидемиологическим стандартам, из-за отсутствия циркуляции свежего воздуха, а процесс вентиляции происходит посредством устаревших вентсистем.

Проветривание помещений, с помощью открывания окон, создает массу неудобств, начиная от уличного шума, до проникновения пыли и вредных веществ в условиях повышенной загазованности и задымления атмосферной среды в промышленной зоне или в городской черте, что оказывает негативное воздействие на здоровье людей.

Про анемометры:  Датчики ветра М-127, ДВМ - Каталог продукции ГИДРОМЕТПРИБОР - купить профессиональное оборудование с доставкой по России и СНГ

Современные системы кондиционирования и приточно-вытяжной вентиляции позволяют очистить воздух от вредных примесей и бактерий, поддерживать комфортную температуру окружающей среды, а также увлажнять и ионизировать воздух. По данным статистики, наличие приточно-вытяжной вентиляции офисных и производственных помещений помогает сократить число респираторных инфекций у сотрудников и увеличить производительность труда.

Область применения анемометров, термоанемометров — жилые и производственные помещения; метеорологические станции; строительство; шахты; системы промышленной вентиляции, кондиционирования и отопления, а также при аттестации рабочих мест и аэродинамических установок; оценка качества работы авиационных двигателей и др.

Применение анемометров при грузоподъемных работах. Все мостовые перегружатели, портальные, кабельные и башенные краны обязательно должны быть оснащены анемометрами с целью своевременного светозвукового оповещения машиниста автокрана о сильном ветре, который представляет собой опасность для данной техники.

Грузоподъемные операции с использованием автокрана возможны при разрешенных показателях скорости ветра, которые рассчитываются при проектировании оборудования и должны быть включены в руководство по технической эксплуатации. В процессе работы автокрана допустимые параметры скорости ветра напрямую зависят от парусности груза и типа осуществляемых погрузоразгрузочных работ.

При работе оператор грузоподъемной техники должен руководствоваться показаниями анемометра. Если скорость ветра выше, чем нормативные показатели, то работа автокрана останавливается, электропитание отключается, после чего проводятся работы по укреплению крана.

Правильно организованная вентиляция в покрасочной камере играет огромную роль и используется в течение всего технологического процесса окраски, включая сушку окрашенных изделий и предшествующий данной операции — горячий обдув окрашенных поверхностей, который проводится также с применением термовентиляции.

Кроме того, равномерное нанесение лакокрасочных материалов осуществимо только при умеренной скорости перемещения воздушных потоков. Также с помощью вентиляционной системы удаляются ядовито-опасные вещества (красочный туман и пары растворителей), образующиеся во время процесса пневматического распыления краски, они осаждаются на только что окрашенную поверхность, если не принять меры для их удаления, качество покраски будет низким, и, следовательно, недолговечным.

Поэтому для осуществления эффективного отвода красочного тумана и паров растворителей через напольный фильтр в подпольное пространство, необходимо обеспечить первоначальные значения скорости воздушного потока в диапазоне от 0,15 до 0,3 м/c. Термоанемометр произведёт точные измерения скорости воздушного потока в кабине лакокрасочной камеры.

Использование современных анемометров, термоанемометров играет важную роль в разных сферах жизнедеятельности человека, поэтому к выбору моделей такого оборудования необходимо относиться с полной ответственностью.

В данном каталоге представлены следующие типы анемометров:

  • механические анемометры, в которых движение воздуха приводит во вращение чашечное колесо — чашечныеанемометры или крыльчатку (подобие воздушного винта) — крыльчатыеанемометры;
  • тепловые анемометры, принцип действия которых основан на измерении снижения температуры нагретого тела (проволока, пленка, терморезистор) от движения воздуха.

Чашечный анемометр — наиболее распространённый тип анемометра, состоящий из четырёх полусферических чашек, симметрично насаженных на крестообразные спицы ротора, вращающегося на вертикальной оси. Ветер любого направления вращает ротор со скоростью, пропорциональной скорости ветра.

Крыльчатые анемометры — в данных анемометрах для измерения скорости воздушного потока используется зонд-крыльчатка.

Принцип измерения скорости потока зондом крыльчаткой основывается на преобразовании скорости вращения в электрические сигналы. Поток воздуха заставляет крыльчатку вращаться. Индукционный бесконтактный переключатель «считает» количество оборотов крыльчатки и подает последовательность импульсов, которые преобразуются измерительным прибором и отображаются на дисплее в виде значений скорости потока.

Крыльчатки больших диаметров (D60 мм, D100 мм) подходят для измерений скорости в турбулентых потоках при малых и средних скоростях. Крыльчатки с маленьким диаметром подходят для измерений внутри воздуховодов; в данном случае профиль воздуховода должен быть в 100 раз больше, чем тот профиль крыльчатки, через который проходит поток воздуха.

Ручные крыльчатые анемометры применяются для измерения скорости направленного воздушного потока в трубопроводах и коробах вентиляционных устройств для вычисления расхода вентиляционного воздуха в вентиляционных отверстиях, воздуховодах жилых и производственных зданий.

Тепловые анемометры — термоанемометры. Метод определения скорости основан на измерении температурного сопротивления нагреваемого терморезистора, охлаждаемого воздушным потоком.

Принцип измерения скорости потока обогреваемым зондом основывается на обогреваемом элементе, из которого тепловая энергия извлекается посредством воздействия более холодного потока воздуха. Температура поддерживается на необходимом уровне благодаря регулятору.

Регулируемый поток прямо пропорционален скорости воздуха. При применении обогреваемых зондов скорости для измерений в турбулентых потоках на результат измерений влияют потоки, которые воздействуют на обогреваемый элемент со всех направлений. При измерениях в турбулентых потоках, обогреваемый сенсор скорости показывает более высокие значения измерений, чем крыльчатки.

Чаще всего термоанемометры применяются там, где требуется измерить скорость воздуха и температуру: на метеорологических станциях, в строительстве, на шахтах, в системах промышленной вентиляции, кондиционирования и отопления, а также при аттестации рабочих мест.

По территории Республик Башкортостан и Татарстан возможна доставка оборудования КИПиА до склада Покупателя. Доставка в другие регионы России осуществляется посредством транспортных и «Грузовозофф», в отдельных случаях-службой доставки «Экспресс-курьер».

На всю представленную продукцию распространяются гарантийные обязательства Завода — Изготовителя.

Вращающиеся

В данном случае основной чувствительный элемент – это 3 или же 4 чаши в виде полусфер, которые располагаются на оси при помощи соединительных спиц. Поток воздействует на данную конструкцию с изменяющейся силой, из-за чего система получает соответствующий импульс и начинает вращаться.

Важно учитывать, что линейная скорость потоков отличается от скорости вращения чашек. Коэффициент ветромера составляет 2-3 единицы. Помимо этого, важно помнить о нелинейности характеристики измерительного прибора, исходя из чего для получения точных показаний дополнительно требуются секундомер и градуировочный график. В итоге алгоритм измерений, согласно инструкциям, включает в себя три ключевые стадии.

  1. Фиксация количества оборотов блока с чашами за конкретный интервал времени.
  2. Определение по графику пути, пройденного потоком.
  3. Нахождение скорости путем деления расстояния на зафиксированное время.

Стоит заметить, что полученный результат – это среднее значение скорости за указанный временной промежуток.

Ручной ветромер индукционного типа оснащен тремя чашами, благодаря чему улучшается отклик прибора на колебания интенсивности потока. Главные преимущества таких моделей заключаются в отсутствии графика и необходимости применения секундомера.

В лопастных анемометрах основным элементом является крыльчатка. Принцип функционирования прибора такой же, как и у чашечных моделей. С учетом того, что ось вращения лопастей расположена параллельно исследуемому потоку, датчик устанавливается сразу за крыльчаткой.

Электронные модификации лопастных анемометров не имеют указанных счетчиков. Эта конструктивная особенность позволяет измерять скорость ветра до 45 м/с. Производители представляют на рынке приборы данной категории как с интегрированными, так и с выносными чувствительными элементами.

Новый прибор сможет дистанционно измерять скорость ветра

Физики из Московского физико-технического института, Института космических исследований РАН, Института общей физики им. А. М. Прохорова РАН и Российского исследовательского центра Samsung разработали новый метод дистанционного зондирования скорости ветра, альтернативный широко используемому лидарному и радарному зондированию. Работа опубликована в Atmospheric Measurement Techniques, кратко о ее результатах сообщила пресс-служба МФТИ.

Необходимость в измерениях скорости ветра огромна — например, без этих данных невозможна тонкая настройка метеорологических и климатических моделей, в том числе моделей прогноза погоды. Несмотря на огромный прогресс в дистанционном зондировании за последние десятилетия, измерение движения воздушных масс — по-прежнему непростая задача.

Основная масса данных собирается традиционными контактными методами — при помощи датчиков, установленных на метеостанциях, или аэрологических шаров-зондов. Для локальных измерений на дистанциях, не превышающих несколько десятков или сотен метров, обычно используют лазерные или акустические анемометры.

На расстояниях до десятков километров на помощь приходят метеорологические радары, но и они, как правило, неэффективны за пределами тропосферы — самого близкого к Земле слоя атмосферы толщиной 10–18 км. Со спутников такие измерения практически не проводятся, есть только единичные эксперименты.

«Информацию о динамике атмосферы по-прежнему достаточно трудно получить с помощью прямых измерений. На сегодня наиболее надежными средствами дистанционного измерения поля скоростей ветра являются доплеровские радары. В этом случае идет активное зондирование среды мощным источником, что требует значительных ресурсов: массы, размеров, энергопотребления и, разумеется, стоимости оборудования.

Разработанный нами прибор существенно выигрывает по этим параметрам — он компактный, недорогой и использует серийную элементную базу, широко представленную на рынке телекоммуникационного оборудования», — комментирует Александр Родин, руководитель лаборатории прикладной инфракрасной спектроскопии МФТИ.

Прибор основан на принципе гетеродинной регистрации сигнала, повсеместно применяемом в радиотехнике, однако работает он в оптическом, точнее, ближнем инфракрасном диапазоне, на длине волны около 1,65 мкм. Принцип основан на идее смешения принимаемого сигнала (в данном случае — излучения Солнца, прошедшего сквозь атмосферу) и эталонного источника (гетеродина), в качестве которого применяется перестраиваемый полупроводниковый лазер.

Поскольку и радиосигнал, и инфракрасное излучение подчиняются одним и тем же законам распространения электромагнитных волн, неудивительно, что принцип гетеродинирования одинаково применим ко всем диапазонам спектра. Однако при гетеродинировании оптического излучения возникают свои сложности — например, требуется согласование волновых фронтов с очень высокой точностью, смещение пучка излучения на расстояние в доли длины волны недопустимо.

Команда из МФТИ решила эту проблему очень просто, применив одномодовые оптические волокна. Также требуется чрезвычайно точное управление частотой гетеродина с погрешностью не более 1 МГц, что, по сравнению с частотой оптического излучения, ничтожная величина.

Здесь пришлось применить определенные хитрости, а главное — глубоко вникнуть в процессы генерации излучения полупроводниковым лазером. В результате был создан прибор, не имеющий аналогов в мире по спектральному разрешению в ближнем инфракрасном диапазоне, — лазерный гетеродинный спектрорадиометр.

«Создать прибор, пусть даже и с рекордными характеристиками — это только полдела, — комментирует Александр Родин. — Для того чтобы по измеренному спектру определить скорость ветра на различных высотах вплоть до стратосферы и выше, требовался специальный алгоритм решения обратной задачи.

При ее решении мы не стали идти по пути машинного обучения, а применили классический подход, основанный на тихоновской регуляризации. Несмотря на то, что этим методам уже более полувека, ими пользуется весь мир и их потенциал далеко не исчерпан», — уточняет ученый.

В ближайшее время специалисты лаборатории прикладной инфракрасной спектроскопии МФТИ планируют проводить с помощью созданной ими аппаратуры измерения стратосферного полярного вихря, а также концентрации парниковых газов в российской Арктике. Кроме того, вместе с коллегами из Института космических исследований РАН на основе этого же принципа они разрабатывают прибор для исследования атмосферы Венеры, который в рамках международного сотрудничества будет установлен на борту индийского искусственного спутника планеты «Шукраян».

Определение скорости ветра

Сила ветра в баллах по БофортуНазваниеПризнаки для оценкиСкорость ветра в м/секСкорость ветра в км/часСкорость ветра в миль/час
0 штиль Листья на деревьях не колеблются, дым сигареты поднимается вертикально, огонь от спички не отклоняется0 0 меньше 1
1 тихий Дым сигареты несколько отклоняется, но ветер не ощущается лицом1 3,6 1-3
2 легкий Ветер чувствуется лицом, листья на деревьях колышутся (шелестят)2-3 5-12 4-7
3 слабый Ветер качает мелкие ветки и колеблет флаг4-5 13-19 8-12
4 умеренный Качаются ветки средней величины, поднимается пыль6-8 20-30 13-18
5 свежий Качаются тонкие стволы деревьев и толстые ветви, образуется рябь на воде9-10 31-37 19-24
6 сильный Качаются толстые стволы деревьев, ветер «гудит» в проводах11-13 38-48 25-31
7 крепкий Качаются большие деревья, против ветра трудно идти14-17 49-63 32-38
8 очень крепкий Ветер ломает толстые стволы18-20 64-73 39-46
9 шторм Ветер сносит легкие постройки, валит заборы21-26 74-94 47-54
10 сильный шторм Деревья вырываются с корнем, сносятся более прочные постройки27-31 95-112 55-63
11 жестокий шторм Ветер производит большие разрушения, валит телеграфные столбы, вагоны и т. д.32-36 115-130 64-72
12 ураган Ураган разрушает дома, опрокидывает каменные стеныБолее 36 Более 130 73-82

Оружие > Баллистика нарезного оружия

Автор не несет никакой ответственности за любой вид ущерба, понесенного в результате использования присутствующей здесь информации. Автор оставляет на усмотрение читателя, применять полученные здесь сведения, или подвергнуть тщательной проверке в специализированных источниках.

Приборы для измерения скорости и направления ветра.

Приборы, измеряющие скорость ветра, называются анемометрами; измеряющие скорость и направление – анеморумбометрами; регистрирующие скорость и направление – самописцами.

Рисунок 7.1 – Основные румбы

Флюгер станционный (флюгер Вильда) по устройству прост и достаточно широко используется для измерения направления, скорости и порывистости ветра (рис. 7.2). Чувствительным эле­ментом направления ветра в этом приборе является флюгарка 1 с противовесом 2.

Она укреплена на трубке 7, которая надевается на заостренный конец неподвижной оси 3 и свободно вращается вокруг нее. Для определения направления ветра на неподвижной оси расположена муфта 4 с восемью штифтами, указывающими на­правление сторон света. На одном из них укрепляется буква С, на­правленная на север.

Приемником скорости ветра служит прямоугольная доска (пла­стина) 5, свободно качающаяся около горизонтальной оси 6. На оси закреплена дуга 8 с восемью штифтами, по которым от­считывают положение доски, отклоняющейся под действием ветра. На оси 6 есть противовес 10 для уравновешивания дуги 8. Штифты дуги нумеруются от 0 до 7.

Рисунок 7.2 – Флюгер Вильда (по М.Д. Павловой, 1974)

Анемометр ручной чашечный МС-13 (рис. 7.3). Его чувствительным элементом является небольшая вертушка 2 с четырьмя полусферическими чашками, обращенными выпуклостями в одну сторону. Вертушка насажена на ось 1, в нижней части которой имеется червячная (винтовая) нарезка, сопри­касающуюся с зубчатым колесом, передающим вращение вертушки счетному механизму.

шкала 6 имеет 100 делений. По этой шкале от­считывают десятки и единицы оборотов. Малые шкалы имеют 10 делений и служат для отсчета сотен и тысяч оборотов.

Счетный механизм включается и выключается арретиром, вы­ступающий конец которого расположен сбоку корпуса и имеет вид подвижного кольца. Движением арретира вверх (против ча­совой стрелки) счетчик анемометра включают, а движением вниз (по часовой стрелке) – выключают.

В корпусе прибора по обе стороны арретира ввинчены два ушка, через которые протяги­ваются концы шнура, прикрепленного к кольцу для включения и выключения прибора, когда его нельзя достать рукой. Снизу под корпусом прибора имеется стержень с винтовой нарезкой 4 для установки анемометра на деревянном шесте в вертикальном по­ложении.

Рисунок 7.3 – Анемометр ручной чашечный МС-13 (по А.П. Лосеву, 1994)

От механических повреждений вертушка защищена металличе­скими дужками 7. Анемометр хранится в футляре с выключенным механизмом.

▷ Купить метеостанции с отображением скорости и направления ветра с E-Katalog - цены интернет-магазинов России на метеостанции с отображением скорости и направления ветра - в Москве, Санкт-Петербурге
Анеморумбометр М-63– дистанционный прибор (рис. 7.4). Им измеряется скорость ветра, осредненная за 10-минут­ный интервал, максимальная мгновенная скорость ветра между сроками наблюдений и направление ветра.

Рисунок 7.4 – Анеморумбометр М-63 ( по М.д. Павловой, 1974)

Принцип действия основан на преобразова­нии направления и скорости ветра в электрические величины. В комплект прибора входит датчик 1, измерительный пульт 2и блок питания 3.

Датчик состоит из обтекаемого корпуса, вращаю­щегося вокруг вертикальной неподвижной стойки. В конце корпуса находится флюгарка 5, а в начале – четырехлопастный винт 4с горизонтальной плоскостью вращения, которая с помощью флю­гарки устанавливается всегда перпендикулярно направлению воз­душного потока.

Измерительный пульт – настольный прибор, на лицевой сто­роне которого размещены указатель мгновенной скорости 6,

ука­затель средней скорости 7 и указатель направления ветра 8.Блок питания состоит из двух батарей аккумуляторов, вольт­метра для измерения напряжения аккумуляторов и тумблера. Блок питания подключается к сети переменного тока.

Для характеристики ветрового режима местности по повто­ряемости направле­ний ветра строится график, назы­ваемый «розой ветров». Он может быть месячным, сезонным, годовым.

Повторяемость ветра для каждого из восьми румбов вычисляется по количеству раз, которое наблюдалось за тот или иной период. Полученные значения выражаются в процентах от общего числа наблюдений (число штилей в 100 % не входит).

При построении розы ветров чертят восемь румбов на­правлений ветра и на них в определенном масштабе отклады­вается повторяемость ветра. По­следовательно соединенные точки и будут характеризовать розу ветров.

Примерная роза ветров

Задача.

1. Построить розы ветров по направлению ветра в мае и июне

МесяцССВВЮВЮЮЗЗСЗШтиль
Май
июнь

Контрольные вопросы

1. Ветер и его характеристики.

2. Значение ветра для сельскохозяйственного производства.

3. Приборы, характеризующие ветер.

4. Ручной анемометр и принцип его действия.

5. Роза ветров и ее построение.

Сила ветра: измерение и использование

Ветер как явление природы известен каждому еще с раннего детства. Он радует свежим дуновением в знойный день, гоняет корабли по морю, а может и гнуть деревья, и ломать крыши на домах. Основным характеристиками, которые определяют ветер, являются его скорость и направление.

сила ветра
Что такое ветер?
С научной точки зрения, ветром называется передвижение воздушных масс в горизонтальной плоскости. Такое движение возникает потому, что имеет место разность атмосферного давления и тепла между двумя точками. Воздух передвигается из областей высокого давления в те области, где уровень давления ниже. В результате и возникает ветер.

Характеристики ветра

Для того чтобы охарактеризовать ветер, используют два основных параметра: направление и скорость (силу). Направление определяется стороной горизонта, с которой он дует. Оно может указываться в румбах, в соответствии с 16-румбовой шкалой. Согласно ей, ветер может быть северным, юго-восточным, северо-северо-западным и так далее.

Направление ветра может также измеряться в градусах, относительно линии меридиана. По этой шкале север определяется как 0 или 360 градусов, восток – 90 градусов, запад – 270 градусов, а юг – 180 градусов. В свою очередь, скорость ветра измеряют в метрах в секунду или в узлах. Узел равен приблизительно 0,5 километра в час. Сила ветра измеряется также в баллах, в соответствии со шкалой Бофорта.

Шкала Бофорта, в соответствии с которой определяется сила ветраЭта шкала была введена в обращение в 1805 году. А в 1963 году Всемирная метеорологическая ассоциация приняла градацию, которая действует по сей день. В ее рамках 0 баллов соответствует штилю, при котором дым будет подниматься вертикально вверх, а листья на деревьях остаются неподвижными.

Сила ветра в 4 балла соответствует умеренному ветру, при котором на поверхности воды образуются небольшие волны, могут колыхаться тонкие ветви и листья на деревьях. 9 баллов соответствуют штормовому ветру, при котором могут гнуться даже большие деревья, срываться черепица с крыш, подниматься высокие волны на море.

Использование силы ветраСила ветра достаточно широко используется в энергетике как один из восполнимых природных источников. С незапамятных времен человечество использовало этот ресурс. Достаточно вспомнить ветряные мельницы или парусные суда.

Ветряки, с помощью которых сила давления ветра преобразуется для дальнейшего использования, широко применяются в тех местах, для которых характерны постоянные сильные ветры. Из различных областей применения такого явления как сила ветра, стоит упомянуть также аэродинамическую трубу.

Ветер – природное явление, которое может приносить удовольствие или разрушения, а также быть полезным для человечества. А конкретное действие его зависит от того, насколько большой окажется сила (или скорость) ветра.

Ультразвуковой анемометр [ править | править код ]

Принцип действия анемометров ультразвукового типа основан на измерении скорости звука, которая изменяется в зависимости от ориентации вектора движения воздуха (направления ветра) относительно пути распространения звука.

Существуют двухкомпонентные ультразвуковые анемометры — измеряют помимо скорости и направление ветра по частям света — направление горизонтального ветра и трёхкомпонентные ультразвуковые анемометры — измерители всех трёх компонент вектора скорости воздуха.

Скорость звука в таких анемометрах измеряется по времени прохода ультразвуковых импульсов между фиксированным расстоянием от излучателя до ультразвукового микрофона, затем измеренные времена пересчитываются в две или три компоненты скорости движения воздуха.

Так как скорость звука в воздухе зависит ещё от температуры (возрастает пропорционально корню квадратному из абсолютной температуры), в ультразвуковых анемометрах обязательно есть термометр, по показаниям которого вносятся поправки в вычисления скорости ветра.

Многие современные модели электронных анемометров позволяют измерять не только скорость ветра (это основное предназначение прибора), но и снабжены дополнительными удобными сервисными функциями — вычисления объёмного расхода воздуха, измерения температуры воздуха (термоанемометр), влажность воздуха (термоанемометр с функцией измерения влажности).

Российскими предприятиями также выпускаются многофункциональные приборы, которые содержат в себе функции как термоанемометра, так и гигрометра (измерение влажности) и манометра (измерение дифференциального давления в воздуховоде). Например, метеометр МЭС200, дифманометр ДМЦ01М. Такие приборы используются при создании, обследовании, ремонте, поверке вентиляционных шахт в зданиях любого типа.

Как правило, все выпускаемые на территории РФ анемометры подлежат обязательной сертификации и государственной поверке, так как являются средствами измерения.

Некоторые народные умельцы делают самодельные анемометры для собственных бытовых нужд, например, для сада-огорода.

К метеорологическим устройствам относится прибор для измерения скорости ветра, который называется анемометр. В переводе с древнегреческого определение буквально означает «ветромер». Несмотря на название, прибор был изобретен лишь в 19 веке. Его изобрел астроном из Ирландии Джон Робинсон для определения скорости ветра.

Оцените статью
Анемометры
Добавить комментарий