Прибор который используется для непрерывной регистрации температуры воздуха

Прибор который используется для непрерывной регистрации температуры воздуха Анемометр

Описание процедуры

Различают два вида термографии: бесконтактная и контактная, однако суть обоих методов — определение температуры тела на конкретном его участке.

Бесконтактная термография осуществляется при помощи определённых приборов, к которым относятся термографы и тепловизоры. Эти устройства производят регистрацию ИК-волн и представляют их в виде изображения. Такой способ позволяет сразу охватить всё тело пациента.

Контактная термография использует жидкие кристаллы, которые могут менять свой цвет в зависимости от температуры человеческого тела. Контакт производится с помощью специального пласта или пленки с соответствующими соединителями. Этот метод является локальным и более точным, нежели бесконтактная термография.

История завода Гидрометприбор (Смоленская область, г. Сафоново) началась в 1960 году. Основным направлением деятельности предприятия является производство приборов контроля, гидрометеорологических приборов и передвижных лабораторий по мониторингу окружающей среды. Завод Гидрометприбор серьёзно подходит к решению вопросов экологии и стремиться к созданию прочного фундамента для более высокого уровня жизни, безопасности людей и эффективной работы. В связи с глобальным изменением климата оборудование и приборы завода Гидрометприбор для погодных наблюдений и экологических измерений используются по всему миру и включают в себя:

Смеем Вас заверить, что Гидрометприбор стремится к устойчивому и прибыльному росту, уделяя при этом особое внимание обслуживанию и комплексным решениям, а также географическому расширению.

Прибор который используется для непрерывной регистрации температуры воздуха

Термо́граф — прибор для непрерывной регистрации температуры воздуха, воды и др. Чувствительным элементом термографа может служить биметаллическая пластинка, термометр жидкостной или термометр сопротивления. В метеорологии наиболее распространён термограф, чувствительным элементом которого является изогнутая биметаллическая пластинка, деформирующаяся при изменении температуры. Перемещение её конца передаётся стрелке, которая чертит кривую на разграфленной ленте. 1 мм записи по вертикали соответствует около 1 °C. По времени полного оборота барабана термографы подразделяются на суточные и недельные. Работа термографа контролируется по ртутному термометру.

Про анемометры:  Заправил газ а датчик пищит

Термограф: 1 — биметаллическая пластинка; 2 — передаточные рычаги; 3 — стрелка; 4 — барабан.

Прибор который используется для непрерывной регистрации температуры воздуха

Термограф.

Термограф – это прибор для непрерывной регистрации температуры воздуха, воды и др.

Термограф – это прибор для непрерывной регистрации температуры , и др. Термограф входит в состав метеорологической станции. Чувствительным элементом термографа может служить биметаллическая пластинка, термометр жидкостной или термометр сопротивления. Наиболее распространён термограф, чувствительным элементом которого является изогнутая биметаллическая пластинка, деформирующаяся при изменении температуры.

Термограф внешне подобен специализированному часовому механизму в виде записывающего медленно вращающегося цилиндра (барабана), на котором закреплена разграфленная . В состав термографа также входит биметаллическая пластинка, пишущая на вращающемся барабане стрелка и механизм передачи (передаточный рычаг) деформации от биметаллической пластинки к стрелке. В самом (барабане) установлен часовой , равномерно вращающий барабан. Часовой механизм имеет систему подзавода механизма на сутки, неделю или месяц. Соответственно по времени полного оборота барабана термографы подразделяются на суточные, недельные и месячные. На бумажной разграфленной ленте напечатана шкала времени и шкала .

При изменении температуры воздуха верхняя и нижняя части биметаллической пластины нагреваются или охлаждаются, а следовательно расширяются и сужаются неодинаково. В результате возникает деформация  и изменяется изгиб пластины. Деформация изогнутой биметаллической  передается на один из ее концов, а через специальный механизм – на стрелку, которая перемещается вверх или вниз и тем самым чертит кривую на разграфленной бумажной , закрепленной на вращающемся барабане. Перемещение стрелки примерно на 1 мм записи по вертикали (вверх/вниз) соответствует около 1 °C изменения температуры.

Все мы знаем, что температура воздуха меняется в течение суток. Классический суточный ход представляет собой повышение температуры днём и понижение её ночью.

Однако он может изменятся в виду разных факторов, например, при прохождении атмосферных фронтов. В таких случаях температура воздуха ночью может оказаться выше, чем днём. Кроме того, она может значительно изменяться между сроками измерения. Поэтому для более точного суточного хода важно постоянное фиксирование температуры воздуха. Такие измерения позволяет проводить прибор под названием термограф.

Термограф метеорологический М-16АС позволяет непрерывно фиксировать изменения температуры воздуха с точностью до 1°С. В зависимости от температурного режима территории, на которой используется прибор, можно выбрать один из следующих диапазонов измерения:

Конструктивно термограф очень похож на гигрограф. Однако, чувствительным датчиком является биметаллическая пластина (3).

Прибор который используется для непрерывной регистрации температуры воздуха

Биметаллическая пластина. Схема.

Приёмная часть термографа состоит из биметаллической пластины (рис. 2), один конец которой неподвижно крепится к кронштейну (5). Другой конец с помощью передаточных рычагов связан со стрелкой (4).

Прибор который используется для непрерывной регистрации температуры воздуха

Регистрирующая часть, аналогично другим самописцам, состоит из стрелки (4), на конце которой закреплено перо, и часового механизма с барабаном (6). Полный оборот барабан совершает за 26 ч. При изменении температуры воздуха изменятся изгиб пластины. Её деформация с помощью передаточного механизма преобразуется в движение стрелки. При повышении температуры стрелка движется вверх, при понижении – вниз.

Все механизмы прибора смонтированы на плате (2). Регистрирующая часть находится в пластмассовом корпусе (1), а приёмная вынесена наружу. Для защиты биметаллической пластины от механических повреждений вокруг неё смонтированы защитные дуги (7).

Для того, чтобы вести правильный отсчёт температуры, перо стрелки необходимо установить на деление, соответствующее текущей температуре воздуха. Для этого используют установочный винт (8).

Кроме фиксирования суточного хода температуры воздуха, термограф имеет ещё одну важную функцию: при отсутствии на метеостанции рабочих минимальных и максимальных термометров, прибор может быть использован для определения минимальной и максимальной температуры за сутки.

Виды тепловизоров и цена

Приборы классифицируются по функциям, которые они выполняют:

• Наблюдательный тепловизор – создает на экране картинку теплового излучения, преобразованного в видимый световой спектр.

• Измерительный тепловизор – работает, как и наблюдательный тип прибора, но дополнительно точкам светового сигнала присваивает температурные значения.

Иными словами, позволяет оценить температурное распределение на участке исследования.

• Визуальный пирометр – отдельная группа приборов, которые позволяют зрительно выявить зоны, где температура отклонена в какую-либо сторону от нормальной.

По типу исполнения прибор может быть:

• Переносной тепловизор– компактные модели, корпус которых оснащен ручкой для удобного удержания.

• Стационарный тепловизор – имеет несколько большие габариты, чем предыдущий вариант.

Либо оснащается креплениями для установки на различные конструкции, либо сам являются частью какого-либо оптического прибора.

По назначению тепловизор бывает:

Прибор который используется для непрерывной регистрации температуры воздуха

• Строительный – используется для поиска тепловых потерь зданий.

Их измерительный диапазон – до 350°С.

Стоимость начинается от 50 тыс. рублей.

Популярен также среди охранных агентств.

Зачастую имеет встроенный дальномер.

Представляет собой ручной, либо нашлемный монокуляр для наблюдения.

Простейшая гляделка для охотника стоит в районе 40 тыс. рублей.

Прибор который используется для непрерывной регистрации температуры воздуха

Среди разновидностей можно выбрать тепловизионные прицелы и бинокли, цена которых превышает 200 тыс. рублей.

Прибор который используется для непрерывной регистрации температуры воздуха

Относится к самым точным тепловизионным приборам.

Используется преимущественно на масштабных предприятиях для контроля температурного режима технологического оборудования.

Оснащаются ИК-датчиками с высокой чувствительностью и полноцветными большими дисплеями.

Их температурный диапазон – более высокий.

Прибор который используется для непрерывной регистрации температуры воздуха

Существуют высокотемпературные приборы, где этот показатель превышает 1000°С.

Стоимость качественных моделей более 1 млн. рублей.

• Военный – используется для обнаружения вражеских войск и техники в условиях недостаточной видимости.

Стоит армейский прибор от 150 тыс. рублей.

• Медицинский – применяется при поиске заболеваний и дефектов в человеческом теле, для которых характерно локальное изменение температуры, например, опухолей.

Прибор который используется для непрерывной регистрации температуры воздуха

Как правило, выпускается в стационарном исполнении на различных подставках с возможностью прямой передачи изображения на ПК.

Стоимость – от 500 тыс. рублей.

Применяется для домашних нужд в несложных эксплуатационных условиях.

Стоимость – от 20 тыс. рублей.

К бытовому также можно отнести так называемый мини-тепловизор – очень компактный прибор, который подключается к смартфону.

Его еще называют мобильный тепловизор.

Прибор который используется для непрерывной регистрации температуры воздуха

Он использует экран и источник питания телефона, а также специально разработанное ПО для вывода температурной картинки неплохого качества.

Прибор который используется для непрерывной регистрации температуры воздуха

Лазерный тепловизор – ошибочное название пирометра с лазерным целеуказателем.

В отличие от тепловизионной аппаратуры, пирометр представляет собой прибор для дистанционного (бесконтактного) измерения температуры поверхности тел.

Иными словами, на его экране отображается лишь показатель температуры точки, на которую направлен встроенный лазер.

Что нужно знать о тепловизорах?

Следует отметить, что хороший прибор, который соответствует даже самым минимальным требованиям, не может быть дешевым.

При этом все же можно сэкономить и купить для своих нужд недорогой китайский тепловизор, стоимость которого часто не превышает 10 – 13 тыс. рублей.

Но надо понимать, что их качество исполнения и картинки могут быть весьма сомнительны.

Причина в том, что ИК – датчик дешевой тепловизионной аппаратуры нередко имеет настолько низкое разрешение, что на выходе может получиться размытая разноцветная картинка.

Все остальные характеристики, как правило, также не соответствуют действующим стандартам.

Прибор который используется для непрерывной регистрации температуры воздуха

Поэтому в таких случаях остается опираться лишь на отзывы тех, кто уже приобрел аналогичный прибор.

Подготовка к проведению термографии

Несмотря на свою относительную простоту, процедура имеет ряд особенностей при подготовке.

За 10 дней до проведения исследования необходимо отменить прием всех препаратов, в состав которых входят гормоны, или оказывающие воздействие на сердечно-сосудистую систему. Исключить любые мази, которые могут воздействовать на исследуемую зону. При проверке органов брюшной полости пациент должен не употреблять пищу (быть натощак).

Как выбрать тепловизор?

При выборе тепловизора необходимо ориентироваться на следующие параметры:

• Диапазон измеряемых температур – для бытовых нужд подойдет вариант с параметром от 0°С до +350°С.

• Разрешение инфракрасного-детектора – чем оно выше, тем более детальной будет картинка.

• Термочувствительность – чем ниже этот показатель, тем выше точность результатов.

• Условия эксплуатации и класс защиты – для бытовых и строительных нужд подойдет прибор, способный работать при повышенной влажности до 95% и температуре -20°С — +50°С.

• Наличие дополнительных функций – подсветка, цифровая камера, лазерный целеуказатель, компас, модули GPS, Bluetooth, Wi-Fi.

• Наличие дополнительных объективов.

Прибор который используется для непрерывной регистрации температуры воздуха

Широкоугольные применяются там, где требуется исследование протяженного объекта, а телескопические – для получения четких изображений на большом удалении.

• Эргономика и хранение данных.

Преимущество отдается приборам, способным не только сохранять картинку в формате JPEG, но и отражать информацию по температуре.

Еще один важный показатель, на который следует обратить внимание – способ отображения данных на экране, который выражается в следующих режимах:

Прибор который используется для непрерывной регистрации температуры воздуха

• Full IR – полноэкранная инфракрасная картинка.

• Picture-in-Picture – картинка в картинке (обычная фотография окружает тепловое изображение).

• Alpha Blending – наложение слоев тепловой картины и обыкновенной фотографии.

• IR/Visible Alarm – изображение, как на обыкновенном фотоаппарате, но места, где температура превышает пределы заданного диапазона, подсвечены определенным цветом.

• Full Visible Light – обычные фотоснимки.

Производители тепловизоров

Среди производителей тепловизионных приборов заслуженное внимание уделяется следующим:

Показания к проведению

С ростом количества онкозаболеваний молочной железы требовались новые методы исследования, как следствие этого — термография стала одним из ведущих методов обследования железы из-за своих преимуществ, хотя и имеет как требование – то, что её необходимо выполнять в определённые дни менструального цикла .

Вследствии того, что воспалительные процессы сопровождаются повышением температуры, особенно в месте локализации, термография позволяет ограничить очаг воспаления. Особенно это хорошо заметно, когда воспалительный процесс поразил внутренний полостной орган либо иную полость организма, так как гипертермия имеет чёткие границы этой области.

Любые нарушения со стороны сосудистой системы тоже хорошо заметны при исследовании. Так, при варикозном расширении вен снижается толщина их стен, и как следствие — повышается теплоотдача. При ишемии, тромбозах и некрозах из-за нехватки или отсутствия кровоснабжения падает температура участка тела и сосуда.

Это позволяет выявить флебит на ранних стадиях, а ангиография является далеко не самым полезным методом изучения патологии, так как негативно сказывается как на сосудах, так и негативным действием рентгеновского излучения.

Изменения со стороны эндокринной системы, в частности, щитовидной, поджелудочной и слюнных желез. Позволяет определить развитие в них онкологических процессов, а для поджелудочной железы — ее повреждения, которые могут быть причиной сахарного диабета 1-го типа. Нарушения со стороны щитовидной железы – могут проявляться в виде гипотермии некоторых участков тела.

Нарушение теплообмена кожных покровов связано со спазмом либо расслаблением поверхностных капилляров кожи. Может быть следствием нарушения со стороны нервной системы, либо врождённой патологии. Кроме этого метода – другими способами невозможно установить точный диагноз, так что термография в этом случае является единственным способом установки точного диагноза.

Термография активно используется в травматологии, так как она позволяет определить локализацию травмы и её тип.

Для растяжений и ушибов характерно повышение температуры в конкретном участке, мышце или группе мышц. При закрытых переломах можно явно увидеть границы перелома, осколки костей, которые заметны гораздо лучше, чем на рентгеновских снимках, и безопаснее, так как отсутствует негативное внешнее воздействие.

Для подготовки термографа и гигрографа к работе предпринимаются следующие действия:

1. Открыть крышку корпуса.

2. Отвести перо oт поверхности барабана, подвинув рычажок с вертикальным стержнем и повернув барабан так, чтобы пластинка, укрепляющая планшет, стала левее пера.

3. Вынуть пластинку и снять с барабана планшет.

4. Завести часовой механизм, вращая ключ в сторону, показанную на барабане стрелкой; после заводки отверстие для ключа закрыть.

5. Надеть на барабан новый планшет и закрепить его пластинкой.

7. Повернуть барабан так, чтобы перо, приведенное в соприкосновение с планшетом, пришлось на надлежащем месте по времени дня и часа.

8. Если часовой механизм уходит вперед или отстает, надо открыть в верхнем дне барабана боковую крышку, подвинуть осторожно регулятор в соответствующую сторону (как указано буквами) и закрыть крышку.

9. Привести перо в соприкосновение с планшетом и проверить работу прибора, для чего вызвать в приборе колебательное движение (например, легким ударом руки по столу, на котором стоит прибор).

При исправном состоянии прибора перо после такого сотрясения должно прочертить на планшете кривую, параллельную меридиану; если же этого не произойдет, то это значит, что само перо не чертит или оно не прикасается к планшету.

Для устранения этих недостатков надо наклонить прибор в сторону, на которой находится перо, под углом 45 градусов и вращением установочного винта подвести перо к самой бумаге так, чтобы оно едва касалось ее.

Если затем поставить прибор прямо, то степень нажатия пера будет достаточной.

10. Закрыть крышку и поставить прибор на место.

2. Снимают и записывают в таблицу ежечасовые показания температуры термографа с точностью до 0,1°С.

3. Заносят в таблицу действительные значения температуры воздуха, полученные в сроки наблюдений по сухому термометру психрометра.

5. Определяют поправки для всех остальных часов в промежутке между сроками наблюдений. Для этого необходимо найти разность поправок двух соседних сроков наблюдений и разделить эту разность на количество часов между ними с точностью до 0,01. Полученная величина будет средним значением поправки термографа за каждый час.

Например, поправка в 12 ч была –0,4°, в 18 ч стала + 0,2°. За 6 ч работы поправка изменилась на 0,6° (от – 0,4 до 0,2°) а за 1час – на 0,1°. Зная изменение поправки за 1 ч, можно рассчитать значение поправок для каждого часа. В нашем примере получаются следующие величины.

6. Алгебраически суммируя поправку с показаниями термографа в соответствующие часы, получают исправленные значения температуры по термографу. Аналогичная работа проводится и для других участков ленты термографа.

7. Определяют по графику на ленте самое высокое (абсолютный максимум) и самое низкое (абсолютный минимум) значения температуры воздуха с учетом поправок, отмечают время наступления экстремальных температур, определяют амплитуду суточных температур воздуха.

По данным одной из метеостанций (приложение 1) построить графики годового хода температуры почвы на различных глубинах. Определить величину годовой амплитуды, месяц начала и время (в сутках) опоздания максимума и минимума для каждой глубины.

Используя данные одной из метеостанций (приложение 2), построить графики годового хода среднемесячной температуры воздуха, абсолютного максимума и абсолютного минимума температуры воздуха.

1. Какие типы термометров используются в метеорологии?

2. Устройство и принцип работы жидкостных термометров.

3. Температурные шкалы. Переход от температуры одной шкалы к другой.

4. Устройство и принцип работы термометров для измерения температуры поверхности почвы (срочный, максимальный и минимальный).

5. Почвенные термометры и их устройство.

6. Термометры для измерения температуры воздуха.

7. Назначение и устройство термометра.

8. Последовательность обработки ленты термографа.

Контрольные вопросы и задачи:

1. Какие требования предъявляются к метеорологическим термометрам?

2. Какие термометрические шкалы вы знаете?

3. Какие виды жидкостных метеорологических термометров вы знаете? Как они устроены?

4. Какова точность отсчёта по термометрам?

5. Как устанавливаются термометры для наблюдений над температурой воздуха?

6. Каков порядок наблюдений по минимальному и максимальному термометрам?

7. Какие термометры используются для наблюдений над температурой почвы, как они устанавливаются, как производятся наблюдения по ним?

8. Вертикальный градиент температуры 0,4 °C / 100 м. Температура воздуха у поверхности земли 14 °С. Отдельная масса воздуха нагрелась до температуры 21 °С и начала подниматься. На какой высоте остановится конвективное поднятие воздуха?

9. Масса ненасыщенного воздуха при температуре 10 °С поднимается вверх по склону горы, адиабатически охлаждаясь. Какова температура на высоте 1000 м, если уровень конденсации достигается на высоте 500 м, а величина влажно-адиабатического градиента составляет 0,6 °С / 100 м?

10. Насыщенный водяным паром воздух при температуре 12 °С поднимается от подошвы горы до перевала, расположенного на высоте 3000 м. Определить температуру опустившейся массы, если считать, что процесс протекает адиабатически, а величина влажно-адиабатического градиента составляет 0,5 °С / 100 м.

11. Построить график хода среднемесячной температуры воздуха (гистограмму), используя данные табл. 6. По одной из метеостанций высчитать количество дней с температурой воздуха ниже и выше 0°, 5°, 10°, 15 °С.

Преимущества и недостатки

Среди преимуществ стоит выделить абсолютную безопасность исследования как для врача, так и для пациента, безболезненное исследование, не имеющее противопоказаний и ограничений по возрасту. Кроме того, прибор не загрязняет окружающую среду, имеет очень точное отображение локализации (погрешность — менее миллиметра), а также точно отображает температурные изменения (вплоть до 0,008 градусов по Цельсию) и позволяет обследовать все тело за один сеанс.

К недостаткам относят то, что пациент может недобросовестно выполнить требования на этапе подготовки, как следствие — результаты могут быть неверными.

Минусом считаются и долгая подготовка, из-за которой иногда последствия могут быть уже необратимыми на момент обследования, высокая стоимость в сравнении с альтернативными методами, например, биопсией, малое количество лечебных и медицинских исследовательских учреждений, которые проводят это исследование.

Проведение исследования

Процедуру может проводить специалист функциональной диагностики, однако расшифровывание результатов и установление диагноза проводит уже узкоспециализированный врач.

Далеко не каждая больница располагает оборудованием для термографии, так как это исследование не является обычным.

Прибор который используется для непрерывной регистрации температуры воздуха

Из-за этого такой вид обследования проводится в частных клиниках либо некоторых видах диспансеров и стоит приличную сумму денег. Зачастую провести исследование сразу же после назначения врача невозможно, из-за того что необходимо выполнить некоторые требования на протяжении довольно продолжительного периода перед процедурой.

Бесконтактная термография делается в основном стоя либо лежа. При этом сам процесс похож на процедуру фотографирования либо видеосъёмки с разных ракурсов. Контактная термография делается в основном сидя, путём соприкосновения ранее указанной пленки или пласта с исследуемой областью. Изображение передается на экран ЭВМ и/или записывается на цифровой носитель для дальнейших действий специалиста.

Результаты термографии оцениваются и обрабатываются в электронном виде. Патология заметна из-за изменения теплового рисунка местами с гипотермией (температурой, ниже нормальной для участка) либо гипертермией (повышенной температурой).

Назначение тепловизора и принцип действия

Сферы применения тепловизоров очень обширны:

Прибор используется для диагностики различных заболеваний, в том числе при поиске злокачественных опухолей, в нейрохирургии.

• Машиностроение и металлургия – применяется для контроля протекания сложных термических процессов.

• ЖКХ – контроль состояния жилых помещений, при поиске повреждений водопровода, для оценки степени изношенности зданий.

• Строительство – для поиска утечек тепла в зданиях, оценки степени прогрева элементов систем отопления.

Прибор который используется для непрерывной регистрации температуры воздуха

• МЧС – для поиска пострадавших.

Спасательные службы часто прибегают к помощи тепловизора, когда требуется найти людей или животных в местах крушения зданий и при возникновении подобных ситуаций.

Также прибор помогает пожарным при поиске очага возгорания, местонахождения открытого огня.

Используются для идентификации противника в условиях недостаточной видимости.

Усовершенствованные варианты тепловизоров встраиваются в системы наведения.

Принцип работы тепловизора основан на приеме инфракрасного спектра излучения, исходящего от любого нагретого объекта.

Излучение улавливается оптической системой прибора, после чего фокусируется на приемнике, конвертирующем визуальный аналоговый сигнал в электрический.

Как правило, он выражается в виде изменения напряжения или сопротивления в цепи приемника.

Далее сигнал преобразуется электроникой в изображение, которое выводится на дисплей в виде спектрозональной картинки.

Иными словами, человеческий глаз получает возможность увидеть инфракрасное излучение, которое он не способен воспринимать при нормальных условиях.

Сама же спектрозональная картинка – цветное изображение объекта, которое позволяет оценить распределение температуры по его частям.

В этом случае темные цвета, например, синий, свидетельствуют о низкой температуре, а яркие, вроде красного или желтого, соответствует высокой.

Устройство и характеристики

Конструкция большинства тепловизоров ограничивается наличием следующих элементов:

• Корпус с элементами управления, например, кнопками.

• Объектив с защитной крышкой и органом фокусировки изображения.

Последний, в большинстве случаев, имеет вид поворотного кольца, как на фотоаппаратах.

• Электронная система и программное обеспечение.

• Система охлаждения матрицы (для моделей с высокой чувствительностью).

Основные характеристики прибора:

• Угол и дальность обзора.

• Параметры матрицы: разрешение, порог температуры, погрешность, четкость изображения.

• Функциональность: наличие подсветки, лазерный указатель, возможность цифрового масштабирования, наличие и объем встроенной памяти для хранения результатов измерений, возможность переноса данных на ПК.

Прибор который используется для непрерывной регистрации температуры воздуха

К тепловизионному оборудованию применяются следующие государственные стандарты:

• ГОСТ Р 8.619–2006 – методика проверки приборов.

• ГОСТ 53466-2009 – технические требования к медицинским тепловизорам.

Материал

Корпус большинства моделей тепловизоров изготавливается из ударопрочного пластика с резиновыми накладками для удобства удержания, является либо влагозащищенным, либо полностью водонепроницаемым.

Дешевые модели, как правило, вовсе не имеют серьезной защиты от негативного воздействия окружающей среды.

Прибор который используется для непрерывной регистрации температуры воздуха

Объективы в большинстве случаев изготавливают из германия с тонкопленочным покрытием, оптимизирующим пропускание света.

Линзы из этого материала работаю в диапазонах длин волн 3 – 5 и 8 – 14 микрон.

Оптическое стекло не используется по причине его неспособности пропускать инфракрасное излучение в требуемом диапазоне.

Однако, при работе с прибором следует учитывать, что повышение температуры влияет на прозрачность германия.

Если повысить температуру до 100°, этот показатель упадет вдвое от изначального.

Размеры и вес

Габариты и вес тепловизоров зависят от их типа, количества дополнительного функционала и оборудования, а также размеров матрицы и наличия системы охлаждения.

Так размеры простеньких переносных моделей сравнимы с фотоаппаратом, их вес начинается от 500 – 600 г до 2 кг.

Класс защиты тепловизоров

Практически все тепловизоры имеют защищенный от воздействия негативных факторов корпус, степень защиты которого определяется международным стандартом с буквами IP и двумя цифрами.

Первая цифра (от 0 до 6) указывает на защиту от посторонних предметов, а вторая (от 0 до 9) – на устойчивость к воздействию воды.

Например , тепловизор с классом IP67 полностью защищен от проникновения пыли и сохраняет работоспособность даже после кратковременного погружения в воду на глубину до 1 метра.

Разрешающая способность

Важность разрешающей способности инфракрасного датчика кроется в степени детализации изображения:

• Базового уровня: до 160х120 пикселов.

• Профессиональные: 160х120 – 640х480 пикселов.

• Экспертного класса – более 640х480 пикселов.

Прибор который используется для непрерывной регистрации температуры воздуха

Калибровка, поверка и погрешность

Измерительный тепловизор, согласно стандартам, принятым в метрологии, проверяется на работоспособность не реже, чем раз в год.

Поверка подразумевает под собой следующие действия:

• Осмотр корпуса прибора, его опробование и проверка во всех режимах работы.

• Замер углового разрешения.

• Проверка диапазона измеряемых температур.

• Определение максимальной температурной чувствительности и неравномерности чувствительности по полю.

• Определение сходимости результатов.

Измерительные тепловизоры должны подвергаться периодической калибровке.

Современные модели оснащаются специальной шторкой, которая надвигается на матрицу.

По ее известной температуре и производится калибровка.

Прибор который используется для непрерывной регистрации температуры воздуха

Современные матрицы выполняются в виде терморезисторов, имеют высокое разрешение (вплоть до сотых градуса).

В технических характеристиках измерительных моделей обязательно указывается погрешность (точность), которая, как правило, находится в пределах 2% или 2°.

Литература

Актинометр · Анемометр · Балансомер · Барограф · Барометр · Ветроуказатель · Гелиограф · Гигрометр · Детектор испарения · Детектор молний · Дисдрометр · Облачный прожектор · Облакомер · Защитные очки · Индикатор приращения льда · Лидар · Метеозонд · Метеорологическая ракета · Нефелометр · Нефоскоп · Пиранометр · Погодный радар · Радиолокационная станция · Радиозонд · Осадкомер · Снегомер · SODAR · Соляриметр · Термограф · Термометр · Термометрическая будка · Ультразвуковой анемометр · Флюгер

Wikimedia Foundation . 2010 .

Полезное

Анемо́метр, ветроме́р (от др.-греч. ἄνεμος — ветер и μετρέω — измеряю) — прибор для измерения скорости движения газов, воздуха в системах, например, вентиляции. В метеорологии применяется для измерения скорости ветра.

Биметалли́ческая пласти́на — пластина, изготовленная из биметалла или из механически соединённых кусков двух различных металлов. Как правило, используется как основная часть термомеханического датчика.

Манометрический термометр — прибор для измерения температуры. Принцип действия основан на измерении давления жидкости или газа, которое меняется при изменении температуры. Шкала манометра градуируется непосредственно в единицах температуры.

Измерительными головками называют измерительные приборы, преобразующие малые перемещения измерительного щупа в большие перемещения стрелки по шкале. Измерительные головки используются в основном для относительных измерений, замера отклонений, неровностей, биений поверхностей валов.

Упоминания в литературе

Термограф (рисунок 1.2), прибор для непрерывной регистрации температуры воздуха, воды и др. Чувствительным элементом термографа может служить биметаллическая пластинка, термометр жидкостной или термометр сопротивления. В метеорологии наиболее распространён термограф, чувствительным элементом которого является изогнутая биметаллическая пластинка 1, деформирующаяся при изменении температуры. Перемещение её конца передаётся стрелке 3, которая чертит кривую на разграфленной ленте. 1 мм записи по вертикали соответствует около 1 °C. По времени полного оборота барабана термографы подразделяются на суточные и недельные. Работа термографа контролируется по ртутному термометру.

Связанные понятия (продолжение)

Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности производства. Кроме того, этот параметр используется при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности и так далее. В Международной системе единиц (СИ) за единицу давления принят паскаль (Па).

Под приборным оборудованием летательного аппарата понимается следующее авиационное оборудование.

Волнограф — гидрологический измерительный прибор для регистрации высоты морских волн и периодов между ними. Может быть как судовым, так и стационарным, или смонтированным а радиобуе.

Вакуумме́тр (от вакуум и греч. metreo — измеряю) — вакуумный манометр, прибор для измерения давления разрежённых газов.

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Термобаллон — чувствительный элемент в системе автоматизации, используется как первичный преобразователь (датчик) температуры в составе систем измерения и регулирования температуры с гидравлической передачей сигнала.

Измерительный механизм — совокупность элементов средства измерений, которые обеспечивают необходимое перемещение указателя (стрелки, светового пятна и т. д.)

Магнитная головка — устройство для записи, стирания и считывания информации с магнитного носителя: ленты, или диска (жесткого или гибкого).

Датчики для дуговой сварки — общий термин для устройств, которые, как часть полностью механизированного сварочного оборудования, получают информацию о положении и о геометрии предполагаемого сварного шва на заготовке и выдают данные в соответствующей форме на управление сварочной установке.

Тензометрия (от лат. tensus — напряжённый и греч. μετρέω — измеряю) — совокупность экспериментальных методов определения механического напряжения детали, конструкции. Основана на определении деформаций или других параметров материала, вызванных механическим напряжением (например, двойного лучепреломления или вращения плоскости поляризации света в нагруженных прозрачных деталях).

Микро́метр — универсальный инструмент (прибор), предназначенный для измерений линейных размеров абсолютным или относительным контактным методом в области малых размеров с низкой погрешностью (от 2 мкм до 50 мкм в зависимости от измеряемых диапазонов и класса точности), преобразовательным механизмом которого является микропара винт — гайка.

Системы измерительных приборов — это классификация электроизмерительных приборов (электромеханического действия) по физическому принципу действия измерительного механизма, то есть по способу преобразования электрической величины в механическое действие подвижной части.

Механическое реле (англ. mechanical relay) – реле, реагирующее на изменение механических величин (перемещения, скорости, ускорения, расхода, давления, силы, момента, мощности) или механических параметров веществ (упругости, вязкости, плотности и т.п.). В большинстве случаев оно представляет собой датчики различных механических величин, имеющие релейный выход или воздействующие на релейные элементы.

Для контроля расхода и учёта воды и теплоносителя с 40-х годов XX века в промышленности применяются электромагнитные расходомеры. Неоспоримые достоинства электромагнитных расходомеров — отсутствие гидродинамического сопротивления, отсутствие подвижных механических элементов, высокая точность, быстродействие — определили их широкое распространение.

Топливомéр — прибор, измеряющий объемное или весовое количество топлива или масла в баках. Применяются для измерения уровня топлива в наземном транспорте и летательных аппаратах, в отличие от уровнемеров, измеряющих уровень жидкостей или сыпучих материалов в различных резервуарах и хранилищах.

Электродинамический громкоговоритель — это громкоговоритель, в котором преобразование электрического сигнала в звуковой происходит благодаря перемещению катушки с током в магнитном поле постоянного магнита (реже — электромагнита) с последующим преобразованием полученных механических колебаний в колебания окружающего воздуха при помощи диффузора.

Счётчик газа (газовый счётчик) — прибор учёта, предназначенный для измерения количества (объёма), реже — массы прошедшего по газопроводу газа. Соответственно, количество газа, как правило, измеряют в кубических метрах (м³), редко — в единицах массы, килограммах или тоннах (в основном — технологических газов). Приборы, позволяющие измерять или вычислять проходящее количество газа за единицу времени (расход газа), называются расходомерами или расходомерами-счетчиками. Чаще всего расход газа измеряют.

Терморези́стор (термистор, термосопротивление) — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры.

Варио́метр (от лат. vario — изменяю + др.-греч. μέτρον — измеряю) в авиации — пилотажный прибор, показывающий скорость изменения высоты полёта летательного аппарата.

Расходоме́р — прибор, измеряющий объёмный расход или массовый расход вещества, то есть количество вещества (объём, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счётчик) и служит для одновременного измерения и количества вещества, то его называют счётчиком-расходомером.

Электромагни́тный выключа́тель — высоковольтный коммутационный аппарат, в котором гашение электрической дуги производится взаимодействием плазмы дуги с магнитным полем (т. н. магнитным дутьём) в дугогасительных камерах с узкими щелями (прямыми или извилистыми) или с камерами с дугогасительными решётками.

Конденсатоотводчик — промышленная трубопроводная арматура, предназначенная для автоматического отвода конденсата водяного пара. Конденсат может появляться в результате потери паром тепла в теплообменниках и при прогреве трубопроводов и установок, когда часть пара превращается в воду. Наличие конденсата в паровых системах приводит к гидроударам, снижению тепловой мощности и ухудшению качества пара.

Инфракрасная головка самонаведения (Тепловая головка самонаведения, ТГС; англ. Heatseeker) — головка самонаведения, работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью. Представляет собой оптико-электронный прибор, предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Вибрационный плотномер — прибор, предназначенный для преобразования значения плотности контролируемой среды в аналоговый или цифровой электрический сигнал для передачи его в системы телеметрии.

Индуктивный датчик — бесконтактный датчик, предназначенный для контроля положения объектов из металла (к другим материалам не чувствителен).

Виброметр — прибор предназначенный для контроля и регистрации виброскорости, виброускорения, амплитуды и частоты синусоидальных колебаний различных объектов. В частности, виброметры используются для измерения параметров вибрации виброустановок, применяемых для уплотнения бетонных смесей при производстве железобетонных изделий.

Рту́тный выключа́тель (англ. Mercury switch), или датчик наклона — переключатель, который замыкает и размыкает электрическую цепь благодаря небольшому количеству жидкой ртути.

Тахо́метр (греч. τάχος — скорость + μέτρον — мера) — измерительный прибор, предназначенный для измерения частоты вращения (количество оборотов в единицу времени) различных вращающихся деталей, таких как роторы, валы, диски и др., в различных агрегатах, машинах и механизмах.

Метеоро́граф (др.-греч. μετέωρος — поднятый вверх, небесный) — прибор для одновременной регистрации температуры, давления и влажности воздуха, а иногда и скорости воздушного потока; поэтому метеорограф как бы объединяет термограф, барограф, гигрограф, а при необходимости и анемограф.

Арретир (нем. Arretier(ung) от фр. arrêter — останавливать, фиксировать) — механическое приспособление для закрепления чувствительного элемента различных приборов в определённом положении, то есть устройство для закрепления чувствительной подвижной части точного измерительного прибора (гальванометра, аналитических весов и др.) в специальном положении (арретированном или заарретированном), исключающем поломку устройства при транспортировке и монтаже (при случайных толчках, когда прибором не пользуются.

Вакуумные электронные приборы — один из типов электровакуумных приборов. Главная особенность приборов данного типа — движение электронов происходит в вакууме.

Автомати́ческий выключа́тель — контактный коммутационный аппарат (механический или электронный), способный включать токи, проводить их и отключать при нормальных условиях в цепи, а также включать, проводить в течение нормированного (заданного) времени и автоматически отключать токи при нормированных ненормальных условиях в цепи, таких как токи короткого замыкания.

Каверномер (от лат. caverna — пещера, полость) — прибор, предназначенный для получения информации о поперечном размере скважины, который, как правило, объединяет в себе наземную аппаратуру (см. каротажная станция) и спускаемое в скважину на каротажном кабеле измерительное устройство. Используется для кавернометрии.

Да́тчик углово́й ско́рости (ДУС) — устройство, первичный прибор (датчик) для измерения угловой скорости поворота корпуса летательных аппаратов относительно невращающейся инерциальной системы координат. Используется в системах управления различных летательных аппаратов: ракет, самолётов, вертолётов и др. Выходной сигнал устройства обычно электрический, пропорциональный угловой скорости и используется в пилотажных системах летательных аппаратов, в частности, автопилоте, системах стабилизации траектории.

Камертонные часы — электронно-механический прибор для определения временных интервалов, в которых в качестве регулятора колебаний используется миниатюрный камертон.

Для контроля распределения температуры поверхности различных объектов используют специальное устройство – тепловизор.

Эти приборы оборудованы экраном, на котором отображается исследуемая поверхность, раскрашенная в различные цвета.

Каждый из них соответствует определенной температуре.

Прибор который используется для непрерывной регистрации температуры воздуха

Тепловизор используют для решения задач широкого спектра, в некоторых случаях этот измерительный инструмент является незаменимым.

Оцените статью
Анемометры
Добавить комментарий