Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства Анемометр

Акустические течеискатели (локаторы)

Достаточно широко применяется ряд методов нахождения подземных коммуникаций, основанных на акустической локации. Часто такие методы используются для поиска утечек воды и газа в трубопроводах из любых металлических и неметаллических материалов. Поэтому приборы для поиска утечек так и называются – течеискатели.

Акустический активный метод – по генератору ударов

В ситуации, когда необходимо отыскать неметаллическую трубу и поэтому нельзя использовать электромагнитный трассоискатель, а к какой-то части трубы имеется доступ, одной из альтернатив является звуковой активный метод. В этом случае применяют генератор звуковых импульсов (ударник), который устанавливается в доступном месте на трубе и методом ударного воздействия создает акустические волны в материале трубы, которые затем улавливаются с поверхности земли акустическим датчиком прибора (микрофоном).

Таким образом можно определить местоположение трубопровода. Конечно, этот метод можно использовать и на металлических трубах. Дальность действия прибора зависит от разных факторов, таких как глубина заложения и материал трубы, а также вид грунта. Сила и частота ударов могут регулироваться.

Акустический неактивный метод

Вытекая из трубы, жидкость или газ издает шум, который может уловить акустический течеискатель с функцией пассивного обнаружения, иначе говоря – неактивный акустический детектор. Акустические датчики-микрофоны, которые могут быть контактными, прикладываемыми непосредственно к грунту, или бесконтактными, улавливают звуковые волны, распространяющиеся по грунту.

Если имеется доступ к трубе через смотровые колодцы, можно прослушивать шум, прикрепив микрофон к трубе или рукоятке вентиля, так как звуковые волны лучше распространяются по материалу трубопровода. Этим способом можно выявить участок трубы между двумя колодцами, на котором есть протечка, а далее, по силе звука, к какому из колодцев она ближе.

Точность метода невелика, зато им можно выявить утечку на намного большей глубине, чем при прослушивании с поверхности. Если у прибора имеется функция псевдокорреляции, он может по разности силы звука рассчитывать расстояние до места утечки и уточнять результат поиска.

В комплект прибора обычно входят наушники, мощный усилитель звука (усиление до 5000–12 000 раз), фильтр помех, пропускающий звуки только той частоты, которые заложены в его «память», а также электронный блок, который обрабатывает и записывает результаты и может составлять отчеты. Некоторые приборы совместимы с компьютером.

Считается, что использование течеискателей позволяет сократить расходы на устранение аварий на коммунальных трубопроводах до 40–45%.

Однако у акустических течеискателей есть ряд недостатков. Результаты исследований сильно зависят от наличия шумовых помех, поэтому лучше всего они работают в условиях тишины при исследовании трубопроводов неглубокого заложения – до 1,5 м. Впрочем, современные приборы оснащены микропроцессорами цифровой обработки сигнала и фильтрами, отсеивающими шумовые помехи.

Акустический электрический – по звуку электрического разряда

Если в месте повреждения кабеля можно создать искровой разряд с помощью генератора импульсов, то звук от этого разряда можно прослушивать с поверхности грунта микрофоном. Для возникновения устойчивого искрового разряда необходимо, чтобы величина переходного сопротивления в месте повреждения кабеля превышала 40 Ом.

Про анемометры:  Человек выдыхает углекислый газ

В состав генератора импульсов входят высоковольтный конденсатор и разрядник. Напряжение с заряженного конденсатора через разрядник мгновенно передается на кабель, возникшая электромагнитная волна вызывает пробой в месте повреждения кабеля, и раздается щелчок. Обычно генерируется по одному импульсу через несколько секунд.

Этот метод применяют для локации кабелей всех видов с глубиной залегания до 5 м. Применять этот метод для поиска повреждений у кабелей в металлическом рукаве, проложенных открыто, не рекомендуется, так как звук хорошо распространяется по металлической оболочке и точность локализации места будет невысокой.

Газоискатели

Для выявления утечек газов из трубопроводов используются газоискатели. Микронасос, который входит в состав прибора, закачивает пробу воздуха с проверяемого места. Отобранная проба сравнивается с эталонным воздухом (например, методом нагревания спиралью: при нагревании пробы с газом и воздуха температура спирали будет разная), и прибор фиксирует наличие в пробе газа.

Газоискатель – легкий и компактный, удобный и простой в эксплуатации прибор. Однако он весьма чувствителен к температуре окружающего воздуха: при слишком высокой или низкой температуре его работоспособность снижается и даже может стать нулевой, например при температуре ниже –15 и выше 45 °С.

Георадары (подробнее о георадарах см. часть 1)

Работа георадара основана на излучении электромагнитного импульса в грунт и регистрации отраженного сигнала от подземных объектов и границ среды с разными электрофизическими свойствами.

Области применения георадара огромны: он позволяет определять глубину залегания коммуникаций, местоположение пустот и трещин, зоны переувлажнения и уровень грунтовых вод, характер залегания геологических границ, зоны разуплотнения, незаконные врезки, дефекты земляного полотна, наличие арматуры, мин и снарядов, а также другие объекты.

Основное распространение георадиолокация получила в области поиска подземных коммуникаций, во многом благодаря тому, что этот метод обнаруживает коммуникации из любого материала, в том числе неметаллические.

Для поиска подземных коммуникаций подбирают георадар с антеннами, имеющими среднюю центральную частоту (200–700 МГц). Поиск на таких частотах обеспечивает глубину зондирования до 5 м, а также позволяет находить кабели и трубы малого диаметра.

При необходимости обследования больших территорий используются георадарные системы с массивом антенн, устанавливаемые на транспортное средство. Такие системы сканируют до нескольких гектаров в день.

Современные георадары могут находить подземные коммуникации в режиме реального времени и имеют возможность совместного использования с GPS-оборудованием, что позволяет привязываться к местности и, используя полученные координаты, переносить георадарные данные в CAD-системы, а также наносить обнаруженные коммуникации на имеющиеся схемы.

Про анемометры:  Гидравлические компоненты Технические основы

Долгое время считалось, что георадар – это сложная в понимании и управлении техника, однако с появлением современных технологий и продвинутого программного обеспечения ситуация в корне изменилась. Георадары лидирующих производителей имеют максимальную автоматизацию получения и интерпретации данных, что исключает ошибки, связанные с человеческим фактором.

Детекторы утечек газов и жидкостей купить по выгодной цене | гео-ндт

ДЕТЕКТОРЫ УТЕЧЕК ГАЗОВ И ЖИДКОСТЕЙ

В данном разделе представлены приборы для обнаружения, устранения и оценки в количественных показателях размера течи газовых смесей в газопроводах, оборудовании, котельных и трассах.

Течеискатели газа или детекторы утечек газа – это приборы контроля, используемых для обнаружения, устранения и оценки в количественных показателях размера течи газовых смесей в газопроводах, оборудовании, котельных и трассах.

Принцип работы течеискателя газа основывается на разных физических моментах, которые ориентируются на прямые и косвенные значения параметров.

В разделе находятся детекторы от производителей: Casella, Center Technology Corp., Radiodetection, Sonel, testo, АКА-Скан, ПРОФКИП



Мы отгружаем детекторы со склада в г. Москва и доставляем курьерскими службами по России, Беларуси и Казахстану. Доставка в Санкт-Петербург (Спб), Белгород, Воронеж, Екатеринбург, Иркутск, Казань, Калининград, Кемерово, Киров, Краснодар, Красноярск, Нижний Новгород, Новосибирск, Омск, Оренбург, Пермь, Ростов, Рязань, Самара, Саратов, Томск, Тула, Тюмень, Ульяновск, Уфа, Хабаровск, Чебоксары, Челябинск, Чита, Ярославль, Алматы, Минск и другие города занимает от 1 до 5 дней.

§

Запись координат объектов поиска в gps/ глонасс

У некоторых современных трассопоисковых приборов есть возможность определять координаты обнаруженного объекта по GPS/ ГЛОНАСС и записывать их (даже онлайн) в базу данных цифрового плана участка, созданного методом автоматизированного проектирования CAD, обозначив там выявленные инженерные коммуникации.

Параллельно данные поступают на компьютер в головной офис компании. Информация может быть представлена в виде простых меток, которые помогут оператору экскаватора визуально ориентироваться на схеме, показанной на дисплее машины. Еще проще будет работать оператору, если управление экскаватором частично автоматизировано и связано с GPS/ ГЛОНАСС – автоматика поможет избежать повреждения коммуникаций.

Комплексные приборы

Как мы видим, у локаторов каждого типа имеются определенные ограничения и недостатки. Поэтому для служб, эксплуатирующих подземные коммуникации, современные трассопоисковые приборы часто выполняются комплексными, состоящими из аппаратуры разных типов, например, в них вместе с электромагнитным трассоискателем могут входить акустический локатор, георадар и пирометр, а акустический приемник может иметь еще и канал приема электромагнитных сигналов.

Поиск может проводиться одновременно на частотах электромагнитных и радиоволн, либо прибор может переключаться в режимы приема магнитных, радио- или акустических волн. Причем модульная конструкция приборов позволяет комплектовать комплексы индивидуально для каждой компании-клиента в зависимости от его конкретных задач.

Корреляционный метод

В данном случае на трубу по обе стороны от места утечки (например, в двух колодцах или на запорной арматуре на поверхности земли) устанавливают два (или больше) датчиков виброакустических сигналов (пьезодатчиков). От датчиков сигнал передается в прибор по кабелям или по радиоканалу. Поскольку расстояние от датчиков до места утечки разное, звук от утечки будет приходить к ним в разное время. По разнице во времени поступления сигнала на датчики электронный блок-коррелятор рассчитывает функцию кросс-корреляции и место нахождения повреждения между датчиками.

Про анемометры:  Методические рекомендации по профилактике несчастных случаев, связанных с отравлением угарным газом и оказание первой помощи пострадавшим от него | Комсомольский район Чувашской Республики

Данный метод применяется на сложных для акустического сканирования зашумленных участках, таких как городские и заводские территории.

Точность расчета зависит от точности измерения времени прохождения сигналов прибором, точности измерения расстояния между датчиками и точности значения скорости распространения звука по трубе. Как утверждают специалисты, при правильном проведении данных измерений надежность, чувствительность и точность корреляционного метода значительно превышают результаты других акустических методов: отклонение не более 0,4 м и вероятность обнаружения утечек составляет 50–90%. Точность результата не зависит от глубины залегания трубопровода. Метод очень устойчив к помехам.

Недостаток корреляционного метода состоит в том, что результаты искажаются при наличии неоднородностей в трубах: засоров, изгибов, ответвлений, деформаций, резких изменений диаметра. Корреляционные течеискатели – дорогостоящие и сложные приборы, работать на которых могут только специально подготовленные специалисты.

Методы визуализации утечек газов

Автор: Б.Б. Хроленко (Компания “ГК РЕСУРС”, руководитель направления по локализации утечек газов)

Опубликовано на портале «Химическая техника», май 2021

Время прочтения: 15 минут

Своевременная локализация утечек газов для нефтегазовых предприятий является важной частью диагностики, потому что утечки могут привести к авариям, отравлению персонала и большим финансовым потерям. Даже небольшая утечка может нанести серьезный ущерб. Чтобы создать эффективную систему контроля объектов на предмет утечек и обеспечить требования промышленной безопасности, нужно определить слабые места таких объектов.

Комплекс мероприятий по выявлению утечек после пусконаладочных работ (ПНР), ремонтных и сварочных работ резервуаров, трубопроводов может быть недостаточным. Так же коррозия металла, разрушение уплотнений из-за вибрации, старение материалов, ослабление резьбы гаек и болтов, воздействие перепадов температур и давления – всё это ведёт к быстрому износу элементов газовых систем. Как следствие, нарушается герметичность, что приводит к утечке газа.

Слабые места нефтегазовых систем:

  • Задвижки и уплотнения газопровода.
  • Уплотнения вентилей трубопроводов.
  • Фланцевые соединения труб.
  • Сальниковые узлы.
  • Патрубки сброса.
  • Клапаны отсечки.
  • Линия продувки.
  • Сосуды под давлением: газоотделители, фильтры.

Система технологической безопасности для предотвращения утечки природного газа и выбросов других углеводородов предполагает регулярные осмотры, планово-предупредительные работы, своевременное обслуживание, эксплуатацию оборудования и систем трубопроводов в соответствии с инструкциями, нормативными документами отрасли.

Методы локализации утечек

Тем не менее, соблюдение общих правил работы со сложными инженерно-техническими системами не гарантирует отсутствие аварий. Для обнаружения утечек используют следующие методы:

  • Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
    Рисунок 1. Метод «обмыливания».

    Нанесение мыльного раствора на места, подверженные утечкам. Рассмотрим плюсы и минусы данного метода. При «обмыливании» мы видим точное место утечки, а не где-то рядом, также мы можем видеть несколько утечек на одном небольшом участке. Этот метод дешевый и простой в приготовлении. Теперь к минусам: мыльная эмульсия провоцирует коррозию металлов; её невозможно применять при минусовых температурах, к примеру, на предприятиях Севера России (правда, существуют специальные морозостойкие поверхностно-активные вещества (ПАВ)); её необходимо готовить каждый раз перед проверкой, и из-за использования различного мыла и непостоянного состава воды из разных отдельно взятых труб, раствор имеет непостоянные характеристики. Так что «мыльность» от раствора к раствору меняется. Также обмылить большие участки трубопроводов и прочего оборудования очень трудозатратно и малоэффективно.

  • Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
    Рисунок 2. Многоканальный газоанализатор для
    персональной защиты, измеряющий горючие газы
    и пары, а также O2, CO, NO2, SO2 и H2S.

    Использование газоанализатора в предполагаемом месте утечки. Такие приборы — это второй по доступности метод. Они недостаточно точно определяют место утечки, т.к. работают по концентрации газа в воздухе, также на точность может повлиять незначительный сквозняк или ветер на открытых объектах. Информацию об утечке мы видим либо на дисплее прибора, либо слышим в динамиках, без возможности точной локализации места выхода газа. Детекторы газоанализаторов настроены на конкретный газ, то есть газоанализатор, предназначенный для определения углеводородов, не сработает на монооксид углерода или гелий. То есть даже «обмыливание» нам дает более точные результаты. Также газоанализатор является измерительным прибором, который нуждается в периодической поверке. К преимуществам этих приборов можно отнести удобство в использовании, их портативность и вариативность: есть ручные приборы, мобильные, закрепляемые поверх спецодежды персонала и стационарные с регулируемыми уставками на отключение оборудования и на вывод предупреждающего или аварийного сигнала на пульт управления.

  • Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
    Рисунок 3. Инспекция конденсатоотводчиков и
    клапанов.

    Детекторы акустические. Эти легкие портативные приборы просты в использовании, не требуют специального обучения, выявляют утечки с расстояния. Как правило, идут в комплекте с наушниками. Имеют регулировку чувствительности датчика и уровня громкости наушников. С помощью гибкого наконечника можно находить утечки в труднодоступных местах. Основным преимуществом является возможность поиска различных типов газов. К недостаткам можно отнести: ограниченное расстояние определения источника утечки, сложность в интерпретации данных, даже для опытного дефектоскописта. Есть большая вероятность принять высокочастотный шум или вибрацию за утечку. В большинстве случаев простые акустические детекторы с одним микрофоном необходимо будет комбинировать с классическими методами поиска утечек.

  • Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
    Рисунок 4. Применение визуально-акустического
    дефектоскопа на российском НПЗ.

    Из наиболее доступных дистанционных способов можно выделить использование визуально-акустического течеискателя. Прибор позволяет на расстоянии обнаружить утечку газов, измерить объем газа, рассчитать размер потерь в рублях.

Визуально-акустический течеискатель выполнен в корпусе мобильной камеры. Основной рабочий орган – параболические микрофоны. Они регистрируют ультразвук в диапазоне частот 2-35 кГц. Большое количество встроенных микрофонов позволяет дефектоскопу выполнять свою функцию с большой точностью и отсеивать ложные сигналы-помехи.

С 2022 года компания ГК РЕСУРС является официальным дистрибьютором финского производителя Noiseless Acoustics Ltd и эксклюзивно предлагает визуально-акустический дефектоскоп NL-камера. NL-камера является новинкой в сфере неразрушающего контроля и благодаря 124 сверхчувствительным микрофонам способна находить различные источники звука в диапазоне от 2 до 65 кГц, в зависимости от выбранных настроек. А алгоритм искусственного интеллекта на основании данных тысяч измерений сопоставляет и локализует дефект и его характер максимально точно (Рисунок 5).

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 5. Дисплей визуально-акустического дефектоскопа NL-camera.

Технология ультразвуковой дефектоскопии

Прибор работает, обнаруживая ультразвуковой сигнал утечек, вызванных турбулентностью газа, создаваемой перепадом давления (Рисунок 6). Звуковая волна достигает микрофонов прибора менее чем на 1 мсек., этого времени достаточно, чтобы 4-х ядерный процессор ARM 1.4 ГГц обработал сигнал, обнаружил местоположение источника звука и визуализировал его. Для ультразвуковой визуализации с большим количеством микрофонов можно провести аналогию с матрицей тепловизора: каждый микрофон подобен пикселю матрицы, и чем больше этих “пикселей”, тем точнее акустическое изображение, и с большего расстояния мы можем инспектировать объекты.

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 6. Ультразвуковой сигнал, вызванный турбулентностью газа.

Промышленный шум меньше мешает прибору на высоких частотах. С утечками газов обычно можно добиться хороших результатов, если сконцентрироваться на звуках выше 20 кГц. NL камера моментально обнаруживает звуки, в диапазоне возникновения утечки газов, что дает лучшие результаты с меньшими усилиями пользователя при диагностике. По умолчанию камера не воспринимает почти весь мешающий шум.

  • Инфракрасная камера – это самый эффективный и дорогостоящий вариант дистанционной визуализации утечек (Рисунок 7). Прибор позволяет обнаружить невидимый газ и визуализировать его на дисплее в виде газового облака или потока.
Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 7. Инфракрасная камера для визуализации углеводородов.

Компания ГК РЕСУРС является дистрибьютором передового производителя тепловизионного оборудования FLIR Systems и для визуализации газов предлагает инфракрасные камеры серии GF. Оборудование компании пользуется заслуженной популярностью и востребовано в нефтегазовой отрасли: на нефтеперерабатывающих заводах, транспортных сооружениях газоперерабатывающих заводов, объектах нефтедобычи.

Как работает оптическая визуализация газа?

Ярким примером работы методов визуализации углеводородов является тепловизор серии GF. Конструктивно тепловизор представляет собой портативный прибор, оснащенный объективом, экраном. Основной рабочий орган – инфракрасный детектор в качестве чувствительного элемента. Электроника обрабатывает сигнал с детектора. На экран выводится термограмма. (Рисунок 8).

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 8. Визуализация утечки бутана.

Работа таких устройств основана на том, что газ поглощает инфракрасный спектр в определенном диапазоне. Чувствительная камера определяет, какой конкретно диапазон инфракрасного излучения поглощен и визуализирует это место. Такие камеры созданы на основе самых современных технологий и обладают сверхчувствительными детекторами. Для сравнения большинство углеводородов поглощают инфракрасное излучение в диапазоне 3,2-3,4 микрометра, а углекислый газ (CO2) – 4,2-4,4 микрометра. Это очень узкий спектр, поэтому каждый прибор имеет встроенный специальный фильтр OGI (optical gas imaging – визуализация газов). Фильтр ограничивает длину волны распространения газа, отвечает за визуализацию и вывод графической информации о локализации утечки на экран устройства.

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 9. Конструкция системы оптической визуализации газа.

Все объекты испускают и отражают инфракрасное излучение, совокупность этих излучений мы назовем фоновым излучением. Когда это излучение попадает в объектив ИК-камеры, оно проходит через линзу до фильтра, который пропускает на детектор длины волн, соответствующие газам, для поиска которых предназначена данная камера (Рисунок 9). Таким образом, если между фоновыми объектами и ИК-камерой находится утечка газа – “газовое облако”, это облако поглощает часть фонового излучения в спектре соответствующего газу.  При этом количество излучения, передаваемого детектору, будет меньше, что позволяет камере визуализировать газ (Рисунок 10).

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 10. Эффект газового облака.

Как видно из принципа работы, между входящим в газовое облако излучением и выходящим из него должна быть разница. На рисунке 11 входящее и выходящие излучения показаны красной и синей стрелками соответственно.

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 11. Контраст облака.

Условия визуализации утечек газов инфракрасной камерой:

  • Газ частично поглощает излучение в диапазоне пропускания фильтра камеры.
  • Газовое облако контрастирует с фоном в ИК-спектре.
  • Различные температуры облака газа и фона.
  • Газовое облако подвижно.
  • Точно откалиброванная камера для измерения температуры.

Область применения ИК камер и тепловизоров

На крупных производствах, где эксплуатируется большое количество нефтегазового оборудования с тысячами мест потенциальных утечек, выявить все их при помощи газоанализатора невозможно. Использование ИК-камеры или тепловизора позволяет в десятки раз быстрее выполнить проверку, чем при использовании классических методик.

Для мониторинга и автоматизации процесса обнаружения утечек на критических местах устанавливают не переносные, а стационарные модели. Они ведут круглосуточный мониторинг газопроводов, что удобно для труднодоступных и удаленных объектов. Такие инструменты находятся на буровых платформах морского базирования, на газораспределительных станциях и газоперерабатывающих заводах. Подойдут стационарные оптические средства визуализации углеводородов для биологических газов, нефтехимических заводов, скважин.

Применяется оптическая визуализация газов не только в нефтегазовой отрасли. В энергетике для предотвращения отключений оборудования проверяют высоковольтные выключатели и КРУЭ на предмет утечек элегаза (шестифтористая сера – SF6) ИК-камерой FLIR GF 306. На электростанциях (ТЭЦ, АЭС) работают турбогенераторы с водородным охлаждением. Чтобы находить утечки водорода быстро и эффективно применяют камеру FLIR GF 343, только в качестве индикаторного газа используется углекислый газ СO2. На сталелитейных заводах для защиты персонала и окружающей среды от токсичных концентраций угарного газа (монооксид СО), работают камерой FLIR GF 346. Для визуализации около 10 газообразных хладагентов используют FLIR GF 304. Также существуют универсальные камеры, к примеру неохлаждаемая инфракрасная камера GF-77 способна визуализировать метан (CH4), гексафторид серы (SF6), аммиак (NH3), диоксид серы (SO2), окислы азота (N2O) и другие. Неохлаждаемая камера не имеет модуль с охладителем Стирлинга, что делает ее более компактной и легкой в ущерб чувствительности (Рисунок 12).

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 12. Сравнение термограммы с камеры GF320 (слева) и GF77 (справа).

Взрывозащищённая камера тепловизор FLIR GFx320 прошла сертификацию для эксплуатации в зонах класса опасности II по ATEX.

Преимущества инфракрасных приборов

Результаты испытаний оборудования ультразвукового и инфракрасного приборов

Независимо от погодных условий, характерных для различных климатических зон и времени года, проделанная с помощью тепловизоров серии GF работа на объектах одной из нефтедобывающих компаний России принесла ожидаемые результаты. Съемка проводилась при температуре воздуха до – 45°C, в дождь со снегом и в солнечную погоду. Камеры обнаружили самые незначительные утечки этана, пропилена, метана, смеси водорода с 10% содержанием метана.

Также были проведены сравнительные испытания ультразвукового и инфракрасного приборов визуализации газа на одном из крупнейших НПЗ РФ. Основное преимущество инфракрасных камер — это возможность определить направление распространения газового облака, даже в системах, где утечки минимальные, и турбулентность, необходимая для приборов ультразвукового контроля, отсутствует.  Из 10 утечек метана, определенных ИК-камерой GF320, ультразвуковая NL камера локализовала 8 (Рисунок 13).

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 13. Работа с ультразвуковой и инфракрасной камерами.

Это достаточно неплохой результат если учесть, что ультразвуковые приборы стоят в 5 раз дешевле инфракрасных. С ИК-камерой можно работать в прямой видимости объекта исследования, а ультразвуковая технология хорошо зарекомендовала себя в поиске утечек по отраженным сигналам в труднодоступных местах. В следующем примере мы наглядно покажем как  на нефтехимическом производстве с помощью визуально-акустического течеискателя NL-камера  в несколько шагов была найдена утечка газа с расстояния до 100 метров методом отраженного сигнала. (Рисунок 14).

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Рисунок 14. Работа с ультразвуковой камерой по отраженному сигналу.

Для более детального сравнения визуально-акустической камеры и инфракрасной камеры GF предлагаем ознакомиться с таблицей 1.

Приборы для поиска и диагностики подземных инженерных коммуникаций – Основные средства
Таблица 1. Сравнение приборов для локализации утечек газов.

Нужно отметить, что технология инфракрасной визуализации газов значительно эффективнее существующих на данный момент методик. Комплексное использование традиционных методов, ультразвуковой диагностики и оптической инфракрасной визуализации значительно снижает вероятность аварии на оборудовании нефтегазового хозяйства.

Новинки трассопоискового оборудования

Ведущие разработчики данного оборудования предлагают сканеры, которые сканируют стройплощадку и на основе анализа характеристик местного грунта и прочих условий на строительном объекте автоматически указывают оптимальную величину частоты, на которой рекомендуется вести локацию подземных коммуникаций.

Появились приборы с двумя выходами, которые могут теперь подсоединяться и вести исследования одновременно двух инженерных коммуникаций.

Приборы оснащаются высококонтрастным жидкокристаллическим дисплеем, изображение на котором видно даже при освещении прямыми солнечными лучами, информативность дисплеев повышается: в режиме реального времени отображаются все необходимые параметры: глубина коммуникации, направление движения к ней, интенсивность сигнала и т. п.

Георадары (Подробнее о георадарах см. Часть 1)

Работа георадара основана на излучении электромагнитного импульса в грунт и регистрации отраженного сигнала от подземных объектов и границ среды с разными электрофизическими свойствами.

Области применения георадара огромны: он позволяет определять глубину залегания коммуникаций, местоположение пустот и трещин, зоны переувлажнения и уровень грунтовых вод, характер залегания геологических границ, зоны разуплотнения, незаконные врезки, дефекты земляного полотна, наличие арматуры, мин и снарядов, а также другие объекты.

Основное распространение георадиолокация получила в области поиска подземных коммуникаций, во многом благодаря тому, что этот метод обнаруживает коммуникации из любого материала, в том числе неметаллические.

Для поиска подземных коммуникаций подбирают георадар с антеннами, имеющими среднюю центральную частоту (200–700 МГц). Поиск на таких частотах обеспечивает глубину зондирования до 5 м, а также позволяет находить кабели и трубы малого диаметра.

При необходимости обследования больших территорий используются георадарные системы с массивом антенн, устанавливаемые на транспортное средство. Такие системы сканируют до нескольких гектаров в день.

Современные георадары могут находить подземные коммуникации в режиме реального времени и имеют возможность совместного использования с GPS-оборудованием, что позволяет привязываться к местности и, используя полученные координаты, переносить георадарные данные в CAD-системы, а также наносить обнаруженные коммуникации на имеющиеся схемы.

Долгое время считалось, что георадар – это сложная в понимании и управлении техника, однако с появлением современных технологий и продвинутого программного обеспечения ситуация в корне изменилась. Георадары лидирующих производителей имеют максимальную автоматизацию получения и интерпретации данных, что исключает ошибки, связанные с человеческим фактором. Таким образом, на сегодняшний день георадар является незаменимым помощником в поиске подземных коммуникаций и по праву может считаться «третьим глазом» инженера-изыскателя.

Ультразвуковой метод

В основе данного метода лежит регистрация ультразвуковых волн, не слышных человеческому уху. При выходе находящихся под высоким давлением (или наоборот – подсосе при высоком разрежении) жидкости или газа из трубопровода через трещины в сварных швах, неплотности в запорной арматуре и уплотнениях возникает трение между молекулами вытекающего вещества и молекулами среды, в результате генерируются волны ультразвуковой частоты.

Благодаря коротковолновой природе ультразвука оператор может точно определять местоположение утечки даже при сильном шумовом фоне, в наземных газопроводах и подземных трубопроводах. Также с помощью ультразвуковых приборов обнаруживают неисправности в электрооборудовании – дуговые и коронные разряды в трансформаторах и распределительных шкафах.

В состав ультразвукового течеискателя входят датчик-микрофон, усилитель, фильтр, преобразователь ультразвука в слышимый звук, который транслируется наушниками. Чем ближе микрофон к месту утечки, тем сильнее звук в наушниках. Чувствительность прибора регулируется.

На ЖК-экране результаты сканирования отображаются в цифровом виде. В комплект может входить контактный щуп, с помощью которого также можно прослушивать колебания. Для активного выявления мест негерметичности в состав прибора включают генератор (передатчик) ультразвуковых колебаний, который можно поместить в исследуемый объект (например, емкость или трубопровод), излучаемый им ультразвук будет выходить наружу через неплотности и трещины.

Преимущества. Метод простой, для поиска утечек не требуется сложной процедуры, обучение работе с прибором занимает около 1 часа и при этом метод весьма точный: позволяет обнаруживать утечки через мельчайшие отверстия на расстоянии 10 м и более на фоне сильных посторонних шумов.

Оцените статью
Анемометры
Добавить комментарий