Термоанемометры KIMO LV 101, LV 107, LV 110 купить по цене производителя в Москве

Термоанемометры KIMO LV 101, LV 107, LV 110 купить по цене производителя в Москве Анемометр

Анемометр

Расстановка ударений: АНЕМО`МЕТР

АНЕМОМЕТР (греч. anemos — ветер и metreō — измеряю) — метеорологический прибор для измерения скорости и направления ветра. В мед.-сан. практике А. применяют для наблюдений за движением воздушных потоков в открытой атмосфере и в закрытых помещениях: в лабораторных и производственных условиях для измерения скорости воздушных потоков во всасывающих и приточных отверстиях механической и естественной вентиляции с целью определения ее эффективности, при исследовании метеорологических условий в рабочих помещениях промышленных предприятий, в общественных зданиях и др. Прибором измеряют среднюю скорость воздушных потоков за определенный промежуток времени (ее выражают обычно в метрах в секунду). Принцип действия большинства А. основан на явлении силового (динамического) давления, оказываемого воздушным потоком на встречное препятствие; скорость при этом определяется по силе давления потока на движущуюся жесткую систему прибора (аэродинамические А.). Существуют приборы для определения скорости воздушных потоков так наз. манометрическим способом; их воспринимающей частью является трубка Пито (подпорная или пневмометрическая трубка). Наконец, скорость воздушных потоков можно определить и по величине охлаждения предварительно нагретого тела под действием измеряемого воздушного потока (см. Кататермометр).

Направление движения воздушных потоков определяется чаще всего флюгаркой — Пластинкой клиновидной формы с противовесом; встречается флюгарка из двух пластинок, расположенных под углом в 20°, такая флюгарка более чувствительна. Направление ветра обозначается наименованием страны света, откуда он дует (см. Роза ветров). В сан.-гиг. практике наиболее широко используются портативные анемометры — чашечный и крыльчатый (рис. 1 и 2). Приемная часть чашечного А. представляет вертушку из 4 полых полушарий (чашек), закрепленную на металлической оси, нижний конец к-рой связан со счетным механизмом (тахометром). Стрелки на циферблате прибора показывают число оборотов полушарий вокруг оси: большая — число единиц и десятков, а две маленькие — число сотен и тысяч. Для включения и выключения счетчика оборотов на коробке прибора имеются рычаг и два кольца. Винт, прикрепленный к А. снизу, предназначен для установки прибора на шесте высотой 2 м. Измерение скорости ветра: записывают показания всех стрелок (на малых циферблатах учитывают только целые деления), устанавливают прибор на шесте строго вертикально (в открытой атмосфере лучше держать прибор в вытянутой вверх руке), став лицом против ветра (шкала А. обращена к наблюдателю), выжидают 1—2 мин., пока не наступит полная скорость вращения вертушки, после чего шнуром включают А. и одновременно секундомер; наблюдение ведется в течение 10 мин. Вычислив разность между двумя показаниями счетчика (исходным и после 10 мин. работы А.) и разделив эту величину на время наблюдения, выраженное в секундах, получают число оборотов в 1 сек. Эта величина приблизительно соответствует искомой скорости движения воздушного потока. Для получения более точной величины пользуются таблицей перевода числа оборотов в скорость (прилагается к каждому прибору). Прибор служит для определения средних скоростей ветра в пределах 1,0—20,0 м/сек.

Приемной частью крыльчатого А. служит мельничка из легких металлических лопастей, посаженных на соединенную со счетчиком оборотов горизонтальную ось. Прибор особенно чувствителен и применяется поэтому для измерения скорости воздушных потоков от 0,3 до 5,0 м/сек.

При работе прибор ориентируется по потоку так, чтобы счетный механизм был позади потока относительно крыльчатки; для преодоления инерции сопротивления прибора достаточно крыльчатке вращаться вхолостую всего 0,5 мин.; продолжительность наблюдения ограничивается 2 мин.; порядок расчета средней скорости потока такой же, как у предыдущего типа А.

Струнный анемометр — очень чувствительный прибор и нуждается в правильном и аккуратном обращении. Его можно использовать для измерения скорости воздушных потоков в трубах и каналах вентиляционных систем. Во избежание повреждений А. следует пользоваться для измерения воздушных потоков, скорость к-рых не превышает 5 м/сек.

Вентиляционный дифференциальный анемометр (рис. 4) снабжен небольшой воздуходувкой с вентилятором, приводящей мельничку в движение. Это приспособление служит для преодоления инерции сопротивления прибора и тем самым значительно повышает его чувствительность: им можно измерить скорость начиная с 0,02 м/сек.

Перед включением А. заводят ключом механизм вентилятора (вне сферы действия потока воздуха), включают счетчик, записывают скорость вращения крыльчатки под действием только вентилятора. Затем снова заводят пружину вентилятора и ставят А. так, чтобы воздушный поток был направлен в сторону крыльчатки, снова отмечают показания счетчика; разность между вторым и первым показаниями прибора покажет скорость воздушного потока.

Электрические анемометры. К приборам с электрическими тахометрами относятся: индукционный А. (рис. 3) и контактный А.

Приемная часть ручного индукционного А.: трехчашечная вертушка, ось которой связана с магнитной системой (генератором электротока); шкала прибора градуирована в метрах в секунду; пределы измерений скорости потоков 0,2—30,0 м/сек. Работают с прибором, как с обычным ручным А. Для повышения точности следует провести несколько измерений с интервалом в 0,5 мин. и взять среднее значение.

Анеморумбометры — приборы, служащие для определения скорости и направления ветра.

Простейший из них — флюгер Вильда (рис. 5), применяемый гл. обр. в лечебно-профилактических учреждениях, на площадках для воздушных ванн и т. п. При вращении флюгарки доска всегда принимает положение, перпендикулярное направлению ветра, и под давлением последнего отклоняется от отвесного положения на тот или иной угол. По положению отклоненной доски, пользуясь штифтиками-указателями, определяют скорость ветра; в приборе имеется две доски: легкая (200 г) для измерения скоростей, не превышающих 20 м/сек, и тяжелая (800 г) для скоростей до 40 м/сек. Приближенную скорость ветра можно определить, помножив номер штифтика на 2 (при пользовании легкой доской) или на 4 (при пользовании тяжелой доской). Флюгер для наблюдений устанавливают в открытом месте на столбе высотой 8—10 м; штифтик с буквой С (N) должен быть установлен на север (по компасу или по полуденной линии, т. е. по меридиану данного места).

Электрический анеморумбометр (рис. 6) — прибор чашечного типа. Принцип его действия основан на преобразовании механической энергии, развиваемой вращением вертушки, в электрическую; генератором энергии является постоянный магнит (расположен в верхней неподвижной части прибора); напряжение получаемого тока измеряется милливольтметром, шкала к-рого градуирована в метрах в секунду. Указателем направления ветра в приборе служит флюгарка.

Про анемометры:  АТЕ-1080 анемометр: описание | Купить измерители параметров окружающей среды по оптимальным ценам

Манометрический способ измерения скорости ветра. Способ весьма удобен для определения скорости движения воздуха в трубопроводах и, в частности, в воздуховодах механической вентиляции с целью расчета ее эффективности. Приборами непосредственно измеряется давление воздушного потока, на основе чего рассчитывается скорость его движения. Для определения давления пользуются трубкой Прандтля (рис. 7), включаемой в жидкостный манометр.

Она состоит из двух металлических трубок, впаянных одна в другую. Приемный конец прибора (т. е. тот, к-рый вводится в просвет воздуховода) устроен так: внутренняя трубка имеет одно отверстие (на рис. в точке 7), внешняя — несколько отверстий (2, 2′, 2′′, 2′′′), расположенных радиальыо (на рис. — в месте разреза а—б); нижние концы трубок при помощи коротких резиновых шлангов присоединяются к жидкостному манометру; проще всего пользоваться U-образной стеклянной трубкой, заполненной до половины высоты водой и закрепленной на шкале с миллиметровыми делениями (рис. 8). Измерив разность высот воды в обоих коленах, выраженную в миллиметрах вод. ст., вычисляют (приближенно) скорость воздушного потока по формуле: v — 4√h м/сек, где h — величина давления в миллиметрах вод. ст. (по манометру; обычно берется средняя цифра из нескольких измерений в разных точках воздуховода). Для точных измерений пользуются микроманометром.

Библиогр.: Кедроливанский В. Н. и Стернзат М. С. Метеорологические приборы, Л., 1953.

Источники:

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.

Выносной модуль и измерительная схема датчиков ветра

В качестве фотоизлучателей были выбраны светодиоды ИК-диапазона АЛ-107Б. Эти старинные светодиоды, конечно, не самые лучшие в своем классе, зато имеют миниатюрный корпус диаметром 2,4 мм и способны пропускать ток до 600 мА в импульсе. Между прочим, при испытаниях выяснилось, что образец этого светодиода около 1980 года выпуска (в корпусе красного цвета) имеет примерно вдвое большую эффективность (выразившуюся в дальности уверенной работы фотоприемника), чем современные экземпляры, купленные в «Чипе-Дипе» (они имеют прозрачный желтовато-зеленый корпус).

Через светодиод в датчике скорости пропускался постоянный ток около 20 мА (резистор 150 Ом при питании 5 вольт), а в датчике направления — импульсный (меандр со скважностью 2) ток около 65 мА (те же 150 Ом при питании 12 вольт). Средний ток через один светодиод датчика направления при этом около 33 мА, всего через четыре канала — около 130 мА.

В качестве фотоприемников были выбраны фототранзисторы L-32P3C в корпусе диаметром 3 мм. Сигнал снимался с коллектора, нагруженного на резистор 1,5 или 2 кОм от питания 5 В. Эти параметры подобраны так, чтобы на расстоянии ~20 мм между фотоизлучателем и приемником на вход контроллера поступал сразу полноразмерный логический сигнал в 5-вольтовых уровнях без дополнительного усиления.

Токи, фигурирующие здесь, могут показаться вам несоразмерно большими, если исходить из озвученного выше требования минимального энергопотребления, но как вы увидите, фигурируют они в каждом цикле измерения на протяжении максимум нескольких миллисекунд так, что общее потребление остается небольшим.

Основой для крепления приемников и излучателей послужили отрезки кабельного канала (видны на фото датчиков выше), вырезанные так, чтобы у основания образовать «ушки» для крепления на скобе. Для каждого из этих обрезков к запирающей крышке изнутри приклеивалась пластиковая пластинка, по ширине равная ширине канала.

Светодиоды и фототранзисторы закреплялись на нужном расстоянии в отверстиях, просверленных в этой пластинке так, чтобы выводы оказались внутри канала, а наружу выступали только выпуклости на торце корпусов. Выводы распаиваются в соответствии со схемой (см. ниже), внешние выводы делаются обрезками гибкого разноцветного провода.

Резисторы для излучателей датчика направления также размещаются внутри канала, от них делается один общий вывод. После распайки крышка защелкивается на место, все щели герметизируются пластилином и дополнительно липкой лентой, которой также закрывается отверстие со стороны, противоположной выводам, и вся конструкция заливается эпоксидной смолой.

Принципиальная схема блока обработки датчиков ветра выглядит так:

О том, откуда берется питание 12-14 вольт, см. далее. Кроме компонентов, указанных на схеме, выносной блок содержит датчик температуры-влажности, который на схеме не показан. Делитель напряжения, подключенный к выводу A0 контроллера, предназначен для контроля напряжения источника питания с целью своевременной замены.

В схеме используется «голый» контроллер Atmega328 в DIP-корпусе, запрограммированный через Uno и установленный на панельку. Такие контроллеры с уже записанным Arduino-загрузчиком, продаются, например, в «Чипе-Дипе» (или загрузчик можно записать самостоятельно).

Такой контроллер удобно программировать в привычной среде, но, лишенный компонентов на плате, он во-первых, получается экономичнее, во-вторых, занимает меньше места. Полноценный энергосберегающий режим можно было бы получить, избавившись и от загрузчика тоже (и вообще расписав весь код на ассемблере :), но здесь это не очень актуально, а программирование при этом неоправданно усложняется.

На схеме серыми прямоугольниками обведены компоненты, относящиеся отдельно к каналам скорости и направления. Рассмотрим функционирование схемы в целом.

Работа контроллера в целом управляется сторожевым таймером WDT, включенным в режиме вызова прерывания. WDT выводит контроллер из режима сна через заданные промежутки времени. В случае, если в вызванном прерывании таймер взводится заново, перезагрузки с нуля не происходит, все глобальные переменные остаются при своих значениях. Это позволяет накапливать данные от пробуждения к пробуждению и в какой-то момент обрабатывать их — например, усреднять.

В начале программы сделаны следующие объявления библиотек и глобальных переменных (чтобы не загромождать текст и без того обширных примеров, здесь выпущено все, что относится к датчику температуры-влажности):

#include <VirtualWire.h>
#include <avr/wdt.h>
#include <avr/sleep.h>
. . . . .
#define ledPin 13 //вывод светодиода (PB5 вывод 19 ATmega)
#define IR_Pin 10 //управление транзистором IRLU (PB2 вывод 16 Atmega)
#define in_3p 9 //вход приемника разряд 3
#define in_2p 8 //вход приемника разряд 2
#define in_1p 7 //вход приемника разряд 1
#define in_0p 6 //вход приемника разряд 0
#define IR_PINF 5 //(PD5,11) вывод для ИК-светодиода частоты
#define IN_PINF 4 //(PD4,6) вход обнаружения частоты 

volatile unsigned long ttime = 0;        //Период срабатывания датчика
float ff[4]; //значения частоты датчика скорости для осреднения
char msg[25]; //посылаемый месседж
byte count=0;//счетчик
int batt[4]; //для осреднения батарейки
byte wDir[4]; //массив направлений ветра
byte wind_Gray=0; //байт кода направления ветра

Для инициации режима сна и WDT (пробуждение каждые 4 с) служат следующие процедуры:

// перевод системы в режим сна
void system_sleep() {
  ADCSRA &= ~(1 << ADEN); //экв. cbi(ADCSRA,ADEN); выключим АЦП
  set_sleep_mode(SLEEP_MODE_PWR_DOWN); // режим сна
  sleep_mode();                        // система засыпает
    sleep_disable(); // система продолжает работу после переполнения watchdog
    ADCSRA |= (1 << ADEN); /экв. sbi(ADCSRA,ADEN); включаем АЦП
}

//****************************************************************
// ii: 0=16ms, 1=32ms,2=64ms,3=128ms,4=250ms,5=500ms
// 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec
void setup_watchdog(int ii) {
  byte bb;
  if (ii > 9 ) ii=9;
  bb=ii & 7;
  if (ii > 7) bb|= (1<<5); //в bb - код периода
  bb|= (1<<WDCE);
  MCUSR &= ~(1<<WDRF);
  // запуск таймера
  WDTCSR |= (1<<WDCE) | (1<<WDE);
  // установка периода срабатывания сторожевого таймера
  WDTCSR = bb;
  WDTCSR |= (1<<WDIE); //прерывание WDT  
}
//****************************************************************  
// Обработка прерывания сторожевого таймера 
ISR(WDT_vect) {
        wdt_reset();
}

Датчик скорости выдает частоту прерывания оптического канала, порядок величин — единицы-десятки герц. Мерить такую величину экономичнее и быстрее через период (этому была посвящена публикация автора «

Про анемометры:  Вентиляционная лаборатория: приборы для наладки вентиляции.

»). Здесь выбран метод через модифицированную функцию pulseInLong(), который не привязывает измерение к определенным выводам контроллера (текст функции periodInLong() можно найти в указанной публикации).

В функции setup() объявляются направления выводов, инициализируются библиотека передатчика 433 МГц и сторожевой таймер (строка для IN_PINF в принципе лишняя, и вставлена для памяти):

void setup() {
  pinMode(IR_PINF, OUTPUT); //на выход
  pinMode(IN_PINF, INPUT); //вывод обнаружения частоты на вход
  pinMode(13, OUTPUT); //светодиод
  vw_setup(1200); // скорость соединения VirtualWire
  vw_set_tx_pin(2);   //D2, PD2(4) вывод передачи VirtualWire
//  Serial.begin(9600); // Serial-порт для контроля при отладке
  setup_watchdog(8); //WDT период 4 c
  wdt_reset();
}

Наконец, в основном цикле программы мы сначала каждый раз при пробуждении (каждые 4 секунды) считываем напряжение и рассчитываем частоту датчика скорости ветра:

void loop() {
  wdt_reset(); //обнуляем таймер
  digitalWrite(ledPin, HIGH); //включаем светодиод для контроля
  batt[count]=analogRead(0); //читаем и сохраняем текущий код батарейки
/*=== частота ==== */ 
  digitalWrite(IR_PINF, HIGH); //включаем ИК-светодиод датчика скорости
  float f=0; //переменная для частоты
      ttime=periodInLong(IN_PINF, LOW, 250000); //ожидание 0,25 сек
//        Serial.println(ttime); //для контроля при отладке
       if (ttime!=0) {//на случай отсутствия частоты
       f = 1000000/float(ttime);} // вычисляем частоту сигнала в Гц
       digitalWrite(IR_PINF, LOW); //выключаем ИК-светодиод
 ff[count]=f; //сохраняем вычисленное значение в массиве    
. . . . .

Время горения ИК-светодиода (потребляющего, напомню, 20 мА) здесь, как видите, будет максимальным при отсутствии вращения диска датчика и составляет при этом условии около 0,25 секунды. Минимальная измеряемая частота, таким образом, составит 4 Гц (четверть оборота диска в секунду при 16 отверстиях).

Далее следуют процедуры, которые выполняются каждое четвертое пробуждение (то есть каждые 16 секунд). Значение частоты датчика скорости из накопленных четырех значений мы передаем не среднее, а максимальное — как показал опыт, это более информативная величина.

//каждые 16 сек усредняем батарейку и определяем максимальное значение 
//частоты из 4-х значений:
if (count==3){ 
    f=0; //значение частоты
    for (byte i=0; i<4; i  ) if (f<ff[i]) f=ff[i]; //максимальное значение из четырех
    int fi=(int(f*10) 1000); //доводим до 4 дес. разрядов для отправки
    int volt=0; //код батарейки
    for (byte i=0; i<4; i  ) volt=volt batt[i];
    volt=volt/4 100; //средний код на 100 больше = 3 дес.разряда 
    volt=volt*10; //до 4 дес. разрядов
. . . . .

Далее — определение кода Грея направления. Здесь для снижения потребления вместо постоянно включенных ИК-светодиодов на все четыре канала одновременно через ключевой полевой транзистор с помощью функции tone() подается частота 5 кГц. Обнаружение наличия частоты на каждом из разрядов (выводы in_0p – in_3p) производится методом, аналогичным антидребезгу при считывании показаний нажатой кнопки.

Сначала в цикле дожидаемся, имеется ли на выводе высокий уровень, и затем проверяем его через 100 мкс. 100 мкс есть полпериода частоты 5 кГц, то есть при наличии частоты минимум со второго раза мы опять попадем на высокий уровень (на всякий случай повторяем четыре раза) и это означает, что он точно там есть. Эту процедуру повторяем для каждого из четырех бит кода:

/* ===== Wind Gray ==== */
//направление:
  tone(IR_Pin,5000);//частоту 5 кГц на транзистор
  boolean yes = false;
  byte i=0;
  while(!yes){ //разряд 3
    i  ;
    boolean state1 = (digitalRead(in_3p)&HIGH);
    delayMicroseconds(100); // задержка в 100 микросекунд 
    yes=(state1 & !digitalRead(in_3p));
    if (i>4) break; //пробуем четыре раза
  } 
  if (yes) wDir[3]=1; else wDir[3]=0;
    yes = false;
    i=0;
  while(!yes){ //разряд 2
    i  ;
    boolean state1 = (digitalRead(in_2p)&HIGH);
    delayMicroseconds(100); // задержка в 100 микросекунд 
    yes=(state1 & !digitalRead(in_2p));
    if (i>4) break; //пробуем четыре раза
  } 
  if (yes) wDir[2]=1; else wDir[2]=0;
    yes = false;
    i=0;
  while(!yes){ //разряд 1
    i  ;
    boolean state1 = (digitalRead(in_1p)&HIGH);
    delayMicroseconds(100); // задержка в 100 микросекунд 
    yes=(state1 & !digitalRead(in_1p));
    if (i>4) break; //пробуем четыре раза
  } 
  if (yes) wDir[1]=1; else wDir[1]=0;
    yes = false;
    i=0;
  while(!yes){ //разряд 0
    i  ;
    boolean state1 = (digitalRead(in_0p)&HIGH);
    delayMicroseconds(100); // задержка в 100 микросекунд 
    yes=(state1 & !digitalRead(in_0p));
    if (i>4) break; //пробуем четыре раза
  } 
  if (yes) wDir[0]=1; else wDir[0]=0;
  noTone(IR_Pin); //выключаем частоту
  //собираем в байт в коде Грея:
  wind_Gray=wDir[0] wDir[1]*2 wDir[2]*4 wDir[3]*8; //прямой перевод в дв. код
  int wind_G=wind_Gray*10 1000; //дополняем до 4-х дес. разрядов
. . . . .

Максимальная длительность одной процедуры будет при отсутствии частоты на приемнике и равна 4×100 = 400 микросекунд. Максимальное время горения 4-х светодиодов направления будет тогда, когда не засвечен ни один приемник, то есть 4×400 = 1,6 миллисекунды.

Алгоритм, кстати, точно так же будет работать, если вместо частоты, период которой кратен 100 мкс, просто подать постоянный высокий уровень на светодиоды. При наличии меандра вместо постоянного уровня мы просто экономим питание вдвое. Мы можем еще сэкономить, если завести каждый ИК-светодиод через отдельную линию (соответственно, через отдельный вывод контроллера со своим ключевым транзистором), но зато при этом усложняется схема, разводка и управление, а ток в 130 мА в течение 2 мс каждые 16 секунд — это, согласитесь, немного.

Про анемометры:  Anemometer for crane - купить недорого | AliExpress

Наконец, беспроводная передача данных. Для передачи данных от места установки датчиков до табло метеостанции был выбран самый простой, дешевый и надежный способ: пара передатчик/приемник на частоте 433 МГц. Согласен, способ не самый удобный (из-за того, что девайсы рассчитаны на передачу битовых последовательностей, а не целых байтов, приходится изощряться в конвертации данных между нужными форматами), и уверен, что многие со мной захотят поспорить в плане его надежности. Ответ на последнее возражение простой: «ты просто не умеешь их готовить!».

Секрет в том, что обычно остается за кадром различных описаний обмена данными по каналу 433 МГц: поскольку приборы эти чисто аналоговые, то питание приемника должно быть очень хорошо очищено от любых посторонних пульсаций. Ни в коем случае не следует питать приемник от внутреннего 5-вольтового стабилизатора Arduino!

В данном случае передатчик работал непосредственно от напряжения аккумулятора 12 В, приемник и передатчик были снабжены стандартными самодельными антеннами в виде отрезка провода длиной 17 см. (Напомню, что провод для антенн пригоден только одножильный, а размещать антенны в пространстве необходимо параллельно друг другу.)

Пакет информации длиной в 24 байта (с учетом влажности и температуры) без каких-то проблем уверенно передавался со скоростью 1200 бит/с по диагонали через садовый участок 15 соток (около 40-50 метров), и затем через три бревенчатых стенки внутрь помещения (в котором, например, сотовый сигнал принимается с большим трудом и не везде).

Условия, практически недостижимые для любого стандартного способа на 2,4 ГГц (типа Bluetooth, Zig-Bee и даже любительский Wi-Fi), притом, что потребление передатчика здесь составляет жалкие 8 мА и только в момент собственно передачи, остальное время передатчик потребляет сущие копейки. Передатчик конструктивно размещен внутри выносного блока, антенна торчит сбоку горизонтально.

Объединяем все данные в один пакет (в реальной станции к нему добавятся еще температура и влажность), состоящий из единообразных 4-байтных частей и предваряемый сигнатурой «DAT», отправляем его на передатчик и завершаем все циклы:

/*=====Transmitter=====*/
  String strMsg="DAT"; //сигнатура - данные
  strMsg =volt; //присоединяем батарейку 4 разряда
  strMsg =wind_G; //присоединяем wind 4 разряда
  strMsg =fi; //присоединяем частоту 4 разряда
  strMsg.toCharArray(msg,16); //переводим строку в массив
//  Serial.println(msg); //для контроля
  vw_send((uint8_t *)msg, strlen(msg)); // передача сообщения
  vw_wait_tx(); // ждем завершения передачи - обязательно!
  delay(50); //  еще на всякий случай задержка
   count=0; //обнуляем счетчик
}//end count==3 
else count  ;
  digitalWrite(ledPin, LOW); //гасим сигнальный светодиод
  system_sleep(); //систему — в сон
} //end loop

Размер пакета можно сократить, если отказаться от требования представления каждой из величин разнообразных типов в виде единообразного 4-байтового кода (например, для кода Грея, конечно, хватит и одного байта). Но универсализации ради я оставил все как есть.

Питание и особенности конструкции выносного блока. Потребление выносного блока подсчитываем таким образом:

— 20 мА (излучатель) ~20 мА (контроллер со вспомогательными цепями) в течение примерно 0,25 с каждые четыре секунды — в среднем 40/16 = 2,5 мА; — 130 мА (излучатели) ~20 мА (контроллер со вспомогательными цепями) в течение примерно 2 мс каждые 16 секунд — в среднем 150/16/50 ≈ 0,2 мА;

Накинув на этот расчет потребление контроллера при съеме данных с датчика температуры-влажности и при работе передатчика, смело доводим среднее потребление до 4 мА (при пиковом около 150 мА, заметьте!). Батарейки (которых, кстати, потребуется аж 8 штук для обеспечения питания передатчика максимальным напряжением!) придется менять слишком часто, потому возникла идея питать выносной блок от 12-вольтовых аккумуляторов для шуруповерта — их у меня образовалось как раз две штуки лишних.

Емкость их даже меньше, чем соответствующего количества АА-батареек — всего 1,3 А•часа, но зато никто не мешает их менять в любое время, держа наготове второй заряженный. При указанном потреблении 4 мА емкости 1300 мА•часов хватит примерно на две недели, что получается не слишком хлопотно.

Отметим, что напряжение свежезаряженного аккумулятора может составить до 14 вольт. На этот случай поставлен входной стабилизатор 12 вольт — чтобы не допустить перенапряжений питания передатчика и не перегружать основной пятивольтовый стабилизатор.

Выносной блок в подходящем пластиковом корпусе размещается под крышей, к нему на разъемах подведен кабель питания от аккумулятора и соединения с датчиками ветра. Основная сложность в том, что схема оказалась крайне чувствительной к влажности воздуха: в дождливую погоду уже через пару часов начинает сбоить передатчик, измерения частоты показывают полную кашу, а измерения напряжения аккумулятора показывают «погоду на Марсе».

Поэтому после отладки алгоритмов и проверки всех соединений корпус необходимо тщательно герметизировать. Все разъемы в месте входа в корпус промазываются герметиком, то же самое касается всех головок винтов, торчащих наружу, выхода антенны и кабеля питания.

Стыки корпуса промазываются пластилином (с учетом того, что их придется разнимать), и дополнительно проклеиваются сверху полосками сантехнического скотча. Неплохо дополнительно аккуратно укрепить эпоксидкой используемые разъемы внутри: так, указанный на схеме выносного модуля DB-15 сам по себе не герметичен, и между металлическим обрамлением и пластиковой основой будет медленно просачиваться влажный воздух.

Но все эти меры сами по себе дадут только кратковременный эффект — даже если не будет подсоса холодного влажного воздуха, то сухой воздух из комнаты легко превращается во влажный при падении температуры снаружи корпуса (вспомните про явление, называемое «точка росы»).

https://www.youtube.com/watch?v=

Чтобы этого избежать, необходимо внутри корпуса оставить патрончик или мешочек с влагопоглотителем — силикагелем (мешочки с ним иногда вкладывают в коробки с обувью или в некоторые упаковки с электронными устройствами). Если силикагель неизвестного происхождения и долго хранился, его перед использованием необходимо прокалить в электродуховке при 140-150 градусах несколько часов. Если корпус герметизирован как следует, то менять влагопоглотитель придется не чаще, чем в начале каждого дачного сезона.

Оцените статью
Анемометры
Добавить комментарий

Adblock
detector