Уровень углекислого газа в организме контролируется центром

Уровень углекислого газа в организме контролируется центром Анемометр

Время прочтения ≈ 10 минут

В этой статье мы рассмотрим основные нормативы, которые регулируют концентрацию углекислого газа в помещениях, приведём оптимальные и допустимые значения в зависимости от класса помещений.

На примерах покажем, какое на самом деле может быть содержание углекислого газа в разных ситуациях и ответим на вопрос, как обеспечить оптимальный уровень CO2 в помещении.

Ответ очевидный: чтобы измерять концентрацию углекислого газа в воздухе. Но для чего нужно ее измерять? Скажем, зачем на базовой станции MagicAir, кроме датчиков температуры и влажности, есть еще и датчик СО2? С температурой и относительной влажностью все ясно: это основные показатели погоды – и на улице, и дома. А про углекислый газ нужно рассказать отдельно. Заодно познакомим вас с понятием адаптивной вентиляции.

О проблеме превышения содержания углекислого газа в воздухе помещений говорят все чаще в последние 20 лет. Выходят новые исследования и публикуются новые данные. Поспевают ли за ними строительные нормы для зданий, в которых мы живем и работаем?

Самочувствие и работоспособность человека тесно связаны с качеством воздуха там, где он трудится и отдыхает. А качество воздуха можно определить по концентрации углекислого газа СО2.

Содержание
  1. Почему именно СО2?
  2. Основные причины повышения CO2 в помещении
  3. СО2 — основной показатель свежести воздуха
  4. Почему именно СО2 – индикатор работы вентиляции?
  5. Углекислый газ. Транспорт углекислого газа.
  6. Видео физиология газообмена в легких и транспорта газов кровью – профессор, д. Умрюхин
  7. Что такое углекислый газ
  8. Углекислый газ и метаболизм человека
  9. Углекислый газ в атмосфере
  10. Углекислый газ в помещении
  11. Как обеспечить оптимальный уровень СО2
  12. Понижение уровня углекислого газа с помощью окна
  13. Понижение уровня углекислого газа с помощью систем приточной вентиляции
  14. Нормы углекислого газа в школах
  15. Влияние углекислого газа на организм человека
  16. Синдром больного здания
  17. Респираторный ацидоз
  18. Состояние организма человека в зависимости от уровня CO2
  19. Улица
  20. Нормы углекислого газа в офисах
  21. Углекислый газ и его воздействие на организм человека
  22. Рестораны и кинотеатры
  23. Нормы углекислого газа в жилых помещениях
  24. Дом и отель
  25. Зачем регулировать вентиляцию по датчику СО2
  26. Нормы концентрации углекислого газа в помещении по ГОСТ
  27. Нормы концентрации CO2 для разных помещений
  28. Нормы содержания углекислого газа для жилых помещений
  29. Нормы содержания углекислого газа для офисных помещений
  30. Нормы содержания углекислого газа для школ и учебных заведений
  31. Нормы содержания углекислого газа для спортивных залов и клубов
  32. Субъективные показатели свежести
  33. Запах свежести
  34. Прохлада как свежесть
  35. Как СО2 распределяется по комнате
  36. Где поставить датчик СО2
  37. Сколько СО2 в воздухе
  38. Адаптивная вентиляция для дома
  39. Выводы
  40. Выводы и выходы

Почему именно СО2?

  • Этот газ есть везде, где есть люди.
  • Концентрация углекислого газа в помещении напрямую зависит от процессов жизнедеятельности человека – ведь мы его выдыхаем.
  • Превышение уровня углекислого газа вредно для состояния организма человека, поэтому за ним необходимо следить.
  • Рост концентрации СО2 однозначно свидетельствует о проблемах с вентиляцией.
  • Чем хуже вентиляция, тем больше загрязнителей концентрируется в воздухе. Поэтому рост содержания углекислого газа в помещении – признак того, что качество воздуха снижается.

В последние годы в профессиональных сообществах врачей и проектировщиков зданий появляются предложения пересмотреть методику определения качества воздуха и расширить перечень измеряемых веществ. Но пока ничего нагляднее изменения уровня CO2 не нашли.

Как узнать, является ли приемлемым уровень углекислого газа в помещении? Специалисты предлагают перечни нормативов, причем для зданий разных назначений они будут различными.

Основные причины повышения CO2 в помещении

Уровень углекислого газа в организме контролируется центром

Существует несколько основных причин повышенного уровня СО2 в помещении.

Первая причина — это люди, одновременно находящиеся в помещении, и их деятельность. Чем больше людей, тем активнее вырабатывается углекислый газ. Особо остро эта проблема стоит в офисах. Офисному сотруднику должна обеспечиваться площадь рабочего места не менее 4,5 м². Но работодатели часто не соблюдают нормативы и получается, что в маленьком офисе одновременно находится большое количество активно дышащих людей. Поддерживать уровень углекислого газа в пределах нормы в подобной ситуации достаточно проблематично.

Вторая — это герметичные пластиковые окна. Изначально здания проектировались так, чтобы воздух поступал через щели в окнах или через неплотности в строительных конструкциях. Но в погоне за утеплением и шумоизоляцией, массовой заменой обычных окон на герметичные пластиковые, люди совершенно забыли о том, как воздух будет поступать в помещение. В новых домах с пластиковыми окнами проектировщики это предусмотрели и на этапе проектирования закладывают наличие приточных клапанов.

Третья причина — неработающая вытяжка. По мере эксплуатации вентиляционные вытяжки сильно засоряются, это приводит к слабой тяге и как следствие низкому уровню притока свежего воздуха с улицы. Нередки ситуации, когда во время ремонта вентиляционные отверстия и вовсе заделывают, что полностью останавливает работу вентиляционной системы. Нет тяги в системе вентиляции — нет притока свежего воздуха с улицы.

СО2 — основной показатель свежести воздуха

Уровень углекислого газа в организме контролируется центром

Свежесть воздуха — это эмпирическая величина, которая показывает, насколько хорошо воздух насыщает организм кислородом, насколько им легко и приятно дышать. Но содержание кислорода трудно измерять: датчики сложные и дорогостоящие. Поэтому изначально в индустрии климата так сложилось, что свежесть воздуха стали оценивать по уровню CO2.

Свежесть воздуха оценивают по содержанию в нём углекислого газа — CO2.

Углекислый газ выбрали для оценки качества воздуха из-за того, что его можно измерить с высокой точностью и из-за его сильного влияния на состояние организма человека. По его концентрации судят также о содержании в воздухе других вредных веществ.

CO2 — углекислый газ или диоксид углерода — бесцветный газ, который не имеет запаха при малых концентрациях. Углекислый газ выделяется людьми, животными и растениями, например, организм человека способен выделить около 1 кг углекислого газа в сутки. Существует прямая связь между концентрацией CO2 и ощущением духоты. Это ощущение возникает у здорового человека уже на уровне 0,08% (т. е. 800 ррm).

В высоких концентрациях углекислый газ токсичен, его относят к удушающим газам и IV классу опасности. При повышении концентрации CO2 в воздухе (0,15%—0,2% или 1500—2000 ppm), возникает общая вялость, снижается работоспособность и концентрация внимания, появляется сонливость и слабость. Содержание CO2 свыше 0,7% или 7000 ppm считается опасным для здоровья человека.

Концентрацию углекислого газа оценивают в PPM (частей на миллион) — количество кубических сантиметров CO2 на 1 кубометр воздуха. То есть, когда говорят уровень CO2 в помещении составляет 800 ppm — это означает, что в 1 м³ воздуха содержится 800 см³ CO2.

Почему именно СО2 – индикатор работы вентиляции?

Человек вдыхает воздух, в котором в среднем 21 % кислорода и 0,04 % углекислого газа. А выдыхает уже совсем другой: 16,3 % кислорода и 4 % углекислого газа. Если взять литр вдыхаемого воздуха и литр выдыхаемого, то во втором будет в 100 раз больше углекислого газа.

Если человек долго сидит в замкнутом помещении, за счет выдыхаемого им воздуха в комнате постепенно накапливается СО2. Чем медленнее обновляется комнатный воздух, тем быстрее растет уровень СО2. К чему может привести большое количество углекислого газа, мы уже писали.

Но повышение уровня СО2 – это не только вред от самого углекислого газа. Многочисленные эксперименты в области микроклимата показали: количество СО2 связано с концентрацией других вредных газов (например, фенолформальдегиды, ацетон, аммиак). Все эти вещества есть почти в любом жилом помещении, их выделяет мебель и отделочные материалы.

Если в комнате много углекислого газа, то скорее всего и других вредных веществ в комнатном воздухе больше, чем полагается.

Эта связь объясняется очень просто. Углекислый газ не удаляется из воздуха никакими бытовыми фильтрами, единственный способ избавиться от него – «выдуть» его из комнаты с помощью приточной и вытяжной вентиляции. Если вентиляция работает плохо, значит СО2 будет накапливаться в помещении. А вместе с ним и другие вредные газы.

Именно поэтому специалисты приняли уровень СО2 как главный индикатор работы вентиляции. По идее, оценить работу вентиляции можно было бы и по концентрации любого другого газового загрязнителя. Но мы не знаем наверняка, какие именно газы есть в конкретном помещении, а каких нет. Зато мы знаем, что углекислый газ в комнате точно есть, и датчик нам его покажет.

Эксперт по микроклимату Михаил Амелькин проверяет работу вентиляции в квартирах, самолетах, ресторанах и в других местах, где мы работаем и отдыхаем.

Я решил проехать по Москве и не только с лабораторным прибором – измерителем уровня углекислого газа и околонаучной миссией – проверить, чем мы дышим в закрытых помещениях. Что хотелось узнать? Посмотреть, как в разных местах работает вентиляция и какая получается концентрация углекислого газа. Почему это важно? Здесь не только и не столько идет речь о комфорте (ну да, душно, но переживем, не сахарные). Речь идет о здоровье. Слишком большое количество углекислого газа в воздухе плохо влияет на наш организм и, в первую очередь, на работу мозга. Множественные исследования показывают, что высокие концентрации СО2 буквально «отключают мозги», снижая инициативность, вырубая «стратегическое мышление», вызывая апатию и усталость. Высокие – это какие? Естественно, что концентрации, под которые «конструировался» наш организм – уличные. На улице сейчас концентрации СО2 около 400ppm (0,04%). Сто лет назад было меньше 300ppm (привет от парникового эффекта!), но такой рост пока не критичен для физиологии. В хорошо вентилируемых помещениях концентрация будет около 600ppm. «Желтая зона» начинается в районе 1000ppm. 1500ppm – уже плохо, красная зона. Больше 2000ppm – очень плохо. Не знаю, пусть будет зона тёмно-бордовая. Это в 5 раз больше, чем на улице! Так вот, такие концентрации – это, к сожалению, не «экстремальный случай», а очень частое явление. Дома, при закрытых окнах, в ресторанах, при плохой вентиляции, и т.п. Интересный момент – речь не идет о том, что в воздухе мало кислорода. Кислорода всегда много, почти 200 000ppm (до 20%) и «выдышать» его не так просто. Поэтому механизм отравления углекислым газом – отдельный и не зависит от наличия в воздухе кислорода.

Давайте теперь посмотрим, что показал лабораторный поверенный прибор в различных местах, где мы регулярно бываем.

Углекислый газ. Транспорт углекислого газа.

Углекислый газ является продуктом метаболизма клеток тканей и поэтому переносится кровью от тканей к легким. Углекислый газ выполняет жизненно важную роль в поддержании во внутренних средах организма уровня рН механизмами кислотно-основного равновесия. Поэтому транспорт углекислого газа кровью тесно взаимосвязан с этими механизмами.

Уровень углекислого газа в организме контролируется центром

В плазме крови небольшое количество углекислого газа находится в растворенном состоянии; при РС02= 40 мм рт. ст. переносится 2,5 мл/100 мл крови углекислого газа, или 5 %. Количество растворенного в плазме углекислого газа в линейной зависимости возрастает от уровня РС02.

Уровень углекислого газа в организме контролируется центром

В плазме крови углекислый газ реагирует с водой с образованием Н+ и HCO3. Увеличение напряжения углекислого газа в плазме крови вызывает уменьшение величины ее рН. Напряжение углекислого газа в плазме крови может быть изменено функцией внешнего дыхания, а количество ионов водорода или рН — буферными системами крови и HCO3, например путем их выведения через почки с мочой. Величина рН плазмы крови зависит от соотношения концентрации растворенного в ней углекислого газа и ионов бикарбоната. В виде бикарбоната плазмой крови, т. е. в химически связанном состоянии, переносится основное количество углекислого газа — порядка 45 мл/100 мл крови, или до 90 %. Эритроцитами в виде карбаминового соединения с белками гемоглобина транспортируется примерно 2,5 мл/100 мл крови углекислого газа, или 5 %. Транспорт углекислого газа кровью от тканей к легким в указанных формах не связан с явлением насыщения, как при транспорте кислорода, т. е. чем больше образуется углекислого газа, тем большее его количество транспортируется от тканей к легким. Однако между парциальным давлением углекислого газа в крови и количеством переносимого кровью углекислого газа имеется криволинейная зависимость: кривая диссоциации углекислого газа.

Видео физиология газообмена в легких и транспорта газов кровью – профессор, д. Умрюхин

– Также рекомендуем “Роль эритроцитов в транспорте углекислого газа. Эффект Холдена.”

Что такое углекислый газ

Углекислый газ или диоксид углерода — малотоксичный газ, в нормальных условиях без запаха и цвета. CO2 — небольшая, но важная составляющая воздуха, он является одним из элементов окружающей среды, участвует в процессе фотосинтеза, метаболизма, выделяется людьми и животными, а также в ходе брожения и гниения.

Для организма человека углекислый газ не менее важен, чем кислород, а их баланс поддерживают естественные процессы — фотосинтез и дыхание.

Углекислый газ и метаболизм человека

Углекислый газ участвует во многих метаболических процессах. Он регулирует работу дыхательного и сосудисто-двигательного центра, возбудимость нервной системы, активность многих ферментов и гормонов, отвечает за электролитный состав крови, тонус центральной нервной системы, сосудов и бронхов, поддерживает обмен веществ. Следовательно СО2 непосредственно влияет на все биохимические реакции организма.

Уровень углекислого газа в организме контролируется центром

Углекислый газ — возбудитель дыхательной системы. Вопреки распространённому мнению, человек совершает очередной вдох при избытке углекислого газа, а не дефиците кислорода.

СО2 — продукт метаболизма, он переносится кровью от клеток тканей к лёгким. При вдохе лёгкие человека наполняются кислородом и в них происходит двусторонний обмен: кислород переходит в кровь, а углекислый газ выделяется из неё.

В обмене участвует гемоглобин, так как он основной переносчик кислорода к клеткам. В нём возникает процесс замены кислорода углекислым газом: гемоглобин доставляет кислород из лёгких к клеткам, а после — углекислый газ к лёгким. И этот обмен должен быть сбалансированным.

Про анемометры:  Двухконтурный газовый котел Bosch: инструкция по эксплуатации настенной модели и отзывы пользователей

Дисбаланс вызывает эффект «Вериго-Бора», согласно которому переизбыток кислорода и недостаток углекислого газа приводят к кислородному голоданию. Такой парадокс вызван тем, что без присутствия CO2 кислород не может высвободиться из связанного состояния с гемоглобином и переходить в ткани и органы.

Таким образом, углекислый газ необходим для отрыва кислорода от гемоглобина, иначе кровь будет циркулировать по организму, но не отдавать кислород, что приведёт к кислородному голоданию.

СО2 помогает кислороду переходить в ткани и органы.

Для нормального функционирования организма важен баланс углекислого газа и кислорода. Недостаток и избыток углекислого газа в организме приводит к гипокапнии и гиперкапнии.

— недостаток углекислого газа в крови. Чаще всего проявляется в виде головокружения, в худшем случае приводит к потере сознания. Возникает в состоянии паники или стресса при частом и глубоком дыхании. Гипокапния также развивается с возрастом, когда содержание СО2 в крови падает ниже 3,5 % от нормальных 6—6,5 %.

Норма содержания углекислого газа в крови — 6—6,5%.

— избыток углекислого газа в крови. Интоксикация углекислым газом проявляется в виде головной боли, тошноты, повышенного потоотделения, в крайних случаях — потери сознания. Возникает при длительном нахождении в замкнутом помещении с высоким содержанием CO2, но чаще всего в экстренных ситуациях, например, задержка дыхания под водой.

Углекислый газ в атмосфере

Углекислый газ выполняет важную функцию в атмосфере земли, он участвует в процессе фотосинтеза, воздействует на теплообмен. А также формирует «парниковый эффект» и влияет на климат.

Основные источники углекислого газа — природного происхождения. Он вырабатывается людьми, растениями и животными, содержится в вулканических газах, выделяется при разложении органики.

Уровень углекислого газа в организме контролируется центром

К техногенным источникам относятся выбросы промышленных предприятий, транспорт, производство электроэнергии, сжигание ископаемого топлива.

Концентрация углекислого газа в воздухе незначительна и составляет 0,02—0,045 % или 250—450 ppm, но с каждым годом уровень CO2 растёт и в крупных городах может достигать 0,06% или 600 ppm.

PPM — величина, означающая одну миллионную долю. В случае измерения CO2, количество PPM показывает количество кубических сантиметров CO2 на 1 кубометр воздуха.

Первым доказательством постоянного роста концентрации углекислого газа в атмосфере стала работа Чарльза Дэвида Килинга — американского учёного климатолога. С 1958 года он проводил регулярные частые измерения концентрации CO2 в атмосфере на Южном полюсе и на Гавайях.

Уровень углекислого газа в организме контролируется центром

График Килинга: концентрации атмосферного CO2, на основе наблюдений в обсерватории Мауна-Лоа (Mauna Loa Observatory), Гавайи

Содержание углекислого газа в атмосфере сохраняет устойчивые тенденции роста. Так, в 2009 г. средняя концентрация CO2 составляла 387 ppm., а в 2016 г. превысила отметку в 400 ppm. В 2017 г. был зафиксирован уровень CO2 в 403,3 ppm, в 2018 г. — 410,26 ppm., в 2019 г. — уже 415,28. А в мае 2020 г. концентрация углекислого газа в атмосфере установила новый рекорд — 417,1 ppm.

Углекислый газ в помещении

Из внешней среды углекислый газ поступает в помещение вместе с воздухом, где его уровень начинает повышаться. Внутри помещений CO2 вырабатывается находящимися в нём людьми, животными и растениями и чем больше людей в помещении и активнее их деятельность, тем быстрее будет расти уровень CO2.

Уровень углекислого газа в организме контролируется центром

Основные нормативы по содержанию углекислого газа в помещении установлены в ГОСТ 30494-2011, согласно которому, оптимальным содержанием CO2 в помещении является 800 ppm. Это считается высоким качеством воздуха. Допустимая концентрация углекислого газа находится в пределах 1000-1400 ppm. Концентрация свыше этих показателей означает, что воздух в помещении низкого качества и может негативно влиять на организм человека.

Оптимальный уровень CO2 в помещении — до 800 ppm

При закрытых окнах и отсутствии системы принудительной вентиляции, содержание CO2 будет постоянно расти. В помещениях люди находятся более 80% своего времени и в процессе пребывания многие начинают чувствовать духоту — это самый первый индикатор того, что уровень CO2 повышен.

В таких ситуациях ошибочно говорят о нехватке кислорода, но на самом деле уровень кислорода не меняется, а растёт уровень CO2. Помимо ощущения духоты, люди отмечают и другие симптомы: головная боль, ухудшение концентрации внимания, сонливость, вялость и т.д.

Единственный способ понижения уровня CO2 — это интенсивный приток свежего воздуха с улицы, который вытеснит переработанный и насыщенный углекислым газом воздух в систему вентиляции. Для этого необходимо регулярно проветривать помещение или установить систему приточной вентиляции.

Как обеспечить оптимальный уровень СО2

Решить проблему повышенного содержания углекислого газа в помещении можно только одним способом — это замена выработанного воздуха, насыщенного CO2, свежим с улицы — то есть проветриванием. Это можно сделать, открыв окно, или с помощью системы приточной вентиляции.

Понижение уровня углекислого газа с помощью окна

Самый простой — это проветривание через окно. Как правило, проветривание длится не более 10–15 минут, за такое время воздух не сможет обновиться полностью, необходимо проветривать часто. Но в помещениях, где на протяжении длительного времени находятся люди, частые проветривания практически невозможны, так как этот способ имеет ряд значительных недостатков.

Уровень углекислого газа в организме контролируется центром

Помимо резкого потока холодного воздуха, поступающего в зимний период, к недостаткам проветривания через открытое окно относятся шум, пыль, пыльца и аллергены с улицы. Если помещение располагается не в самом экологически благоприятном районе города, то к шуму и пыли можно добавить бензол, толуол, фенол, формальдегид и другие органические соединения, которые содержатся в воздухе.

Есть ещё один неочевидный минус — это износ фурнитуры: чем чаще мы открываем окно, тем быстрее изнашивается фурнитура и уплотнители, провисают створки. В итоге снижается тепло и звукоизоляция — то, ради чего и покупались дорогостоящие окна.

Понижение уровня углекислого газа с помощью систем приточной вентиляции

Решить проблему открытого окна можно с помощью системы приточной вентиляции. Существуют различные виды таких систем — от примитивных бюджетных приточных клапанов до дорогостоящей централизованной системы вентиляции.

Все они нацелены на решение основной задачи — приток в помещение воздуха с улицы. Каждая система обладает рядом преимуществ и недостатков, и определённым набором функций — фильтрация, подогрев воздуха, увлажнение и т.д.

Некоторые из этих систем недостаточно производительны и не могут обеспечить необходимый приток воздуха в расчёте 30м³/ч на человека, например, приточные клапаны или рекуператоры. Другие экономические целесообразно применять только на больших объектах, например, централизованные системы вентиляции. А установку системы с наружным блоком типа Ventmachine, необходимо будет согласовать с Управляющей компанией, так как она монтируется на фасад.

Когда речь идёт о квартире, небольшом офисе или учебном классе (помещения 1-ой и 2-ой категории), наиболее правильным решением станет установка датчика CO2 и компактного приточного комплекса — бризера. Уровень CO2 будет поддерживаться в оптимальных значениях и решатся проблемы открытого окна.

Уровень углекислого газа в организме контролируется центром

Что такое бризер, принцип работы и функции

Бризер принудительно подаёт в помещение необходимое количество воздуха с улицы, пропускает его через многоступенчатую систему фильтрации и подогревает до комфортной температуры. За счёт активного притока отработанный и насыщенный СО2 воздух выталкивается в вытяжную вентиляцию. Таким образом нормализуется уровень углекислого газа в помещении.

Уровень углекислого газа в организме контролируется центром

Бризер подаёт воздух с улицы, пропускает его через систему фильтрации и подогревает до комфортной температуры

Работу бризера можно настроить по уровню СО2 с помощью датчика. Бризер будет получать показатели о содержании углекислого газа в помещении с внешнего датчика и сам выберет нужную скорость, которая приведёт текущие значения к оптимальным.

Например, с помощью устройства Magic Air можно задать уровень CO2 в 800 ppm, датчик будет непрерывно анализировать концентрацию углекислого газа и выбирать скорость подачи свежего воздуха, которая будет поддерживать CO2 в пределах оптимального значения в 800 ppm. Подробнее о системе Magic Air мы рассказываем в нашей статье «Зачем нужна система MagicAir?».

Нормы углекислого газа в школах

Чем больше углекислого газа в воздухе, тем сложнее сосредоточиться и справиться с учебной нагрузкой. Зная об этом, власти США рекомендуют школам поддерживать уровень СО2 не выше 600 ppm. В России отметка чуть выше: уже упомянутый ГОСТ считает оптимальным для детских учреждений 800 ppm и менее. Однако на практике не только американский, но и российский рекомендуемый уровень – голубая мечта для большинства школ.

Один из наших экспериментов в школе показал: больше половины учебного времени количество углекислого газа в воздухе превышает 1 500 ppm, а иногда приближается к 2 500 ppm! В таких условиях невозможно сосредоточиться, способность к восприятию информации критически снижается. Другие вероятные симптомы переизбытка СО2: гипервентиляция, потливость, воспаление глаз, заложенность носа, затрудненное дыхание.

Почему так происходит? Кабинеты редко проветриваются, потому что открытое окно – это простывшие дети и шум с улицы. Даже если школьное здание оснащено мощной центральной вентиляцией, она, как правило, либо шумная, либо устаревшая. Зато окна в большинстве школ современные – пластиковые, герметичные, не пропускающие воздух. При численности класса 25 человек в кабинете площадью 50–60 м2 c закрытым окном углекислый газ в воздухе подскакивает на 800 ppm за каких-то полчаса.

Влияние углекислого газа на организм человека

Как мы уже говорили выше, углекислый газ влияет на состояние организма человека, так как играет важную роль в процессе метаболизма, помогая кислороду высвобождаться от гемоглобина и поступать в ткани и органы. Но необходимо поддерживать баланс кислорода и углекислого газа, так как избыток СО2 может привести к негативным последствиям.

Синдром больного здания

Если человек проводит много времени в определённом помещении и начинает испытывать неприятные ощущения и жаловаться на плохое самочувствие без видимых причин — это означает, что у него синдром «больного здания». Человек чувствует вялость, испытывает головную боль, у него заложен нос, но при этом он не болен. Симптомы могут пропадать, как только человек покидает помещение.

Уровень углекислого газа в организме контролируется центром

Синдром «больного здания» возникает при повышении уровня СО2 газа в помещении, чем он выше, тем активнее проявляются симптомы.

Повышенный уровень CO2 — это следствие и основной индикатор, который указывает на наличие проблемы. Помимо углекислого газа в воздухе содержатся другие соединения и загрязняющие вещества и по росту СО2 можно понять, что и их количество также увеличивается.

Воздействовать на организм могут и такие факторы, как тонкодисперсные частицы РМ2,5. Но они не способны оказывать такого быстрого влияния на человека, поэтому основная причина симптомов — это углекислый газ.

Наиболее распространённая причина «больного» здания — это плохо работающая вентиляция или её отсутствие. Свежий воздух не поступает в помещение и растёт уровень углекислого газа, при достижении показателей CO2 свыше 1000 ppm., углекислый газ начинает оказывать на организм человека негативное воздействие. Подробнее про синдром «больного» здания мы рассказываем в статье «Синдром больного здания: почему в помещении становится плохо?».

Основная причина появления «Синдрома больного здания» — это повышенный уровень СО2 и других загрязняющих веществ. Основная причина того, что здание «болеет» — наличие проблем с системой вентиляции или её отсутствие.

Респираторный ацидоз

Если на протяжении длительного времени находиться в помещении с повышенным уровнем CO2, то в крови появляется избыток углекислого газа, нарушается кислотность крови (pH), что приводит к респираторному ацидозу или первичной гиперкапнии.

Респираторный или дыхательный ацидоз развивается в связи со снижением рН крови.

Среди симптомов респираторного ацидоза выделяют: снижение концентрации внимания, учащённое сердцебиение, перевозбуждение, общую вялость, сонливость, беспокойство, повышенное давление, головную боль, спутанность сознания. Симптомы развиваются постепенно по мере нахождения в помещении с высоким уровнем CO2, в критической ситуации могут привести к потере сознания.

Уровень углекислого газа в организме контролируется центром

Степень негативного влияния углекислого газа на организм увеличивается соразмерно периодичности и длительности пребывания в помещении с повышенной концентрацией CO2. При кратковременном воздействии в несколько часов симптомы постепенно пройдут, когда человек покинет помещение или проветрит его.

Но если воздействие высокого содержания углекислого газа носит регулярный характер, то может развиться хронический респираторный ацидоз, последствиями которого может стать снижение иммунитета, болезни дыхательных путей, заболевания сердечно-сосудистой системы, снижение метаболизма, нарушение сна, возникновение головных и суставных болей, общая слабость.

Состояние организма человека в зависимости от уровня CO2

Вопросом влияния углекислого газа на организм человека занималась компания KPMG совместно с Университетом Мидлсекс, изучив воздействие повышенного уровня CO2 на 300 человек. Их исследования показали, что при уровне CO2 выше 1000 ppm, концентрация внимания снижалась на 30%. При уровне 1500 ppm — 79% респондентов чувствовали усталость, при 2000 ppm — 67% опрошенных отметили, что не могут сосредоточиться. Среди опрошенных, кто периодически страдает мигренью, 97% сказали, что головная боль у них появилась ещё на отметке в 1000 ppm.

В зависимости от уровня углекислого газа в помещении и длительности его воздействия на человека, развиваются разные симптомы.

Воздух считается качественным, если содержание углекислого газа в нём не превышает 600—800 ppm.

Несмотря на исследования, которые показывают, что повышение концентрации углекислого газа выше 1000 ppm вызывает дискомфорт, снижение концентрации внимания, сонливость, общую слабость, по ГОСТу допускается концентрация СО2 в пределах 1000–1400 ppm.

Улица

Сделал замер прямо на Красной Площади. Уровень около 450ppm. Это выше, чем за городом, что, скорее всего, объясняется обилием транспорта, котельных и промышленности, которые активно выделяют в воздух СО2, создавая над городом «пузырь» углекислого газа. Но это не страшно. Пока.

Нормы углекислого газа в офисах

В офисах наблюдаются те же проблемы, что и в школах: повышенная концентрация СО2 мешает сосредоточиться. Ошибки множатся, и производительность труда падает.

Нормативы содержания углекислого газа в воздухе для офисов в целом те же, что для квартир и домов: приемлемым считается 800 – 1 400 ppm. Однако, как мы уже выяснили, уже 1 000 ppm доставляет дискомфорт каждому второму.

Про анемометры:  Разделение воды в океане

К сожалению, во многих офисах проблема никак не решается. Где-то просто ничего о ней не знают, где-то ее сознательно игнорирует руководство, а где-то – пытается решить при помощи кондиционера. Струя прохладного воздуха действительно создает кратковременную иллюзию комфорта, однако углекислый газ никуда не исчезает и продолжает делать свое «черное дело».

Может быть и так, что офисное помещение построено с соблюдением всех нормативов, но эксплуатируется с нарушениями. Например, плотность размещения сотрудников слишком велика. Согласно строительным правилам, на одного человека должно приходиться от 4 до 6,5 м2 площади. Если сотрудников больше, то и углекислый газ в воздухе накапливается быстрее.

Углекислый газ и его воздействие на организм человека

Углекислый газ выполняет важную функцию в организме человека и поэтому оказывает на него непосредственное воздействие. Рассмотрим, что такое углекислый газ, какова его роль в метаболизме человека и почему он не менее важен, чем кислород. Расскажем, как СО2 влияет на организм, почему и чем опасна его высокая концентрация в помещении.

Рестораны и кинотеатры

Тут картина сильно разная, но одно очевидно (кто-то скажет, что это ясно и без приборов) – любят наши рестораторы экономить на вентиляшке! Например, у меня была деловая встреча в кофейне «Хлеб насущный» на Никольской – место хорошее, но вот с воздухом беда – 2000ppm! В такой «атмосфере» очень сложно думать и решать деловые вопросы. В «Чайхоне №1» на Пушкинской было чуть лучше – до 1500ppm. Но есть и хорошие места – в «Старбакс» на Площади революции и в «Пять звёзд» на Павелецкой – 700ppm – 800ppm. А вот в самом кинозале этого замечательного кинотеатра было «не айс» — до 1500ppm весь сеанс. При этом администрация не поскупилась на кондиционеры – в залах было прохладно и это «скрашивало» ситуацию. Но кондеи не заменяют вентиляцию! Температура – температурой, а кислород – кислородом, должно быть и то, и другое.

Нормы углекислого газа в жилых помещениях

Проектировщики многоквартирных и частных домов берут за основу ГОСТ 30494-2011 под названием «Здания жилые и общественные. Параметры микроклимата в помещениях». Этот документ оптимальным для здоровья человека уровнем CO2 считает 800 – 1 000 ppm. Отметка на уровне 1 400 ppm – предел допустимого содержания углекислого газа в помещении. Если его больше, то качество воздуха считается низким.

Однако уже 1 000 ppm не признается вариантом нормы целым рядом исследований, посвященных зависимости состояния организма от уровня CO2. Их данные свидетельствует о том, что на отметке 1 000 ppm больше половины испытуемых ощущают последствия ухудшения микроклимата: учащение пульса, головную боль, усталость и, конечно, пресловутое «нечем дышать».

Физиологи нормальным уровнем CO2 считают 600 – 800 ppm.

Хотя некоторые единичные жалобы на духоту возможны и при указанной концентрации.

Выходит, что строительные нормативы уровня СО2 вступают в противоречие с выводами исследователей-физиологов. В последние годы именно со стороны последних все громче раздаются призывы обновить допустимые пределы, но пока дальше призывов дело не идет. Чем ниже норма СО2, на которую ориентируются строители, тем дешевле обходится устройство вентиляции. А расплачиваться за это приходится тем, кто вынужден решать проблему вентилирования квартиры самостоятельно.

Дом и отель

Мне повезло и в моём номере всю ночь концентрация СО2 была меньше 600ppm. Отлично! Я спал не в духоте. Это потому, что попросил номер с окном во двор и смог держать окно на микропроветривании, не просыпаясь от шума машин. Но вентиляции в номере нет, поэтому плата за свежий воздух тоже не малая — московский смог. Была бы вентиляшка с профессиональными фильтрами — было бы на пятерочку! Надо сказать, что замеры в квартирах с закрытыми окнами часто показывают очень плохие результаты, пара человек в комнате запросто могут «надышать» 2000ppm минут за 40-60. А окна обычно закрыты, чтобы сквозняков не было и шума с улицы. Вывод тот же, что и в случае с отелем – дома вентиляция must have. При этом проще и дешевле поставить компактные бризеры, чем заморачиваться с полноценной вентиляцией.

Зачем регулировать вентиляцию по датчику СО2

Вот пример того, как изменяется уровень СО2 в течение дня (измерения с помощью MagicAir):

В том же ГОСТе про допустимые и недопустимые уровни СО2 указана минимальная производительность вентиляции. Она равна 30 м3 /ч на одного человека, то есть каждый человек в комнате должен в час получать 30 кубометров свежего воздуха. Если в комнате находятся два человека, то в час им нужно минимум 60 м3 свежего воздуха. Тогда они будут дышать свежим воздухом с нормальным уровнем углекислого газа.

Но если в комнате нет людей, то незачем гонять вентиляцию на высоких оборотах в режиме 120 м3 /ч. В пустом помещении можно поддерживать свежесть воздуха и в более экономичном режиме. «Умная» вентиляция так и делает. Таким образом сокращаются траты на электроэнергию, и все элементы вентиляционной системы изнашиваются меньше.

После того, как люди придут в комнату, вентиляция включится именно в тот момент, когда датчик зафиксирует превышение допустимого уровня СО2. До этого времени нет нужды включать вентиляцию – людям хватит свежего воздуха, который успел накопиться в пустой комнате.

Кроме того, датчик покажет реальный уровень углекислого газа именно в зоне дыхания. Это даст стимул делать приточную вентиляцию более эффективной: направлять свежий воздух не абы куда, а туда, где находятся люди. Какой смысл проверять его концентрацию в углу комнаты, где вы даже не появляетесь?

Трип начался с самолёта. Перелет Новосибирск-Москва, около 4 часов. Самолёт полный, аэробус А316. Весь полёт концентрация СО2 – около 2000ppm! Добавьте сюда слишком высокую температуру на борту (около 28С) и пониженное давление (786 гПа против 1007 гПа на земле) и поймете, почему нас так «колбасит» после перелетов. Для сравнения в аэропорту прилета – около 700ppm, то есть норма. На обратном пути летел в полупустом самолёте, и ситуация была гораздо лучше – весь полёт до 1000ppm, что приемлемо.

Далее был аэроэкспресс. Оказалось, что при полном вагоне вентиляция тоже не справляется – более 1800ppm! А вот на пути обратно вагон был пустой, и вентиляция справлялась – около 500ppm.

В метро все гораздо лучше. На самой станции под землёй – 600ppm. В старых «дырявых» вагонах – около 700ppm. Вот в новых вагонах метро, где кондиционеры гоняют воздух по кругу уже хуже – при неполной загрузке 1200ppm. В набитом вагоне следует ожидать больше 2000ppm. Но здесь стоит иметь в виду, что обычно в таких вагонах мы проводим мало времени – 10-20 минут, так что это не очень критично.

Нормы концентрации углекислого газа в помещении по ГОСТ

Оптимальные и допустимые значения содержания углекислого газа в помещении установлены в ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

Оптимальным содержанием углекислого газа в помещении называются показатели, которые обеспечивают нормальное состояние организма и ощущение комфорта. Допустимые показатели — это значения, которые при длительном воздействии на человека могут привести к ощущению дискомфорта, ухудшению самочувствия и понижению работоспособности, но при этом не вызывают ухудшение здоровья.

Уровень углекислого газа в организме контролируется центром

Нормы содержания углекислого газа в помещениях. ГОСТ 30494-2011.

Согласно ГОСТ, оптимальное содержание углекислого газа для жилых помещений — до 400 ppm. Но в поступающем с улицы воздухе уже содержится СО2, поэтому для расчётов допустимых норм показатели качества воздуха в помещении суммируются с показателями содержания загрязнений в наружном воздухе.

Уровень углекислого газа в организме контролируется центром

Содержание углекислого газа в наружном воздухе. ГОСТ 30494-2011.

Таким образом, для жителей больших городов оптимальным содержанием CO2 в помещении является 800 ppm. Это считается высоким качеством воздуха. Допустимая концентрация углекислого газа находится в пределах 1000–1400 ppm. Концентрация свыше этих показателей говорит о низком качестве воздуха, что негативно влияет на организм человека.

Оптимальное содержание CO2 в помещении — 800 ppm.

Согласно ГОСТ, допускается превышение нормы СО2 до 1400 ppm, но физиологи рекомендуют считать верхние допустимые значения в 800–1000 ppm.

Ещё в 60-х годах 20-го века изучением влияния углекислого газа на человека занималась Елисеева О.В. — отечественная учёная, которая провела исследования по допустимой концентрации СО2 в помещении. В своей диссертации «Биологическое действие двуокиси углерода на организм человека и гигиеническая оценка её содержания в воздухе общественных зданий» она исследовала влияние углекислого газа на человека в концентрации 1000–5000 ppm.

Она отметила, что при таких показателях нарушается работа дыхательной системы и системы кровообращения, а также значительно ухудшается активность головного мозга. Согласно её выводам, уровень CO2 в помещении не должен превышать 0,1% (1000 ррm), а среднее содержание CO2 должно быть около 0,05% (500 ррm).

Нормы концентрации CO2 для разных помещений

Оценивая качество воздуха в помещении, стоит учитывать его категорию. Так как для квартир и жилых помещений требования более жёсткие, чем для офисных или производственных. Это связано с тем, что жилые помещения предназначены, в том числе и для отдыха, а для полноценного восстановления организма необходимо обеспечить высокое качество воздуха.

Согласно ГОСТ, помещения подразделяются на следующие категории:

Помещения 1-й категории — это помещения, в которых люди находятся в состоянии покоя и отдыха, то есть жилые помещения, отели;

Помещения 2-й категории — это помещения, в которых люди заняты умственным трудом, учёбой, сюда можно отнести как учебные заведения, так и офисы;

Помещения 3-й категории — это помещения с массовым пребыванием людей, сюда относятся офисы, производственные предприятия и все общественные заведения;

Помещения 4-й категории — помещения для занятий подвижными видами спорта, то есть все спортивные залы, фитнес-центры и клубы, спортивные секции и т.д.

Нормы содержания углекислого газа для жилых помещений

Жилые помещения относятся к 1-й категории. Для того чтобы добиться высокого качества воздуха в квартире в большом городе, уровень CO2 не должен превышать 800 ppm. Для загородных домов требования выше — воздух будет считаться качественным, если содержание CO2 ниже 750 ppm.

Уровень углекислого газа в организме контролируется центром

Оптимальную концентрацию можно соблюсти, если в помещении находится 1 человек, открыта форточка и хорошо работает вытяжная вентиляция. Если в комнате будет находиться 2–3 человека, то уровень углекислого газа начнёт нарастать до 1000–1200 ppm и форточка уже не спасёт, нужно полноценное проветривание через открытые окна. А за одну ночь в помещении с закрытыми окнами при нахождении в нём 2-х человек, уровень CO2 с допустимого повышается до 2000 ppm. Если оставить окно на микропроветривание (щель), то уровень CO2 будет держаться на значениях в 1200–1300 ppm., что превышает норму на 400–500 ppm.

Таким образом, для поддержания оптимального уровня углекислого газа в помещении, где находится несколько человек, необходимо регулярное проветривание или система приточной вентиляции.

Рассмотрим на примере:Измерения показывают, что в среднем за 1 час человек вырабатывает около 20 л. углекислого газа или 0,02 м³. Предположим, что в комнате 18 м² находится семья из 3-х человек, за 1 час при закрытых окнах они выдохнут 0,06 м³ CO2 в воздух (0,02 м³/ч на 1 человека). Объём комнаты — 54 м³. В процентном соотношении объём CO2 в комнате — 0,1111%. Переводим проценты в ppm (частей на миллион) и получаем 1111 ppm. То есть семья из 3-х человек за час вырабатывает количество углекислого газа, которое превышает оптимальные значения по ГОСТ.

Нормы содержания углекислого газа для офисных помещений

Офисы относятся ко 2-му и 3-му классам помещений, поэтому оптимальным содержанием углекислого газа считаются значения 800–1000 ppm, а допустимым — 1000–1400 ppm.

Уровень углекислого газа в организме контролируется центром

Но на практике поддерживать допустимый уровень CO2 в офисе — трудновыполнимая задача, так как не всегда есть возможность регулярно проветривать помещение — рабочие места некоторых сотрудников расположены рядом с окном и им будет некомфортно или холодно сидеть у постоянно открытого окна.

Кондиционер также не решит проблему, так как не отвечает за поступление свежего воздуха с улицы, а гоняет воздух внутри помещения, охлаждая его. То есть становится прохладнее и многие ошибочно думают, что воздух стал свежим. Но это не так, уровень содержания углекислого газа будет только расти.

Рассмотрим на примере:Рассмотрим офисное помещение 30 м², в котором находится 6 сотрудников, за 1 час они выработают 0,12 м³ CO2 (0,02 м³/ч на 1 человека). Объём офиса — 81 м³, в процентном соотношении объём CO2 — 0,1481 или 1481 ppm. То есть уже через час при закрытых окнах уровень CO2 превысит допустимые нормы.

Нормы содержания углекислого газа для школ и учебных заведений

Школы, ВУЗы и другие учебные заведения относятся ко 2-ому классу помещений и оптимальной концентрацией углекислого газа будут считаться показатели, не превышающие 800–1000 ppm.

Уровень углекислого газа в организме контролируется центром

В среднем в учебных кабинетах, где учится 25–30 человек, концентрация CO2 колеблется в пределах 2000–2500 ppm — перед началом занятий уровень углекислого газа находится в пределах нормы, но затем начинает неуклонно расти и уже через 20–30 минут накапливается выше нормы в 2 раза.

Проблема вентиляции в школах и других образовательных учреждениях связана с тем, что большинство из них расположены в старых зданиях с устаревшими системами вентиляции. И если раньше вентиляция и работала, то после замены старых окон на пластиковые, классы стали герметичными — углекислый газ быстро накапливается, а свежий воздух не поступает или поступает плохо.

Рекомендуется проветривать классы каждую перемену, но за это время воздух не сможет полностью обновиться, поэтому нужна система принудительной приточной вентиляции.

Рассмотрим на примере:Возьмём стандартный класс площадью 64 м², в нём находится 25 учеников и учитель, урок длится 45 минут, за это время 26 человек выдохнут 0,58 м³ углекислого газа. Объём класса — 192 м³, объём CO2 в классе — 0,3020% или 3020 ppm, что в 3 раза превышает оптимальные показатели.

Про анемометры:  Схема электрооборудования ГАЗ 53-12

Нормы содержания углекислого газа для спортивных залов и клубов

Помещения для занятий спортом относятся к 4-ому классу помещений, в них допустимым содержанием CO2 является 1400 ppm.

Уровень углекислого газа в организме контролируется центром

Количество углекислого газа в помещении зависит не только от количества человек, находящихся в нём, но и от вида их деятельности. Чем активнее деятельность, тем больше углекислого газа выделяется. Физические упражнения можно отнести к тяжёлой работе, получается, что занимаясь спортом, человек вырабатывает в 5 раз больше углекислого газа, чем человек, который просто сидит.

Уровень углекислого газа в организме контролируется центром

Выделение CO2 при различных видах физической нагрузки. ГОСТ Р ИСО 16000-26-2015 Воздух замкнутых помещений.

В спортзалах и фитнес-клубах одновременно может находиться большое количество человек, занятых физическими нагрузками, при которых углекислый газ вырабатывается значительно интенсивнее. Например, человек в положении сидя выдыхает 0,02 м³ углекислого газа, а при физических нагрузках — уже 0,11 м³.

Поэтому для фитнес-клубов обязательным условием является обильное поступление свежего воздуха. Проветривание через окно не эффективно и может привести к возникновению сквозняков, что для спортзалов недопустимо. Необходимо организовать систему вентиляции, которая обеспечит приток свежего воздуха и удаление отработанного.

Рассмотрим на примере:Площадь тренажёрного клуба мини-формата 200 кв.м. По санитарным нормам на 1 посетителя должно приходиться не менее 5 м². Предположим, что требование соблюдаются и в зале одновременно находится не более 40 человек. За 1 час интенсивных физических упражнений они выработают 4,4 м³ СО2 (0,11 м³ на человека). Объём помещения — 700 м³, доля содержания CO2 — 0,6285% или 6285 ppm. То есть за 1 час при отсутствии приточного воздуха уровень углекислого газа может превысить норму почти в 5 раз, такая концентрация близка к критичной для здоровья человека.

Субъективные показатели свежести

Уровень углекислого газа в организме контролируется центром

Уровень углекислого газа необходимо измерять, так как он оказывает прямое влияние на организм человека, но мы не можем оценить его объективно без специальных приборов и зачастую ориентируемся только на собственные ощущения.

Запах свежести

Человек ассоциирует свежий воздух с различными запахами: запахом «после дождя», запахом травы или листьев. Мы привыкли ощущать свежеть сразу, как открываем окно. Но этот воздух нельзя назвать свежим. Хоть запах сам по себе не является загрязнителем, но он указывает на наличие в воздухе загрязнителя.

Если воздух пропускать через эффективные фильтры, например, через HEPA и угольный, то воздух очищается от этих запахов. Такой воздух кажется менее свежим, но это просто субъективное ощущение. Если измерить уровень CO2 с помощью датчика, то можно убедиться, что он в норме.

Ощущение, что воздух свежий, потому что пахнет, как «после дождя», обманчиво. На самом деле пахнет мокрой землёй, а значит, в воздухе есть загрязнитель.

Прохлада как свежесть

Часто свежесть ассоциируют с прохладой — это ещё одно заблуждение. В помещении может быть пониженная температура, но высокий уровень CO2. Многие пытаются решить проблему духоты с помощью кондиционера.

К сожалению, кондиционеры не помогут, так как они не подают свежий воздух с улицы в помещение, а просто его охлаждают. Кондиционер берёт воздух из помещения, прогоняет через себя, охлаждает и подаёт обратно в помещение. Температура понижается, но уровень CO2 повышается, так как притока нового воздуха не было.

Как СО2 распределяется по комнате

Углекислый газ в 1,5 раза тяжелее воздуха, поэтому в стоячем воздухе он постепенно опускается к полу. А именно в нижней зоне помещения находятся люди. Получается, углекислый газ надо «отгонять» от людей.

У специалистов в области вентиляции есть такое понятие – эффективность воздухораспределения. Оно говорит о том, насколько быстро свежий приточный воздух доходит до зоны дыхания: к рабочему столу, к кровати, к промышленному станку – в общем, туда, где чаще всего находятся люди. При этом в идеале приточный воздух на пути к человеку не должен проходить через зоны с грязным воздухом, в котором уже накопился СО2 и другие вредные газы. Иначе он их захватит и принесет к нам в легкие.

Цель вентиляции – двигать комнатный воздух так, чтобы около людей, в зоне их дыхания, воздух был всегда свежим и чистым, а весь углекислый газ вместе с другими загрязнителями поднимался вверх и удалялся через вытяжку. Чем быстрее свежий воздух доходит из приточной вентиляции до человека, тем лучше работает эта вентиляция.

К примеру, если сесть около бризера прямо у его решетки, то свежий воздух дойдет до вас за секунду. А повесите бризер рядом с вентиляционным отверстием – и большая часть притока из прибора прямиком отправится в вытяжку, а вы почувствуете свежий воздух в лучшем случае через несколько минут.

Где поставить датчик СО2

Три главных ограничения по выбору места для датчика:

Сколько СО2 в воздухе

В российском ГОСТ 30494–2011 «Здания жилые и общественные. Параметры микроклимата в помещениях» указаны четыре класса помещений, в зависимости от уровня СО2. В двух словах эти классы выглядят так:

  • 1 класс: СО2 до 400 ppm – отличный воздух, дышите на здоровье!
  • 2 класс: СО2 от 400 до 600 ppm – хороший воздух, дышать легко.
  • 3 класс: СО2 от 600 до 1 000 ppm – на нижней границе воздух еще нормальный, на верхней уже так себе.
  • 4 класс: СО2 больше 1 000 ppm – недопустимое качество воздуха, срочно проветривать!

1 ppm – это одна миллионная доля. Если датчик СО2 показывает 1 ppm, это значит, что в 1 м3 воздуха содержится 1 см3 углекислого газа. Не стоит ломать голову над этой величиной, предлагаем относиться к ней как к условной единице измерения концентрации газов в воздухе. В том числе углекислого. На улице уровень СО2 составляет 350-400 этих условных единиц, в помещении – до 1 000. Больше 1 000 условных единиц – значит, углекислого газа в воздухе больше, чем должно быть.

Адаптивная вентиляция для дома

Традиционная вентиляция всегда работает в одном и том же режиме, пока вы не измените его вручную. Такой вентиляции все равно, сколько людей в комнате и насколько интенсивно они дышат.

Показательный пример с вентиляцией в кинотеатре. Пятница, вечерний сеанс, премьерный показ ожидаемого блокбастера – набивается полный зал. Воскресенье, утро, ничем не примечательный фильм – в зале 10 человек. В обоих случаях традиционная вентиляция работает с одной и той же интенсивностью. И если во время пятничного аншлага есть смысл включать вентиляцию на полную мощность, то поддерживать тот же режим в воскресенье для 10 зрителей – это неоправданно высокие затраты.

Адаптивная вентиляция с датчиком СО2 в каждый момент времени подает ровно столько воздуха, сколько нужно. В зале мало зрителей – вентиляция перешла в экономичный режим или вообще выключилась, если уровень СО2 и так в пределах нормы. В зале 1 000 человек – вентиляция работает на самой высокой скорости.

В общем смысле адаптивная вентиляция – это та, которая регулируется по любому параметру воздуха. Это может быть температура, влажность или концентрация воздушных загрязнителей. Углекислый газ – один из них, и именно он является общепризнанным показателем для регуляции воздухообмена.

На вокзалах, в торговых и офисных центрах адаптивная вентиляция с датчиками углекислого газа по всему зданию сокращает траты на электроэнергию на 30-50 %. Правда, стоят такие сложные инженерные системы сотни тысяч рублей, так что в обычной квартире в них нет большого смысла.

Но есть адаптивная вентиляция и для обычных квартир. Стоит она как минимум в 10 раз меньше, а уменьшить траты на вентиляцию может на те же 30-50 %. В будущем эта система будет дополняться новыми датчиками, в том числе датчиками частиц РМ2.5 и летучих органических соединений, а также модулями для управления кондиционерами, увлажнителями и очистителями воздуха.

Выводы

Пока это вся информация, обязуюсь сделать обзорный трип в Новосибирске. Что можно сказать по итогу? Интерьер, «атмосфера», цены, сервис, комфорт – это всё, конечно, важно. Но есть еще и настоящая атмосфера, которая очень важна для здоровья. И тут всплывает много интересного. Далеко не везде состояние воздуха бывает удовлетворительным. Воздух не видно – значит, на нём можно сэкономить. Зачем платить деньги за вентиляцию, как это улучшит коммерческие показатели? От СЭС отбились при сдаче объекта и, слава богу. Но для нас с вами эта ситуация может быть очень неприятной. И об этом надо знать. Боюсь представить, что происходит в школах, детсадах, игровых комнатах для детей, фитнес-клубах и офисах. А что у каждого из нас в спальне? Немного заспойлерю – уже сделали замеры СО2 в классе одной из школ – больше 2000ppm! А дети же там должны учиться и работать головой. А как требовать от ребенка концентрации и успеваемости, когда голова не варит просто физиологически? Короче, я хочу выбирать места работы и отдыха еще и по качеству воздуха. Верю, что это существенно улучшит «среднюю температуру по палате» — самочувствие моё и моей семьи.

В заключение, возьму на себя труд дать пару советов что делать, если «выбрать нельзя» — например, в душном самолёте

  • Используйте обдув – есть в каждом самолёте на потолке или «в спинке впередистоящего кресла». Оттуда воздух идет тоже с превышением по СО2 (проверено), но он хотя бы раздувает тот «пузырь» углекислого газа, который вы вокруг себя «надышали».
  • Если в салоне жарко – раздевайтесь. Пусть будет чуть прохладно. Чем ниже температура тела – тем лучше кровь насыщается кислородом и выводится углекислота.
  • Сведите активность к минимуму. Лучше спать или «медитировать». Постарайтесь не нервничать, не брать в уме тройные интегралы. Помните, мозг потребляет около 20% всего кислорода в крови!
  • Если курите – лучше не курить за несколько часов до полёта. Это позволит очистить кровь от угарного газа и улучшит снабжение мозга кислородом. Лучше используйте никотиновые жвачки/таблетки/пластыри.
  • После прилета проведите часок на улице – продышитесь, сделайте дыхательную гимнастику, нормализуйте биохимию в крови — дайте мозгу прийти в себя!

В помещении важно поддерживать оптимальную концентрацию уровня СО2, так как углекислый газ оказывает негативное влияние на организм человека. Существует ГОСТ, который регулирует оптимальные и допустимые показатели для разных категорий помещений.

Оптимальный уровень CO2 в помещении — 800 ppm — такой воздух считается качественным. Допустимая концентрация углекислого газа находится в пределах 1000–1400 ppm.

Чтобы поддерживать оптимальные параметры CO2 в помещении, необходима установка системы приточной вентиляции, так как проветривание через окно не всегда эффективно и имеет ряд существенных недостатков.

Из всех систем приточной вентиляции именно бризеры наиболее эффективно справляются с повышенным содержанием углекислого газа. Бризер позволяет проветривать помещение с закрытыми окнами 24 часа в сутки 365 дней в году и поддерживать оптимальный уровень CO2.

Ответьте на 5 вопросов и подберите бризер под свои задачи

Ознакомьтесь с характеристиками популярных моделей и подберите бризер под свои задачи!

Расскажем о том, каким нормам должна соответствовать вентиляция в квартире и что нужно сделать, чтобы дышать хорошим воздухом и не простужаться.

Рассказываем, какой уровень шума допустим по СНиП и СанПиН и что делать, если он выше нормы.

Рассказываем, что такое влажность воздуха, основные нормы влажности по ГОСТу, какая влажность оптимальна для спальни, гостиной и детской комнаты и как её нормализовать.

Углекислый газ и его роль в организме человека. Влияние углекислого газа на организм, почему и чем опасна его высокая концентрация в помещении.

CO2 — природный газ, который необходим организму для поддержания всех физиологических процессов. Именно благодаря углекислому газу кислород поступает в клетки тканей и органов.

Необходимо, чтобы в крови соблюдался баланс содержания кислорода и углекислого газа, так как избыток или недостаток CO2 может вызвать гипокапнию или гиперкапнию.

Существует понятие «Синдром больного здания», которое указывает на повышенное содержание СО2 и других загрязняющих вещества в помещении и свидетельствует о нарушениях в работе системы вентиляции.

Воздействие углекислого газа в высоких концентрациях может вызвать респираторный ацидоз. Поэтому в помещении необходимо поддерживать содержание СО2 в значениях не выше 800 ppm.

Расскажем о том, что такое тонкодисперсные частицы, откуда берутся, чем они опасны и что можно предпринять, чтобы защитить себя от их вредного воздействия.

Основные нормативы по концентрации углекислого газа в помещении, оптимальные и допустимые значения. Как обеспечить оптимальный уровень CO2 в помещении.

Какая пыльца вызывает аллергию и как обезопасить дом от аллергенов. От чего зависит эффективность очистки воздуха от пыльцы и какие устройства помогут аллергикам.

Выводы и выходы

Проблема с вентиляцией наиболее остро стоит в квартирах, офисных зданиях и детских учреждениях. Тому есть две причины:

1. Расхождение между строительными нормативами и санитарно-гигиеническими рекомендациями.

Первые гласят: не выше 1 400 ppm CO2, вторые предупреждают: это слишком много.

2. Несоблюдение нормативов при возведении, реконструкции или эксплуатации здания.

Самый простой пример – установка пластиковых окон, которые не пропускают уличный воздух и усугубляют тем самым ситуацию с накоплением углекислого газа в помещении.

Какой бы ни была причина, выход один: нужно обеспечить постоянный приток свежего воздуха, который будет вытеснять CO2.

Нет необходимости перестраивать всю вентиляционную систему, достаточно будет компактной приточной вентиляции. Она, кстати, еще и очищает входящий воздух и подогревает его до комнатной температуры. Другими словами, повышает качество воздуха сразу по трем направлениям: уменьшение уровня углекислого газа, очистка и поддержание температурного режима.

  • Robertson, D. S. Health effects of increase in concentration of carbon dioxide in the atmosphere // Current Science, 2006. – Vol. 90. – Issue 12.
  • СП 44.13330.2011 Административные и бытовые здания.
Оцените статью
Анемометры
Добавить комментарий