Anemometer for crane – купить недорого | AliExpress

Anemometer for crane - купить недорого | AliExpress Анемометр

12. Приборы и устройства безопасности

✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -

Приборы и устройства безопасности
грузоподъемных кранов

Общие требования

В соответствии с «Правилами устройства и
безопасной эксплуатации грузоподъемных кранов» краны должны быть
оборудованы приборами и устройствами, обеспечивающими их безопасную
эксплуатацию: выключающими устройствами, указателями грузоподъемности,
указателями наклона крана, ограничителями грузоподъемности, сигнализаторами и
блокировочными устройствами

Приборы и устройства безопасности кранов должны соответствовать
настоящим Правилам, государственным стандартам и другим нормативным документам.

1. Концевые выключатели, устанавливаемые на кране,
должны включаться так, чтобы была обеспечена возможность движения механизма в
обратном направлении.

2. Ограничитель механизма подъёма груза или стрелы
должен обеспечить остановку грузозахватного органа при подъёме без груза и
зазор между грузозахватным органом и упором у электрических талей — не
менее50мм, у других кранов — не менее 200 мм. При скорости подъёма груза более
40 м/мин на кране должен быть установлен дополнительный ограничитель,
срабатывающий до основного ограничителя, переключающий схему на пониженную
скорость подъёма.

3. Ограничители механизмов передвижения должны
обеспечивать отключение двигателей механизмов на следующем расстоянии до упора:

  • для башенных, портальных, козловых кранов и мостовых перегружателей и — не менее полного пути торможения;
  • для остальных кранов — не менее половины пути торможения.

При установке взаимных ограничителей хода механизмов
передвижения мостовых и консольных кранов, работающих на одном крановом пути,
указанное расстояние может быть уменьшено до 500мм. Путь торможения  механизма должен быть указан  предприятием- изготовителем в паспорте крана.

4. Краны стрелового типа (кроме консольных) должны
быть оборудованы ограничителем грузоподъёмности (грузового момента),
автоматически отключающим механизмы подъёма груза и изменения вылета в случае
подъёма груза, масса которого превышает грузоподъёмность для данного вылета
более чем на:

  • 15%- для башенных с грузовым моментом до 20 т м включительно и портальных кранов;
  • 10% — для остальных кранов.

У кранов, имеющих две или более грузовые
характеристики, ограничитель должен иметь устройство для переключения его на
выбранную характеристику.

5. Краны мостового 
типа должны быть оборудованы ограничителями грузоподъёмности (для каждой
грузовой лебёдки), если возможна их перегрузка по технологии производства.
Краны с переменной по длине моста грузоподъёмностью также должны быть оборудованы
такими ограничителями.

Ограничитель грузоподъёмности кранов мостового типа не
должен допускать перегрузку более чем на 25%.

6. Стреловые краны должны быть оборудованы
ограничителями рабочих движений для автоматического отключения механизмов
подъёма, поворота и выдвижения стрелы на безопасном расстоянии от крана до
проводов линии электропередачи.

7. Стреловые краны для предотвращения их столкновения
с препятствиями в стеснённых условиях работы должны быть оснащены координатной
защитой.

8. Краны, кроме управляемых с подвесного пульта,
должны быть снабжены звуковым сигнальным устройством, звук которого должен быть
хорошо слышен в зоне работы крана. При управлении краном с нескольких постов
включение сигнала должно быть, возможно с любого из них.

9. Козловые краны и мостовые краны- перегружатели
должны быть рассчитаны на максимально возможное усилие перекоса, возникающее
при их передвижении, или оборудованы ограничителем перекоса автоматического
действия.

10. У кранов с электроприводом, кроме кранов с
электрическими талями, имеющих второй грузоупорный тормоз, должна быть
предусмотрена защита от падения груза и стрелы при обрыве любой из трёх фаз
питающей электрической сети.

11. Краны мостового типа должны быть оборудованы
устройством для автоматического снятия напряжения с крана при выходе на галерею.

У мостовых кранов, вход на которые предусмотрен через
галерею моста, такой блокировкой должна быть оборудована дверь для входа на
галерею.

12. Дверь для входа в кабину управления,
передвигающуюся вместе с краном, со стороны посадочной площадки должна быть
снабжена электрической блокировкой, запрещающей движение крана при открытой
двери.

Если кабина имеет тамбур, то такой блокировкой
снабжается дверь тамбура.

13. В кабине стрелового крана должны быть установлены
указатели угла наклона крана (креномеры, сигнализаторы). В случае, когда
управление выносными опорами крана осуществляется вне кабины, на неповоротной
раме крана должен быть установлен дополнительный указатель угла наклона крана.

14. Башенные краны с высотой до верха оголовка башни
более 15м, козловые краны с пролётом более 16м, портальные краны, мостовые
краны- перегружатели должны быть снабжены прибором (анемометром), автоматически
включающим звуковой сигнал при достижении скорости ветра, указанной в паспорте
для рабочего состояния крана.

15. Краны, передвигающиеся по крановому пути на
открытом воздухе, должны быть оборудованы противоугонными устройствами в
соответствии с нормативными документами.

16. Противоугонные устройства с машинным приводом
должны быть оборудованы приспособлением для приведения их в действие вручную.

17. Краны, передвигающиеся по крановому пути, и их
тележки для смягчения возможного удара об упоры или друг, о друга должны быть
снабжены упругими буферными устройствами.

18. Краны (кроме электрических талей) и грузовые
тележки, передвигающиеся по крановому пути, должны быть снабжены опорными
деталями на случай поломки колёс и осей ходовых устройств.

19. У стреловых кранов с изменяющимся вылетом и гибкой
подвеской стрелы должны быть установлены упоры или другие устройства,
предотвращающие запрокидывание стрелы.

У башенных кранов такие устройства должны быть
установлены, если при минимальном вылете угол между горизонталью и стрелой
превышает 70 градусов.

Выключающие устройства

Выключающие устройства представляют собой систему рычагов, воздействующих при определенных положениях на концевые выключатели.  По  своему назначению выключающие устройства, устанавливаемые на кранах, можно подразделить на:

  • выключающие устройства  механизмов  передвижения  крана  и грузовой тележки  —  для  автоматического  выключения механизма передвижения в случае приближения крана или тележки к  крайнему положению;
  • выключающие устройства механизма изменения вылета стрелы — для выключения  привода стреловой лебедки в конечных положениях стрелы;
  • выключающие устройства механизма подъема — для автоматического отключения привода грузовой лебедки  в  крайнем верхнем положении крюковой подвески (грейфера, захвата);
  • выключающие устройства механизма  поворота — для автоматической остановки  механизма поворота крана  в случаях предусмотренных проектом производства работ.
✅ Приборы безопасности, устанавливаемые на грузоподъемные машины -
Конечные выключатели: а типа КУ 701, б- типа КУ-704, в- типа ВУ 250А, г — типа ВК, 1 — неподвижный контакт, 2 — подвижный контакт, 3 — рычаг подвижного контакта, 4 — червячная передача 5 — вал, 6— фиксатор, 7—шток, 8— пружина

Главным прибором в системах устройств
является концевой  выключатель, представляющий
собой аппарат с электрическими контактами, 
при размыкании которых  прерывается
цепь электродвигателя  и тормозного привода
непосредственно или с помощью вспомогательной цепи управления.

Концевые выключатели  должны включаться  в 
электрическую цепь так,  чтобы была
обеспечена возможность движения механизма в обратном направлении. Установка
выключающих устройств определяется безопасным расстоянием  тормозного 
пути  исполнительных механизмов
при их отключении.

Указатели грузоподъемности и наклона кранов

Стреловые башенные и краны на ходовом
устройстве, грузоподъемность, которых изменяется с изменением вылета,  снабжаются указателями грузоподъемности,
соответствующими установленному вылету.

Указатель грузоподъемности показывает  величину грузоподъемности в зависимости от вылета.
Устанавливается указатель в нижней части стрелового оборудования или в кабине в
поле зрения крановщика и позволяет визуально определить,  какой груз может быть поднят краном при
данном положении стрелы.

Указатель грузоподъемности установленный на
автомобильном кране КС-3574, состоит из таблички,  находящейся в кабине справа от машиниста,
тяги и указательной стрелки, поэтому при изменении наклона стрелы соответственно  будет 
изменяться и положение указательной стрелки, которая покажет допустимую
величину поднимаемого груза. Табличка (шкала) указателя градуируется на длину
стрелы в метрах с учетом допустимой для данных вылетов грузоподъемности в
тоннах. Стреловые краны на ходовом устройстве оснащаются указателями наклона
(креномерами), которые показывают 
величину наклона крана

по отношению к горизонту в градусах. Широкое распространение
получили маятниковые, шариковые, жидкостные и электромеханические креномеры.                                            

Принцип действия жидкостных указателей
основан на свойстве воздушного шарика сохранять крайнее верхнее  положение 
в жидкости, заключенной под 
сферической  крышкой.

На кранах с механическим приводом применяют
указатели наклона, принцип действия которых, основан  на свойстве свободно подвешенного маятника,
сохранять вертикальное положение в любом положении опорной рамы. Он представляет
собой стрелку, висящую на  упругой нити и
самоустанавливающуюся в пространстве по отвесу. Угол наклона крана определяется
по шкале. Электромеханический креномер  состоит
из датчика крена и панели сигнализации, которая устанавливается в кабине крановщика.

Датчик представляет собой сосуд,
заполненный маслом, в котором помещен пластмассовый маятник, подвешенный на
нити. К донышку маятника прикреплена катушка генератора. При наклоне крана на 3
градуса  наводится  электродвижущая сила в генераторе  и  подается  питание в электрическую цепь креномера, в
результате срабатывает реле, и на панели сигнализации одновременно  гаснет зеленая лампочка и загорается красная,
предупреждающая крановщика о превышении 
угла  наклона рана.

Ограничители грузоподъемности и средства защиты  кранов от перегрузки

Ограничители грузоподъемности
устанавливаются на стреловые краны на ходовом устройстве, башенные краны, а
также на другие грузоподъемные машины по требованию нормативной документации.
По конструктивному исполнению ограничители подразделяются на: механические,
электромеханические,  электронные  и микропроцессорные.

В соответствии с требованиями Правил,
стреловые краны оснащаются или переоснащаются на современные микропроцессорные
ограничители нагрузки кранов, обеспечивающих координатную защиту и регистрацию
параметров работы грузоподъемных машин.

Выполнение этого требования  реализовано 
в микропроцессорных моделях ограничителей нагрузки крана  типа ОНК-140.        

Ограничители серии ОНК-140 предназначены
для защиты стреловых кранов от перегрузки и опрокидывания. Ограничитель
имеет  совмещенный  дисплейный блок и пульт изменения режимов
работы крана, который позволяет 
производить выборку одной из заложенных в память программ грузовых
характеристик и воспроизводить ее в виде заградительной функции. Ограничитель
при введении ограничений в режиме координатной защиты обеспечивает защитное
крана при достижении заданных ограничений типа «стена», «потолок»,
«поворот вправо», «поворот влево». Фактическая масса
поднимаемого груза рассчитывается микропроцессором, исходя  из 
геометрии рабочего оборудования и усилия на штоке гидроциллиндра подъема
стрелы.

Ограничители оснащается блоком
телеметрической памяти, предназначенного для регистрации величины и
длительности статических и динамических 
нагрузок  крана  в течение всего срока службы, а также
регистрации  информации  о включениях механизмов крана,  текущих параметрах и длительности операций,
выполняемых краном в течение последних 4 часов работы.

Информация, считанная с блока
телеметрической памяти, может быть 
использована при анализе аварийных ситуаций,  так и при определении степени износа крана.

Средства сигнализации

Грузоподъемные краны, на которые
распространяются Правила, оснащаются различными сигнализаторами,
обеспечивающими их безопасную работу.

Анемометр — устанавливается на башенные, козловые и
портальные краны, требующих оборудования устройствами аварийной ветровой защиты
и измерения скорости ветра.

Анемометр состоит из измерительного пульта,
датчика скорости ветра, соединительного кабеля и кабеля питания. Датчик
устанавливается на  оголовке  башенного 
крана,  на  кронштейне. Принцип его работы основан на
преобразовании скорости ветра в электрический сигнал, передаваемый на
измерительный пульт. Измерительный пульт размещается в кабине  крановщика и информирует его, на цифровом
индикаторе, о превышении скорости ветра для 
данного типа крана. При достижении измеряемых параметров допустимых значений
для данного типа крана включается исполнительное устройство переключения цепей
сигнализации и управления противоаварийных устройств.

Стреловые самоходные краны кроме железнодорожных,
оснащаются автоматическими сигнализаторами опасного напряжения,

включающими звуковой сигнал оповещения в
случае приближения стрелы к находящимся 
под напряжением проводам ЛЭП. 
Принцип действия приборов основан на регистрации электрической составляющей
электромагнитного поля ЛЭП антенными 
датчиками емкостного типа.

Современные модели самоходных стреловых
кранов (кроме гусеничных) могут оснащаться устройствами  защиты крана от опасного напряжения типа
«БАРЬЕР-1А». Устройство состоит из антенного блока, блока
обработки  сигнала  и 
кабельной  линии связи. При
нахождении  крана в  охранной 
зоне ЛЭП на антенне наводится сигнал, 
который передается в блок преобразования для сравнения с предварительно
заданным  напряжением  ЛЭП

Про анемометры:  Измерение расхода воздуха с помощью анемометра

При достижении порогового значения
соответствующего диапазона линии электропередачи, включается сигнал  и мигающий световой.  При 
дальнейшем  приближении  к  линии
ЛЭП, уровень наведенного сигнала и, соответственно, частота возрастают, что
вызывает срабатывание (запрещение работы) ограничителя нагрузки  крана. Разрешение работы после останова крана
происходит в  случае  выполнения 
движений,  при которых величина  наведенного сигнала на антенне не возрастает,
а также после нажатия кнопки «Блокировка» на блоке управления.

На кранах типа КС-45719, КС-45721, МКАТ-16, МКАТ-20 и их
модификаций устанавливаются модули защиты от опасного напряжения (МЗОН). Эти
кранов оборудованы ограничителями нагрузки кранов модели «ОНК-140»,
позволяющими выполнять подключение выше названных приборов, и обеспечивать
выполнение запрещающих функций на отключение 
исполнительных  механизмов кранов,
при достижении опасного напряжения 
выше  заданных параметров.

Анемометр. виды и работа. применение и отличия. особенности

Измерение скорости движения воздуха может производиться в разных местах рабочего помещения в зависимости от целей исследования.

Для измерения скорости движения воздуха используют анемометры различных конструкций. Выбор типа анемометра определяется величиной измеряемой скорости движения воздуха.

Замер скорости движения воздуха проводят различными видами анемометров: крыльчатыми (скорость потока от 0,3 до 0,5 м/с), чашечными и индукционными (скорость в пределах 1–30 м/с), термоанемометрами и кататермометрами (скорость не больше 0,5 м/с). Термоанемометры позволяют измерять незначительные колебания потоков воздуха и температуры по объему помещения. Анемометры представлены на рисунке 2.4.

Для измерения интенсивности теплового излучения используют актинометры и радиометры.

Порядок определения скорости воздуха анемометром Чашечный анемометр воспринимает движение воздуха четырьмя полыми алюминиевыми полушариями, крыльчатый – колесом с пластинками, вращающимися под давлением потока воздуха. Это движение системой зубчатых колёс передаётся стрелкам, движущимся по градуированным циферблатам, по которым производится отсчёт. Измерение скорости движения воздуха производится следующим образом. Записав исходное положение стрелок на циферблатах (стрелки на нуль не ставятся), на маленьких циферблатах учитывают только целые деления, помещают прибор в поток воздуха. На приборе расположен: слева циферблат, показывающий сотни делений, справа – тысячи делений; полный оборот стрелки большого циферблата даёт 100 делений. Анемометр необходимо поместить в поток воздуха таким образом, чтобы ось вращения колеса была для крыльчатого анемометра параллельна, а для чашечного – перпендикулярна направлению потока воздуха. После преодоления чашечками или крылышками анемометра инерции прибора и приобретении ими максимальной скорости, поворотом рычажка, находящегося на боковой стороне прибора, включают стрелки, одновременно включая секундомер для отсчёта времени замера. Через 1 мин, не отводя прибор с места исследования, отключают стрелки прибора, одновременно отмечая время проведения замера (в секундах).

Пересчёт полученного числа оборотов в 1 с на скорость воздушного потока в м/с производится с помощью графиков, представленных на рисунках 2.5а и 2.5б, где по вертикальной оси отложено число оборотов 1 с, а по горизонтали – скорость воздушного потока в м/с.

Порядок определения скорости воздуха анемометром

Рис. 2.5. Графики определения скорости движения воздуха по анемометру:

а – чашечному; б – крыльчатому

Анемометры обладают большой инерцией и начинают работать при движении воздуха со скоростью около 0,5 м/с; давление, создаваемое потоком воздуха меньшей скорости, не в состоянии преодолеть сопротивление оси колеса с крылышками или чашек, поэтому для измерения малых скоростей движения воздуха в помещениях используются кататермометры и термоанемометры. Для определения суммарной охлаждающей способности воздушной среды, для замера малых скоростей движения воздуха (до 2 м/с) пользуются прибором, называемым кататермометром.

Шаровой кататермометр, показанный на рисунке 2.6, представляет собой спиртовой термометр с двумя резервуарами – шаровым внизу и цилиндрическим вверху со шкалой деления от 31 до 41 °С.

Порядок определения скорости воздуха анемометром Количество теплоты, теряемой кататермометром, при его охлаждении от 38 до 35 °С постоянно при всех условиях среды, а продолжительность охлаждения различна и зависит от взаимного действия всех метеорологических факторов.

Количество теплоты в милликалориях, теряемой с 1 см2 резервуара кататермометра, называется его фактором F, величина которого указывается на приборе.

Порядок определения скорости воздуха анемометром Разделив фактор на время (в секундах), в течение которого произошло охлаждение кататермометра от температуры 38 до 36 °С, получаем охлаждающую силу воздуха:

Порядок определения скорости воздуха анемометром

Скорость движения воздуха определяется по формулам, выбираемым в зависимости от величины ft. Величина Δt – это разность между средней температурой кататермометра (36,5 °С) и температурой окружающего воздуха.

Если Порядок определения скорости воздуха анемометром , то Порядок определения скорости воздуха анемометром (2.3)

Если Порядок определения скорости воздуха анемометром , то Порядок определения скорости воздуха анемометром (2.4)

Определение суммарной охлаждающей силы воздушной среды с помощью кататермометра производится следующим образом. Прибор погружают в воду, нагретую до 60–70 °С (но не более 80 °С во избежание закипания спирта в приборе и разрыва резервуара), держат его в воде до заполнения спиртом на 1/3 или 1/4 объёма верхнего расширения капилляра. Затем кататермометр вынимается из воды, тщательно вытирается и подвешивается в точке замера. Прибор охлаждается окружающим воздухом. При достижении столбиком спирта 38 °С включают секундомер и замеряют время охлаждения прибора (Т, с) на 3° (от 38 °С до 35 °С). Далее производятся расчёты.

Скорость движения воздуха менее 1 м/с также измеряется термоанемометрами. В основу работы термоанемометра положен принцип охлаждения датчика, находящегося в воздушном потоке и нагреваемого электрическим током.

Датчик представляет собой полупроводниковое микросопротивление. Питание прибора осуществляется либо от сети напряжением 220 В, либо от малогабаритных батареек напряжением 1,5 В.

Термоанемометром измеряют скорости движения воздуха от 0,03 до 5 м/с при температуре от 1 до 60 °С. С помощью термоанемометра можно измерить и температуру воздуха помещения, для чего производят соответствующее переключение прибора.

Изучение барометрического давления при исследовании метеорологических условий позволяет, с одной стороны, полнее учесть зависимость температуры и относительной влажности воздуха от барометрического давления (при повышении давления температура повышается), а с другой стороны, существенно влияние этого показателя на характерные эндотермические (испарение влаги) и экзотермические (конденсация пара) процессы, оказывающие большое влияние на метеорологический комфорт.

Барометр-анероид (рис. 2.7), предназначен для измерений атмосферного давления в пределах от 600–800 мм рт. ст.

Порядок определения скорости воздуха анемометром

Рис. 2.7. Барометр-анероид:

1 – корпус; 2 – анероид; 3 – стекло; 4 – шкала;

5 – металлическая пластина; 6 – стрелка; 7 – ось

Главная часть барометра-анероида – лёгкая, упругая, полая внутри металлическая коробка (анероид) 2 с гофрированной (волнистой) поверхностью. Воздух из коробочки откачан. Её стенки растягивает пружинящая металлическая пластина 5. К ней при помощи специального механизма прикреплена стрелка 6, которая насажена на ось 7. Конец стрелки передвигается по шкале 4, размеченной в мм рт. ст. Все детали барометра помещены внутрь корпуса 1, закрытого спереди стеклом 3.

Значение давления определяется как алгебраическая сумма отсчёта по шкале и поправок, которые указаны в паспорте прибора.

Интенсивность теплового излучения измеряют актинометрами различных конструкций, действие которых основано на поглощении лучистой энергии и превращении её втепловую, количество которой регистрируется различными способами.

Обеспечение требуемых нормами метеорологических условий и чистоты воздуха в рабочей и обслуживаемой зонах помещений устраивается системами вентиляции, кондиционированием воздуха и отоплением.

Вентиляцией называется организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения загрязнённого воздуха и подачу на место удалённого свежего чистого воздуха.

Промышленную вентиляцию применяют для технических и санитарно-гигиенических целей. Для технических целей её используют в различных технологических процессах, в санитарно-гигиенических целях вентиляцию применяют для создания нормальных условий труда путём правильного воздухообмена в производственных помещениях. Воздухообмен осуществляется путём удаления из помещения воздуха, не отвечающего требованиям санитарных норм, и подачи чистого свежего воздуха. В этом процессе количество удаляемого и подаваемого воздуха должно быть равно.

По способу перемещения воздуха различают два основных вида вентиляции: естественную и механическую.

Выбор системы вентиляции зависит от особенностей производственного процесса, типа здания, характера выделяющихся вредностей и необходимой кратности воздухообмена.

Вентиляцию называют естественной, если воздухообмен осуществляется путём использования естественного движения воздуха в результате теплового или ветрового напора. Тепловой напор создаётся в результате наличия разности температур или разности удельных весов внутреннего и наружного воздуха, а ветровой – движением наружного воздуха.

Естественную вентиляцию называют аэрацией, когда естественный воздухообмен организован, т.е. осуществляется путём регулирования притока и вытяжки, за счёт открытия форточек, стенных клапанов, фонарей.

На практике имеет место и неорганизованный способ естественной вентиляции (инфильтрация), т.е. когда воздухообмен осуществляется за счёт случайных отверстий и щелей в оконных и дверных проёмах, в стенах и перекрытиях зданий и возможен в помещениях, где необходим не более, чем однократный обмен воздуха в час.

При механической вентиляции воздухообмен достигается за счёт разности давлений, создаваемой вентилятором, который приводится в движение электромотором. Механическая вентиляция применяется в случаях, когда тепловыделения в цехе недостаточны для систематического использования аэрации, а также, если количество или токсичность выделяющихся в помещение вредных веществ требует поддержания постоянного воздухообмена независимо от внешних метеорологических условий.

При механической вентиляции воздух почти всегда подвергается предварительной обработке. В зимнее время приточный воздух подогревается, а в летнее – охлаждается. В необходимых случаях воздух увлажняется или осушается. Если удаляемый (подаваемый) механической вентиляцией воздух запылён или содержит в большом количестве вредные газы и пары, он подвергается очистке.

Вентиляционные системы по их назначению подразделяются на вентиляцию приточную, вытяжную и приточно-вытяжную, а также рабочую и аварийную.

В зависимости от места применения различают вентиляцию: общеобменную, предназначенную для обмена воздуха всего помещения, и местную, обеспечивающую приток или вытяжку воздуха непосредственно на рабочем месте, т.е. у мест выделения вредностей.

В тех помещениях, где возможно внезапное поступление токсических или взрывоопасных веществ, устраивается аварийная вытяжная вентиляция, включение которой производится автоматически от показаний газоанализаторов, настроенных на допустимую по санитарным и противопожарным требованиям концентрацию газов или паров.

Независимо от наличия искусственной вентиляции во всех помещениях необходимо предусматривать также устройство проёмов в ограждениях (форточки, фрамуги) для проветривания.

Механическая вентиляция может быть устроена таким образом, что в вентилируемом помещении поддерживаются постоянные, заранее заданные условия температуры, влажности, чистоты воздуха независимо от наружных условий и колебаний режима технологического процесса. Такая вентиляция называется кондиционированием воздуха.

Обычно кондиционированный воздух до поступления в помещение проходит тепловлажную обработку в установках, называемых кондиционерами, которые состоят из устройств нагрева воздуха – калориферов, устройств охлаждения воздуха – поверхностных или контактных воздухоохладителей, устройств осушения воздуха.

Воздух в калориферах получает тепло от оребрённых или гладких поверхностей трубок, по которым протекает теплоноситель – вода или пар.

В поверхностных воздухоохладителях воздух отдаёт тепло поверхностям трубок, по которым пропускается холодная вода или другой холодоноситель. В контактных охладителях происходит непосредственный контакт охлаждаемого воздуха с водой, обычно воздух проходит через дождевое пространство камеры орошения, в которой форсунками разбрызгивается охлаждённая вода. Осушение воздуха производится влагопоглощающими веществами: твёрдыми (силикатель), жидкими (растворы хлористого лития, хлористого кальция).

Количественно любой способ воздухообмена можно охарактеризовать кратностью воздухообмена, т.е. величиной, показывающей, сколько раз в единицу времени (в минуту, час) происходит полная смена всего объёма воздуха в помещении.

Требования безопасности, предъявляемые к системе вентиляции, изложены в ССБТ ГОСТ 12.4.021–75:

– вентиляторы вытяжных систем, обслуживающих помещения с производствами категорий А, Б должны быть выполнены из материалов, не вызывающих искрообразования;

Про анемометры:  ‎App Store: Анемометр - скорость ветра

– взрывоопасность и пожароопасность производственных помещений не должна увеличиваться применением вентиляционных систем;

– вентиляционные системы, обслуживающие помещения с производствами категорий А, Б, где возможно появление статического электричества, должны обеспечивать электростатическую безопасность и иметь заземление.

В помещениях с постоянным или длительным (более 24 часов) пребыванием людей следует предусматривать в холодный период года поддержание требуемых температур внутреннего воздуха путём подачи тепла системами отопления.

Системы отопления зданий должны удовлетворять следующим требованиям, т.е. обеспечивать:

– равномерный нагрев воздуха помещения в течение отопительного периода;

– безопасность в отношении пожара и взрывов;

– возможность регулирования;

– увязку с системами вентиляции;

– уровни звуковых давлений в пределах нормы;

– наименьшее загрязнение атмосферного воздуха.

Системы отопления разделяются на местные и центральные. В местных системах отопления теплогенератор (котёл), теплопроводы (трубы) и нагревательные приборы (батареи) объединены и находятся в отапливаемом помещении. В центральных системах отопления выработка тепла происходит в каком-либо центре (в котельной), а теплоноситель к нагревательным приборам, находящимся в отапливаемом помещении, подаётся по трубопроводам.

В зависимости от вида используемого теплоносителя отопление бывает водяное, паровое и воздушное.

Системы водяного отопления подразделяются:

– по принципу подводки теплоносителя к нагревательным приборам – на двухтрубные и однотрубные;

– на системы с естественным побуждением (циркуляцией) и искусственным побуждением – с применением циркуляционного насоса;

– на системы с верхней разводкой и системы с нижней разводкой.

Водяное отопление более безопасно (по отношению к паровому), т.к. температура нагревательных приборов не превышает 80–90 °С.

Системы парового отопления подразделяются на системы с верхней разводкой и системы с нижней разводкой. В паровых системах отопления водяной пар, конденсируясь в нагревательных приборах, выделяет скрытую теплоту парообразования. Это тепло передаётся в помещение через стенки нагревательного прибора, а конденсат по конденсатопроводу стекает снова в котел для повторного использования. Недостатки парового отопления: высокая температура нагревательных приборов, которая может привести к возгоранию легковоспламеняющихся веществ и пыли, и как следствие, к ожогам обслуживающего персонала.

Системы воздушного отопления могут быть отопительными, в которых осуществляется полная рециркуляция воздуха, и отопительно-вентиляционными – используемые свежий воздух. Воздушное отопление обладает следующими преимуществами: гигиеничностью, безопасностью, быстрым повышением температуры воздуха в помещении, исключением множества местных нагревательных приборов. Воздушное отопление целесообразно применять для отопления крупных производственных помещений.

Основой аттестации рабочих мест по условиям труда является соответствие параметров воздуха данным, приведённым в таблицах 2.6, 2.7, 2.8 и 2.9, характеризующим класс условий труда по показателям микроклимата для производственных помещений и открытых территорий в различные периоды года.

Таблица 2.6

§

Для производственных помещений

И открытых территорий в тёплый период года

Показатель Класс условий труда
Оптимальный Допусти-
мый
вредный 3 Опасный (экстре-мальный)
1 сте-пени
3.1
2 сте-пени 3.2 3 степени 3.3 4 степени 3.4
Температура воздуха, °С  
по СН
 
по СН
по показателю WBGT-индекса,
см. таблицу 2.9
Скорость движения воздуха, м/с  
-/-
 
-/-
 
-/-
Влажность
воздуха, %
 
-/-
 
-/-
 
-/-
Тепловое
излучение, Вт/м2
 
-/-
 
-/-
1201–1500 1501–2000 2501–2500 2501–
3500–
>3500
            

Таблица 2.7

Классы условий труда по показателям микроклимата

Для производственных помещений и открытых территорий

В холодный период года

Категория
работ
Общие энергозатраты, Вт/м2 Класс условий труда
оптимальный допустимый вредный 3 опасный (экстремальный) 4
I степени
3.1
2 степени
3.2
3 степени
3.3
4 степени
3.4
Температура воздуха, °С (нижняя граница)


II a
II б
III
58–77
78–97
98–129
130–160
161–193
по СН
-/-
-/-
-/-
-/-
по СН
-/-
-/-
-/-
-/-
18–20
17–19
14–16
13–15
12–14
16–18
15–17
12–14
11–13
10–12
14–16
13–15
10–12
9–11
8–10
12–14
11–13
8–10
7–9
6–8
 
Влажность
воздуха, %
-/- -/- Требования отсутствуют
Скорость движения воздуха, м/с  
-/-
 
-/-
При увеличении скорости движения
воздуха на 0,1 м/с от максимальной
по СН, температура воздуха должна быть увеличена на 0,2 ºС

Таблица 2.8

Классы условий труда по показателям микроклимата

Для открытых территорий в холодный период года (зима)

И в холодных помещениях

Показатель Класс условий труда
допустимый 2 Вредный (нижняя граница) опасный (экстремальный) 4
1 степень
3.1
2 степень
3.2
3 степень
3.3
4 степень
3.4
Температура
воздуха, °С
Климатические зоны
Ia
I
II
III
 
-30,0
-38,0
-23,0
-15,9
 
-36,0
-46,2
-29,4
-21,3
 
-38,5
-48,9
-31,5
-23,0
 
-40,8
-54,4
-35,7
-26,0
 
-60
-70
-48
-37
 
< -60
< -70
< -48
< -37

Таблица 2.9

Класс условий труда по показателю WBGT-индекса

Для производственных помещений

и открытых территорий в тёплый период года (°С)

Категория
работ
Общие энергозатраты,
Вт/м2
Класс условий труда
оптимальный допустимый вредный 3 опасный
(экстремальный)
1 степени 3.1 2 степени 3.2 3 степени 3.3 4 степени 3.4


IIа
IIб
III
68 (58–77)
88 (78–97)
113 (98–129)
145 (130–160)
177 (161–193)
21–23.4
20,2–22,8
19,2–21,9
1 8,2–20,9
17–18,9
23,5-25,4
22,9–15,8
22–25,1
21–23,9
19–21,8
25,5–26,6
25,9–26,1
25,2–25,5
24–24,2
21,9–22,2
26,7–27,4
26,2–26,9
25,6–26,2
24,3–25
22,3–23,4
27,5-28,6
27–27,9
26,3–27,3
25,1–26,4
23,5–25,7
28,7–31
28–30.3
27,4–29,9
26,5–29,1
25,8–27,9
>31,0
>30,3
>29,9
>29,1
>27,9

Порядок проведения работы

Задание 1

1. Получите у преподавателя наименование исследуемого производственного участка и план расположения рабочих мест.

2. Ознакомьтесь с теорией.

3. Изучите устройство и работу измерительных приборов, используемых для замеров параметров микроклимата.

4. Произведите замеры параметров микроклимата, для этого включите вентиляционную систему. С помощью крыльчатого и чашечного анемометров определите скорость движения воздуха. Результаты измерений занесите в таблицу 2.10.

Таблица 2.10

Результаты определения скорости движения воздуха

Анемометр Показания анемометра Время
измерения, с
Число
делений,
об/с
Скоростъ воздушного потока, м/с
начальные конечные разность показаний
Крыльчатый Чашечный            

5. Определить температуру воздуха по показанию «сухого» термометра аспирационного психрометра Ассмана.

6. Определить барометрическое давление в рабочем помещении, пользуясь барометром-анероидом.

7. Определить относительную влажность воздуха, предварительно смочив водой батист в резервуаре «мокрого» термометра и запустив вентилятор психрометра Ассмана. На четвёртой минуте после пуска вентилятора снять показания с обоих термометров:

– по формуле (2.1) определить абсолютную влажность, а затем по формуле (2.2) определить относительную влажность воздуха;

– по психрометрическому графику (рис. 2.3) и таблице 2.3 определить относительную влажность воздуха.

Результаты измерения температуры, барометрического давления и относительной влажности воздуха, определённых по формуле, с помощью психрометрической таблицы и графика, занести в таблицу 2.11.

Таблица 2.11

Результаты определения барометрического давления,

Температуры и относительной влажности воздуха

Барометрическое давление, Па (мм. рт. ст.) Показания
термометра, °С
Относительная влажность воздуха, %,
определённая по:
сухого мокрого формуле психрометрическому графику психрометрической таблице
           

8. На основании полученных измерений оценить класс условий труда согласно таблицам 2.6, 2.7, 2.8 и 2.9.

9. Составить план мероприятий по оздоровлению условий труда на рабочем месте.

10. Оценить предложенные мероприятия по оздоровлению условий труда на рабочем месте. Сделать окончательный вывод.

Задание 2

По результатам замеров параметров воздуха, полученных в задании 1, оценить возможность проведения работ (категорию), которым они удовлетворяют на указанном рабочем месте.

Оформление отчёта

Отчёт должен содержать:

– наименование работы;

– цель работы;

– краткое изложение сведений о микроклимате и параметрах воздушной среды на рабочих местах;

– таблицу с результатами определения скорости движения воздуха;

– математические расчёты по определению относительной влажности воздуха;

– таблицу с результатами определения барометрического давления, температуры и относительной влажности воздуха;

– результаты аттестации указанного рабочего места по условиям показателей микроклимата и перечень мероприятий и предложений по улучшению условий труда;

– выводы о возможности проведения работ по условиям фактических параметров микроклимата на указанном рабочем месте помещения лаборатории.

Контрольные вопросы

1. Рассказать о принципе и порядке аттестации рабочего места по условиям параметров макроклимата.

2. Как используются результаты аттестации рабочих мест по условиям труда?

3. Дайте определение микроклимата и укажите, какими нормативными документами установлены его параметры.

4. Что такое оптимальные, допустимые, вредные и опасные условия труда?

5. С учётом каких факторов осуществляется нормирование микроклимата помещения?

6. Как распределяются и что положено в основу классификации работ по степени тяжести?

7. Как классифицируются помещения по теплоизбыткам?

8. Что такое абсолютная, относительная и максимальная влажность воздуха?

9. Как определяется относительная влажность воздуха?

10. Какими приборами измеряются параметры макроклимата?

11. Назовите основные способы нормализации микроклимата (вентиляция, отопление, кондиционирование).

12. В каких случаях применяют общеобменную и местную вентиляцию?

Лабораторная работа 3

§

Воздух представляет собой достаточно постоянную по составу смесь газов: азота, кислорода, паров воды, углекислого и инертного газов. Однако в результате протекания технологических процессов воздух может загрязняться разнообразными парами, газами и пылями, что приводит к неблагоприятному воздействию на работающих. Химические вещества, которые в производственных условиях могут вызывать нарушение нормальной жизнедеятельности организма и быть причиной острых и хронических интоксикаций, называются промышленными ядами.

В производственных условиях промышленные яды находятся в различном агрегатном состоянии – в виде газа, пара, тумана, дыма. Выделение химических веществ в воздух производственных помещений может быть периодическим или постоянным. Уровень концентрации химических веществ в воздухе может изменяться в течение рабочего дня, а также в различные периоды месяца и года, что связано с изменением температурного режима и эффективностью воздухообмена в производственных помещениях.

Источниками выделения химических веществ на предприятиях являются сосуды с клеями, растворами и нитрокрасками, а также изделия, на которые они наносятся в обувном производстве, оборудование химчисток, использующее токсичные растворители (трихлорэтилен), промывочные ванны участков по ремонту холодильной техники, процесс приготовления реактивов. Ряд химических веществ, применяемых в производстве, обладает токсическими свойствами.

Проникая в организм человека, такие вещества, как окись углерода, сернистый газ, аммиак, формальдегид, ацетон, бензин, этилацетат вступают в химическое или физиологическое взаимодействие с тканями организма и вызывают острое или хроническое отравление. Острые отравления возникают быстро при наличии относительно высоких концентраций вредных газов и паров. Эти отравления встречаются, в основном, в аварийных ситуациях. Хронические отравления развиваются медленно в результате накопления в организме токсичных веществ (материальная кумуляция) или суммирования функциональных изменений, вызванных действием таких веществ (функциональная кумуляция).

Действие вредных химических веществ на организм человека обусловлено их физико-химическими свойствами. Согласно ГОСТ 12.1.007–76 группа химически опасных и вредных производственных факторов по характеру воздействия на организм человека подразделяется на следующие подгруппы: раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную функцию. Большинство промышленных вредных веществ обладает общетоксическим действием. К их числу можно отнести ароматические углеводороды и их амино- и нитропроизводные (бензол, толуол). Раздражающим действием обладают кислоты, щёлочи, а также хлор-, фтор-, серо- и азотсодержащие соединения (фосген, аммиак, оксиды серы, азот). Все эти вещества объединяет то, что при контакте с биологическими тканями они вызывают воспалительную реакцию, причём в первую очередь страдают органы дыхания, кожа и слизистые оболочки глаз.

Про анемометры:  АП-1М Анемометр электронный с 2-мя датчиками купить в Москве, цена от ООО СамараПрибор

К сенсибилизирующим относятся вещества, которые после относительно продолжительного действия на организм вызывают в нём повышенную чувствительность к этому веществу. Такими веществами являются некоторые соединения ртути, платина, альдегиды (формальдегид) и др.

Канцерогенные вещества, попадая в организм человека, вызывают развитие злокачественных опухолей. К их числу относят полициклические ароматические углеводороды (ПАУ), которые могут входить в состав сырой нефти, нефтепродуктов. Канцерогенными свойствами обладают ароматические амины, в основном являющиеся продуктами анилинокрасочной продукции.

Яды, обладающие мутагенной активностью, влияют на генетический аппарат зародышевых и соматических клеток организма, приводят к их гибели или к функциональным изменениям. Это может вызвать снижение общей сопротивляемости организма, раннее старение, а в некоторых случаях тяжелые заболевания. Мутационной активностью обладают этиламин, уретан, иприт. К веществам, влияющим на репродуктивную функцию (функцию воспроизведения потомства), относят бензол и его производные, сероуглерод, хлоропрен, свинец, сурьму, марганец, ядохимикаты, никотин, соединения ртути. По степени воздействия на организм человека все вредные вещества согласно ГОСТ 12.1.007–76 подразделяются на четыре класса: чрезвычайно опасные, высокоопасные, умеренно опасные и малоопасные.

Класс опасности вещества устанавливается в зависимости от предельно-допустимой концентрации его в воздухе рабочей зоны (мг/м3).

Вредные вещества могут проникать в организм человека через органы дыхания, желудочно-кишечный тракт, а также кожные покровы и слизистые оболочки. Попадающие в организм химические вещества приводят к нарушению здоровья лишь в том случае, если их количество в воздухе превышает определённую для каждого вещества величину. Поэтому для профилактики профессиональных заболеваний большое значение имеет установление предельно допустимых концентраций вредных веществ. Под предельно допустимой концентрацией вредных веществ в воздухе рабочей зоны понимают концентрацию, которая при ежедневной (кроме выходных дней) работе в течение 8 часов или при другой продолжительности (но не более 41 часа в неделю) во время всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдельные сроки жизни настоящих и последующих поколений.

Исследование воздушной среды на производстве производится согласно ГОСТ 12.1.005–88 «Воздух рабочей зоны. Общие санитарно-гигиенические требования».

Пробы воздуха отбираются на высоте рабочей зоны – 2 м от пола (что соответствует зоне дыхания) в непосредственной близости к месту работы. Для оценки распространения по цеху вредных веществ пробы воздуха отбирают также в нейтральных точках, т.е. на расстоянии 3–5 м и более от мест их образования. Загазованность определяют для оценки эффективности работ санитарно-технических устройств. Анализ проб воздуха чаще всего проводят калориметрическим или нефелометрическим методом с использованием фотоэлектрокалориметров (ФЭК-М, ФЭК-Н-56), при их отсутствии исследование проводят визуально.

Для оперативных санитарно-химических исследований зарекомендовали себя экспрессные методы химического анализа. Для этой цели используют переносные универсальные газоанализаторы УГ-1, УГ-2. К ним прилагаются наборы индикаторных трубок, реактивной бумаги, специальные растворы со стандартными шкалами. Измерение концентрации вредных веществ индикаторными трубками должно производиться в соответствии с ГОСТ 12.1.014–84.

Решающим направлением в профилактике профзаболеваний является полное исключение контакта работающих с вредными веществами с помощью комплексной механизации и автоматизации производственных процессов.

Большое значение имеет разработка новых технологических процессов, исключающих использование вредных веществ, замена вредных веществ менее вредными. Снижению поступления в воздух рабочих зон вредных веществ способствует хорошая герметизация оборудования, ведение процессов в вакууме, применение замкнутых технологических циклов, непрерывных технологических процессов, замена устаревшего оборудования более прогрессивным, своевременный и качественный ремонт оборудования.

Хороший эффект достигается при размещении производственного оборудования в специальных кабинах с устройством соответствующей вентиляции и выносом приборов управления и контроля в коридоры. Важное место в комплексе профилактических мероприятий занимают периодические и предварительные медицинские осмотры, профилактическое питание и соблюдение правил личной гигиены. При недостаточной эффективности коллективных средств защиты применяют средства индивидуальной защиты (СИЗ), которые подразделяются: на изолирующие постоянные средства защиты органов дыхания; специальную одежду; специальную обувь; средства защиты рук, головы, лица, глаз, органов слуха; предохранительные приспособления (ГОСТ 12.4.011–89).

Применяемые приборы

Интерферометр шахтный ШИ-11 представляет собой переносной прибор, предназначенный для определения содержания метана СН4 и углекислого газа СО2 в воздухе. Прибор может быть использован для определения содержания углекислого газа до 6 % с умножением показателей прибора на поправочный коэффициент 0,95 от градуировки шкалы по метану.

Действие прибора основано на измерении смещения интерференционной картины, проходящего вследствие изменения состава исследуемой пробы воздуха, который находится на пути одного из двух лучей, способных интерферировать.

Общая схема хода лучей в приборе следующая. Свет от лампочки параллельным пучком падает на зеркало, где разлагается на два интерферирующих пучка. Первый пучок проходит через полости газовоздушной камеры, заполненные чистым воздухом. Второй пучок проходит через полость, которая при установке «на нуль» также заполняется чистым воздухом, а при проведении анализа – исследуемым воздухом, содержащим углекислый газ.

Смещение интерференционной картины относительно её нулевого положения пропорционально разности между показателями преломления света исследуемой газовой смеси и атмосферного воздуха, которая, в свою очередь, пропорциональна процентному содержанию метана и углекислого газа.

Интерференционная картина имеет одну белую ахроматическую полосу, ограниченную двумя чёрными (тёмными) полосами (с окрашенными краями). Исходное (нулевое) положение интерференционной картины фиксируется путём совмещения левой чёрной (тёмной) полосы с нулевой отметкой неподвижной шкалы. Шкала прибора с равномерными делениями градуирована в процентах (по объёму) с ценой деления шкалы 0,2 % СН. Отметки шкалы через целые деления обозначены цифрами от 0 до 6.

Интерферометр шахтный типа ШИ-2 представляет собой плоскую литую силуменовую четырёхугольную коробку, закруглённую с одной стороны.

Общий вид прибора показан на рисунке 3.1.

Порядок определения скорости воздуха анемометром

Рис. 3.1. Интерферометр шахтный ШИ-2:

1 – штуцер; 2 – распределительный кран; 3 – окуляр; 4 – штуцер с фильтром; 5 – винт; 6 – кнопка для перемещения газовоздушной камеры; 7 – кнопка включения лампы

для измерения; 8 – крышка с поглотительным патроном

На корпусе прибора размещены:

– штуцер 1 для засасывания в прибор проверяемого воздуха;

– распределительный кран 2, закрытый резьбовым колпачком;

– окуляр 3, закрытый предохранительным колпачком на цепочке;

– штуцер с фильтром 4, на который подвешена трубка резиновой груши;

– винт 5, закрытый резьбовым колпачком с цепочкой, для перемещения интерференционной картины в поле зрения окуляра;

– кнопка «К» 6 для перемещения газовоздушной камеры в положение «К»;

– кнопка «И» 7 включения лампы для измерения;

– крышка отделения с поглотительным патроном 8;

– контроль (надписи «И» и «К») нанесены на крышках кнопок.

§

Производится проверка исправности резиновой груши. Для этого сжать грушу рукой и, зажав конец её резиновой трубки, которым она присоединяется к прибору, проследить, как быстро расправляется груша в разжатой руке. Груша пригодна для работы, если расправление происходит медленно.

Производится проверка герметичности газовой линии. Для этого резиновую трубку груши надеть на штуцер 4, закрыть плотно пальцем штуцер 1 и сжать грушу, если груша будет расправляться так же медленно, то газовая линия герметична. Производится установка прибора на нуль. Для этого необходимо продуть воздушную и газовую линии чистым атмосферным воздухом. Воздушная линия прибора уже продута. Газовая линия заполняется чистым воздухом так: надеть резиновую трубку груши на штуцер 4 и сжать грушу 5–10 раз. После этого нажать кнопку 5 и посмотреть в окуляр 3. В поле зрения появляется интерференционная картина. Интерференционная картина и шкала могут быть неясными. Улучшение резкости достигается вращением окуляра вправо и влево, в зависимости от остроты зрения наблюдателя. Установку прибора на «нуль» делать следующим образом: отвернуть резьбовой колпачок 6 и, наблюдая в окуляр 3 за положением интерференционной картины, медленно вращать маховичок вправо или влево, добиваясь совмещения середины левой чёрной полосы интерференционной картины с нулевой отметкой шкалы. После установки прибора на «нуль» маховичок закрывается резьбовым колпачком, и прибор готов к работе. Определение содержания метана и углекислого газа производится при нажатии на кнопку «Н».

Подготовить исследуемую смесь воздуха с CO2. Для этого взять волейбольную камеру и надуть её выдыхаемым воздухом, который, как известно, содержит 6–7 % СО2.

Определить концентрацию углекислого газа, для чего отвернуть и снять колпачок 2, и поставить в положение СО2, и произвести засасывание воздуха с углекислым газом из волейбольной камеры, сжимая грушу 5 раз. Затем нажать кнопку включения лампочки 5, посмотреть в окуляр 3 и определить, на сколько сместилась середина левой чёрной полосы интерференционной картины, цена деления шкалы 0,5 % СО2.

Перед определением содержания метана в воздухе произвести проверку нулевого положения интерференционной картины. Для этого надо нажать кнопку «И» и кнопку «К» одновременно и посмотреть в окуляр на положение интерференционной картины. Если интерференционная картина не сместилась относительно нулевой отметки шкалы, прибор готов к работе.

Если интерференционная картина сместилась относительно нулевой отметки шкалы, то винтом 5 выставить её на нуль. После указанных операций прибор готов к работе.

При определении содержания метана распределительный кран 2 поставить в положение «СН4». Резиновую трубку камеры, заполненную воздухом с содержанием метана, одеть на штуцер 1. Путём трёх сжатий резиновой груши, одетой на штуцер 4, прокачать пробу воздуха, если набранный в прибор воздух содержит метан, то интерференционная картина сместится вправо вдоль шкалы. При наблюдении в окуляр по смещённому положению левой чёрной полосы интерференционной картины произвести отсчёт делений шкалы и результат выразить с точностью до 0,1 %. Снять резиновую трубку камеры воздуха с метаном со штуцера 1 и закрыть её пробкой. Затем перевести объёмные проценты в мг/м и занести данные в таблицу 3.1.

Таблица 3.1

Результаты анализа концентрации газов в воздухе

Анализируемый газ Концентрация
(объёмная, %)
Концентрация
(мг/м3)
     

Перевод объёмных процентов в мг/м производится согласно табли-це 3.2.

Таблица 3.2

Перевод объёмных процентов в мг/м3

Концентрация (объёмная, %) Концентрация, мг/м
СО СО2 NO NO2
0,0005
0,0010
0,0020
0,0035
0,0050
0,0075
0,0100
0,0200
0,0350
0,0500
0,0750
0,1000
0,1500
0,2000
6,25
12,5

43,75
62,5
93,75

437,5

937,5

6,7
13,4
26,8
46,9

100,5

9,8
19,6
39,2
68,6
10,3
20,5

71,8
102,5
153,8

717,5

1537,5

Сравнить полученные значения концентраций газов с ПДК и сделать вывод.

Сумма содержаний газов (СН4 СО2) не должна превышать 6 % в объёмных долях. Полученный отсчет покажет суммарное содержание в воздухе метана и углекислого газа. Содержание углекислого газа равно разности второго и первого отсчётов. Для более точного определения концентрации СО2 необходимо показание прибора умножить на коэффи- циент 0,95.

Оформление отчёта

Отчёт должен содержать:

– наименование работы;

– цель работы;

– краткое изложение сведений о химическом загрязнении воздуха в рабочей зоне и его влияние на организм человека;

– замеры содержания метана и углекислого газа в воздухе по показаниям прибора;

– выводы о содержании вредных газов, сравнивая его с ПДК.

Контрольные вопрос

1. Что такое промышленные яды?

2. Что является источниками выделения химических веществ на предприятиях?

3. Основные причины, вызывающие профессиональные интоксикации, заболевания.

4. Что такое ПДК?

5. Коллективные средства защиты от вредных веществ на производстве.

6. Приборы, применяемые для анализа и для взятия проб воздуха.

Оцените статью
Анемометры
Добавить комментарий