Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше? Анемометр

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Про анемометры:  Как устранить утечку газа 🚩 как устранить течь котла 🚩 Квартира и дача 🚩 Другое

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений. Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки приточной вентиляции. Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность. Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ. Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.
Про анемометры:  Выбор анемометра: как сравнивать устройства перед покупкой – интернет-магазин ВсеИнструменты.ру

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Основными антропогенными источниками диоксида углерода являются:

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

Углекислый газ в организме человека

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед гипоксии – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых исследований, уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически снижается работоспособность, мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш эксперимент в школе показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от окислительного стресса, который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.

Несмотря на такое ничтожное процентное содержание диоксида углерода в атмосфере, он оказывает огромное влияние на климат планеты. Углекислый газ – один из парниковых газов. Он поглощает и удерживает инфракрасное излучение с поверхности Земли, что в конечном итоге способствует повышению температуры на планете. Этот процесс называется парниковым эффектом. Без парникового эффекта температура на земном шаре была бы примерно на 30°С ниже.

Атмосфера Венеры на 96,5% состоит из углекислого газа, и, по-видимому, тоже подвержена парниковому эффекту. Из-за него Венера является самой жаркой планетой Солнечной системы, она горячее даже ближайшего к Солнцу Меркурия. Температура на Венере около 464°С – этого хватит, чтобы расплавить свинец и олово.

Рост уровня СО2 в атмосфере Земли ведет к усилению парникового эффекта, а тот, в свою очередь – к необратимым изменениям климата. Уже сейчас можно наблюдать таяние ледников. Например, знаменитая снежная шапка Килиманджаро уменьшилась за последние 100 лет на 80%.

Заключение

Что и говорить, без углекислого газа наш мир был бы совершенно другим. Он участвует в важнейших химических, биологических, климатических и геологических процессах на Земле. И чем больше мы о них знаем, тем проще нам принимать важные решения: выбирать образ жизни и создавать свою среду – свой здоровый и комфортный микроклимат.

Содержание углекислого газа в атмосфере Земли перешагнуло отметку 400 ppm и не собирается останавливаться. Похоже, эта новость взволновала только ученых, хотя должна бы вызвать отклик в каждом. Рассказываем, почему.

Углекислый газ (СО2) в атмосфере Земли проходит путь, отдаленно напоминающий известный всем с детства круговорот воды в природе. Смысл его сводится к тому, что СО2 появляется в воздухе вследствие природных и техногенных процессов, а потом частью удаляется из атмосферы, а частью накапливается в ее верхних слоях и влияет на климат.

Распределение СО2 в атмосфере Земли

На протяжении многих веков вплоть до начала промышленной революции основными источниками образования СО2 служили естественные процессы: извержения вулканов, разложение органики, лесные пожары и дыхание животных. Но примерно с середины XVIII в. на содержание СО2 в воздухе начинает ощутимо влиять промышленная деятельность человека, в первую очередь те ее виды, которые связаны со сжиганием ископаемого топлива (нефть, уголь, сланцы, природный газ и др.) и производством цемента. На их долю приходится около 75% антропогенной эмиссии СО2. За остальные 25% ответственно землепользование, в частности, активное сведение лесов.

Удаление части СО2 из воздуха происходит за счет его растворения в океане и поглощения растениями. Впрочем, растения не только поглощают углекислый газ, но и выпускают его: в процессе дыхания они так же, как и люди, «вдыхают» кислород и «выдыхают» СО2. Так что углекислый газ присутствует в атмосфере всегда, вопрос только в том, каково его количество.

За последние десятилетия содержание СО2 возрастает стремительнее, чем когда-либо прежде за время документальной истории. В 1750 г. концентрация СО2 в атмосфере составляла около 270 ppm и только через двести с лишним лет, к 1958 г., «доползла» до отметки 320 ppm. Еще пятьдесят лет – и скачок на целых 60 пунктов: в 2005 г. содержание СО2 в атмосфере составило 380 ppm. В 2010 г. – уже 395 ppm. А недавно ученые сообщили, что содержание углекислого газа перевалило за 400 ppm и обратно в обозримом будущем не вернется. Похоже, пора переписывать энциклопедии.

Между прочим, в истории Земли бывали периоды с куда большим содержанием углекислого газа. Четыре миллиарда лет назад атмосфера нашей юной планеты содержала целых 90% СО2. Правда, жизнь тогда еще не зародилась: кислорода не было вообще. 2,5 миллиарда лет назад появились растения и все наладилось.

Нужно сказать, что отметка в 400 ppm преодолевалась и ранее. Содержание СО2 в атмосфере меняется в течение года, достигая максимума в мае. Так что весенне-летнее повышение концентрации углекислого газа не вызывало опасений ученых. В мае 2015 года даже в Антарктике уровень СО2 достиг 400 ppm, чего не случалось 4 миллиона лет! Но зато в сентябре традиционно наблюдается самое низкое в году содержание СО2 в атмосфере. Поэтому сентябрьское преодоление отметки 400 ppm как нельзя нагляднее свидетельствует о неконтролируемом росте количества углекислого газа в воздухе.

Что с нами будет в этом «новом четыреста-пипиэмовом мире», как успела окрестить нашу планету западная пресса? Можно ответить в двух словах: глобальное потепление.

Глобальное потепление началось уже давно, и оно напрямую связано с содержанием углекислого газа в атмосфере. Дело в том, что СО2 – не просто газ, а парниковый газ. СО2 чрезвычайно инертен, он неохотно вступает в реакции с другими химическими элементами. За счет этого он накапливается в атмосфере Земли, где удерживает тепловое излучение с ее поверхности и препятствует его возвращению в космическое пространство. В этом и заключается парниковый эффект.

Парниковый эффект настолько крепко связан в нашем сознании с глобальным потеплением, что обычно ассоциируется с чем-то негативным. А между тем, именно парниковому эффекту мы обязаны комфортной жизнью на Земле. Без парниковых газов (кроме СО2 к ним относятся водяной пар, метан и озон) средняя температура на планете составляла бы –15°С, а не +15°С, как сейчас.

Но неконтролируемое повышение содержания парниковых газов приводит к усилению парникового эффекта, а тот, в свою очередь, – к глобальному потеплению. О нем слышали все и нередко относятся к нему с иронией, а иногда и подозрением: уж не заговор ли это производителей экотоплива? Все дело в том, что мы как будто бы не видим никаких признаков глобального потепления в повседневной жизни.

В самом деле, глобальное потепление – процесс медленный. Гренландия не растает ни завтра, ни послезавтра, ни даже через сто лет. Не будет никакой гигантской волны, смывающей Нью-Йорк, как в фильмах-катастрофах. Его затопит постепенно: городу придется отступить под натиском поднимающегося океана. Маленькие тихоокеанские острова исчезнут с лица Земли (вернее сказать, моря). Влажные регионы станут еще более влажными, а засушливые – еще более сухими. В первых будут плодиться насекомые-переносчики заболеваний, во вторых начнется острая нехватка продовольствия и питьевой воды. Приток пресных ледниковых вод в океан изменит курс теплых и холодных течений, что грозит похолоданиями в Северном полушарии и ураганами по всей планете. Дальше можно не продолжать: даже если малая часть этих прогнозов сбудется, человечеству придется непросто.

А пока среднегодовая температура по миру уже третий год подряд бьет рекорды. 2016 год называют самым жарким за последние 150 лет. Ученые установили, что атмосфера Земли потеплела на 1,45°С по сравнению с доиндустриальным периодом. Цифра может показаться ничтожной, но этого более чем достаточно, чтобы растопить льды.

Таяние льдов (фотографии NASA)

Так что приходится констатировать, что мы живем в эпоху глобального потепления. За последние сто лет уровень моря поднялся на 20 см.

Между прочим, повышение уровня СО2 в помещении тоже опасно, но по-другому: содержание СО2 выше 800 ppm вызывает ощущение духоты и негативно влияет на самочувствие человека. К счастью, есть способ его понизить. А вот снизить количество углекислого газа в атмосфере можно только объединенными усилиями всего мирового сообщества.

Правда, пока попытки ООН сдерживать эмиссию СО2 не приносят ощутимых результатов. Киотский протокол, устанавливающий квоты на газовые выбросы, вызывает недовольство все большего числа участников, потому что ограничивает возможности интенсивного промышленного развития.

Существует, впрочем, и альтернативная версия происходящего: если бы не антропогенная эмиссия, содержание СО2 в атмосфере постепенно уменьшалось бы, вызывая похолодание на всей планете. Люди, сжигая топливо, якобы делают вклад в будущее, сдерживая наступление катастрофы. Однако эта теория выглядит не такой уж оптимистичной, если вспомнить, что, по оценкам ученых, запасов ископаемого топлива нам хватит всего на 150 лет. Судя по всему, человечеству предстоит в очередной раз угадать, какое из двух зол меньшее.

О проблеме превышения содержания углекислого газа в воздухе помещений говорят все чаще в последние 20 лет. Выходят новые исследования и публикуются новые данные. Поспевают ли за ними строительные нормы для зданий, в которых мы живем и работаем?

Самочувствие и работоспособность человека тесно связаны с качеством воздуха там, где он трудится и отдыхает. А качество воздуха можно определить по концентрации углекислого газа СО2.

Почему именно СО2?

  • Этот газ есть везде, где есть люди.
  • Концентрация углекислого газа в помещении напрямую зависит от процессов жизнедеятельности человека – ведь мы его выдыхаем.
  • Превышение уровня углекислого газа вредно для состояния организма человека, поэтому за ним необходимо следить.
  • Рост концентрации СО2 однозначно свидетельствует о проблемах с вентиляцией.
  • Чем хуже вентиляция, тем больше загрязнителей концентрируется в воздухе. Поэтому рост содержания углекислого газа в помещении – признак того, что качество воздуха снижается.

В последние годы в профессиональных сообществах врачей и проектировщиков зданий появляются предложения пересмотреть методику определения качества воздуха и расширить перечень измеряемых веществ. Но пока ничего нагляднее изменения уровня CO2 не нашли.

Как узнать, является ли приемлемым уровень углекислого газа в помещении? Специалисты предлагают перечни нормативов, причем для зданий разных назначений они будут различными.

Нормы углекислого газа в жилых помещениях

Проектировщики многоквартирных и частных домов берут за основу ГОСТ 30494-2011 под названием «Здания жилые и общественные. Параметры микроклимата в помещениях». Этот документ оптимальным для здоровья человека уровнем CO2 считает 800 — 1 000 ppm. Отметка на уровне 1 400 ppm – предел допустимого содержания углекислого газа в помещении. Если его больше, то качество воздуха считается низким.

Однако уже 1 000 ppm не признается вариантом нормы целым рядом исследований, посвященных зависимости состояния организма от уровня CO2. Их данные свидетельствует о том, что на отметке 1 000 ppm больше половины испытуемых ощущают последствия ухудшения микроклимата: учащение пульса, головную боль, усталость и, конечно, пресловутое «нечем дышать».

Физиологи нормальным уровнем CO2 считают 600 – 800 ppm.

Хотя некоторые единичные жалобы на духоту возможны и при указанной концентрации.

Выходит, что строительные нормативы уровня СО2 вступают в противоречие с выводами исследователей-физиологов. В последние годы именно со стороны последних все громче раздаются призывы обновить допустимые пределы, но пока дальше призывов дело не идет. Чем ниже норма СО2, на которую ориентируются строители, тем дешевле обходится устройство вентиляции. А расплачиваться за это приходится тем, кто вынужден решать проблему вентилирования квартиры самостоятельно.

Нормы углекислого газа в школах

Чем больше углекислого газа в воздухе, тем сложнее сосредоточиться и справиться с учебной нагрузкой. Зная об этом, власти США рекомендуют школам поддерживать уровень СО2 не выше 600 ppm. В России отметка чуть выше: уже упомянутый ГОСТ считает оптимальным для детских учреждений 800 ppm и менее. Однако на практике не только американский, но и российский рекомендуемый уровень – голубая мечта для большинства школ.

Один из наших экспериментов в школе показал: больше половины учебного времени количество углекислого газа в воздухе превышает 1 500 ppm, а иногда приближается к 2 500 ppm! В таких условиях невозможно сосредоточиться, способность к восприятию информации критически снижается. Другие вероятные симптомы переизбытка СО2: гипервентиляция, потливость, воспаление глаз, заложенность носа, затрудненное дыхание.

Почему так происходит? Кабинеты редко проветриваются, потому что открытое окно – это простывшие дети и шум с улицы. Даже если школьное здание оснащено мощной центральной вентиляцией, она, как правило, либо шумная, либо устаревшая. Зато окна в большинстве школ современные – пластиковые, герметичные, не пропускающие воздух. При численности класса 25 человек в кабинете площадью 50–60 м2 c закрытым окном углекислый газ в воздухе подскакивает на 800 ppm за каких-то полчаса.

Нормы углекислого газа в офисах

В офисах наблюдаются те же проблемы, что и в школах: повышенная концентрация СО2 мешает сосредоточиться. Ошибки множатся, и производительность труда падает.

Нормативы содержания углекислого газа в воздухе для офисов в целом те же, что для квартир и домов: приемлемым считается 800 – 1 400 ppm. Однако, как мы уже выяснили, уже 1 000 ppm доставляет дискомфорт каждому второму.

К сожалению, во многих офисах проблема никак не решается. Где-то просто ничего о ней не знают, где-то ее сознательно игнорирует руководство, а где-то – пытается решить при помощи кондиционера. Струя прохладного воздуха действительно создает кратковременную иллюзию комфорта, однако углекислый газ никуда не исчезает и продолжает делать свое «черное дело».

Может быть и так, что офисное помещение построено с соблюдением всех нормативов, но эксплуатируется с нарушениями. Например, плотность размещения сотрудников слишком велика. Согласно строительным правилам, на одного человека должно приходиться от 4 до 6,5 м2 площади. Если сотрудников больше, то и углекислый газ в воздухе накапливается быстрее.

Выводы и выходы

Проблема с вентиляцией наиболее остро стоит в квартирах, офисных зданиях и детских учреждениях. Тому есть две причины:

1. Расхождение между строительными нормативами и санитарно-гигиеническими рекомендациями.

Первые гласят: не выше 1 400 ppm CO2, вторые предупреждают: это слишком много.

2. Несоблюдение нормативов при возведении, реконструкции или эксплуатации здания.

Самый простой пример – установка пластиковых окон, которые не пропускают уличный воздух и усугубляют тем самым ситуацию с накоплением углекислого газа в помещении.

Какой бы ни была причина, выход один: нужно обеспечить постоянный приток свежего воздуха, который будет вытеснять CO2.

Нет необходимости перестраивать всю вентиляционную систему, достаточно будет компактной приточной вентиляции. Она, кстати, еще и очищает входящий воздух и подогревает его до комнатной температуры. Другими словами, повышает качество воздуха сразу по трем направлениям: уменьшение уровня углекислого газа, очистка и поддержание температурного режима.

  • Robertson, D. S. Health effects of increase in concentration of carbon dioxide in the atmosphere // Current Science, 2006. – Vol. 90. – Issue 12.
  • СП 44.13330.2011 Административные и бытовые здания.

Что значит эта новость? Неужели человечество прошло точку невозврата и негативные последствия глобального потепления теперь не остановить?

Чем опасен парниковый эффект?

Рекордный показатель CO₂ был зафиксирован в минувшую субботу специалистами обсерватории Национального управления США по исследованию океанов и атмосферы (NOAA). Он составил 415 частей на миллион, то есть в каждом кубометре воздуха присутствовало не менее 415 мл углекислого газа.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Согласно данным Института океанографии при Калифорнийском университете в Сан-Диего, до индустриальной революции содержание углекислоты в атмосфере никогда не превышало 300 частей на миллион. И только в 2013 году оно достигло 400 единиц. С тех пор этот показатель постоянно растёт, и, как подсчитали учёные, к началу следующего столетия концентрация CO₂ в воздухе может составить 1200-1300 частей на миллион.

«Действительно, человечество при таких концентрациях CO₂ раньше не жило, — говорит заместитель директора Института физики атмосферы им. А. М. Обухова РАН Владимир Семёнов. — До этого во время оледенений концентрация углекислого газа менялась в пределах 180-300 частей на миллион, и эти изменения происходили за десятки тысяч лет. А сейчас только за последние 50 лет содержание CO₂ выросло почти на 100 частей на миллион. Это беспрецедентный рост. Он в 100 раз более быстрый, чем за последние сотни тысяч лет. Связано это с воздействием человека на природу, в первую очередь — со сжиганием ископаемых углеводородов и уничтожением растений. Думаю, что дальше рекордные значения будут регулярно обновляться».

В наши дни любой школьник знает, что повышение содержания углекислого газа в атмосфере способствует возникновению парникового эффекта. Солнечные лучи нагревают поверхность Земли, а молекулы углекислого газа (и не только его, главным парниковым газом вообще считается водяной пар, а еще в эту группу входят метан, озон и оксид азота) задерживают тепло, не позволяя ему уходить в космос. Таким образом, температура нижних слоёв атмосферы увеличивается.

Учёные уверены, что дальнейший её рост приведёт к необратимым последствиям для экологии. Чтобы предотвратить их, в 2015 году в Париже было заключено соглашение между странами ООН, которое пришло на смену Киотскому протоколу, срок действия которого истечёт в 2020 году. Согласно Парижскому соглашению, страны-участники должны постепенно снижать выбросы парниковых газов от своих промышленных предприятий. И это приостановит процесс глобального потепления.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Будет как на Венере

О том, как это произойдёт, рассказывает российский физик Алексей Карнаухов, автор теории парниковой катастрофы: «Когда я только услышал о глобальном потеплении в начале девяностых годов, я решил с помощью уравнений описать связь между содержанием в воздухе CO₂ и температурой атмосферы Земли. Это было традиционное исследование, ни о какой катастрофе я тогда не думал. Но как только выстроил математическую модель, сразу ахнул: расчёты показывали, что при сохранении выбросов в атмосферу, которые были на тот момент, температура воздуха на Земле в ближайшие 200-300 лет может подняться на сотни градусов!»

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Карнаухов объясняет, что процесс потепления вызывает эффект лавины. Углекислый газ и метан начинают высвобождаться из природных хранилищ, — со дна океана, из земной коры, вечной мерзлоты — из-за этого будет становиться всё теплее и теплее. При таких темпах всего за пару столетий климатическая система Земли перейдёт в новое устойчивое состояние. И человеку здесь не будет места: температура воздуха поднимется до +500 °С. Похожие условия существуют на Венере, где углекислота занимает 97% атмосферы, а на поверхность планеты проливаются дожди из серной кислоты. Понятно, что для Homo sapiens такие параметры абсолютно не подходят: они скорее напоминают ад.

«Пока растения и биосфера Земли не справляются с теми выбросами, что производит человек, — обращает внимание Алексей Карнаухов. — Если температура здесь станет такой же, как на Венере, привычная нам жизнь попросту прекратится. На Земле тоже настанет ад».

Примерное время чтения: 2 минуты

Достигнут рекордный уровень углекислого газа в атмосфере. Что же дальше?

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

​Концентрация углекислого газа в атмосфере нашей планеты в 2020 году достигла нового максимума — 148%. Как сказал генеральный секретарь ООН Антониу Гутерреш на форуме «Петерсбергский климатический диалог» 6 мая, это самый высокий показатель за 3 миллиона лет.

При этом три миллиона лет назад температура на Земле была выше на 3°C, а уровень моря — на 15 метров. Научное сообщество установило допустимый предел потепления в сравнении с доиндустриальным периодом — 1,5°C. В 2020 году температура поднялась на опасно близкое значение — на 1,2°C.

Что будет дальше?

Согласно текущим расчетам, произведенным исследовательской организацией Climate Action Tracker, мы все еще движемся к катастрофическому повышению температуры на 2,4°C к концу века. «Мы стоим на краю пропасти», — предостерегает генсек ООН.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

По его мнению, чтобы избежать наихудших последствий нарушения климата, необходимо работать вместе и использовать восстановление после пандемии COVID-19, чтобы выйти на более чистый и «зеленый» путь.

К 2030 году необходимо сократить глобальные выбросы углекислого газа на 45% по сравнению с показателями 2010 года, чтобы к 2050 году достичь нулевых выбросов.

Что можно сделать?

По мнению Антониу Гутерреша, чтобы в итоге прийти к нулевому выбросу CO2 в атмосферу, необходимо:

  • к 2030 году прекратить использовать уголь в странах ОЭСР (Организация экономического сотрудничества и развития) и к 2040 году во всем мире;
  • перейти от загрязняющих веществ к возобновляемым источникам энергии с привлечением местных органов власти, профсоюзов и частного сектора (для поддержки затронутых сообществ и создания «зеленых» рабочих мест);
  • отказаться от крупной инфраструктуры, работающей на ископаемом топливе;
  • прекратить финансирование и субсидии ископаемого топлива;
  • назначить налог на углерод (выбросы) и перенести налогообложение с доходов на углерод;
  • обеспечить доступ малых островных развивающихся государств и наименее развитых стран к финансированию борьбы с изменением климата;
  • финансировать равно и смягчение последствий, и адаптацию;

Кроме того, напоминает генсек ООН, развитые страны должны выполнить свое давнее обещание ежегодно выделять 100 миллиардов долларов на борьбу с изменением климата в развивающихся странах. Он призывает лидеров «Большой семерки» взять на себя инициативу и стать примером для других государств.

Время на прочтение

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

В сентябре мы перешагнули красную черту: концентрация углекислого газа в атмосфере Земли повысилась до 400 частей на миллион. За 200 лет развития промышленности концентрация углекислого газа в атмосфере поднялась с 280 до 400 частей на миллион. Климатологи считают, что СО2 в атмосфере никогда не станет меньше.

Сейчас считается, что повышение уровня углекислого газа обусловлено деятельностью человека. Увеличение концентрации СО2 совпало с началом промышленной революции. С тех пор этот показатель только увеличивался, и в ближайшее время снижаться не собирается. Доказательством этому может служить то, что в сентябре в атмосфере Земли, обычно, минимальный уровень углекислого газа за год. Но в 2016 г. СО2 в сентябре не стало меньше.

Данные о концентрации углекислого газа в атмосфере Земли предоставляют несколько организаций. Главный центр мониторинга — это обсерватория Мауна-Лоа. Она расположена на южном склоне одноименной горы одного из Гавайских островов. Информация, получаемая сотрудниками обсерватории, используется в глобальном мониторинге состояния атмосферы и в анализе проблем, которые связаны с глобальным потеплением климата.

Причины отрицательной динамики могут быть разными. Например, обсерватория Мауна-Лоа в августе этого года зафиксировала падение СО2 ниже отметки в 400 частей на миллион. Объясняется это тем, что в августе в районе Гавайских островов прошел ураган, который и стал причиной снижения концентрации диоксида углерода. В целом же, как утверждают климатологи, мы уже живем в мире «400 частей на миллион», и в ближайшее время ситуация не изменится. Какие это может иметь последствия для человека?

Кэролин Снайдер (Carolyn Snyder) из Стэнфордского университета (США) провела работу по анализу температуры на Земле за период в два миллиона лет. В работе сравнивалась динамика температуры и изменение концентрации диоксида углерода в атмосфере. Как оказалось, климат Земли является еще более чувствительным к диоксиду углерода, чем считалось ранее. Снайдер утверждает, что в ближайшую тысячу лет температура поднимется сразу на несколько градусов. Свои выводы она изложила в статье, опубликованной в журнале Nature.

Для отслеживания динамики температуры на Земле за период времени в 2 млн лет Снайдер использовала специфическую методику, где требуется оценивать соотношение изотопов магния и кальция в осадочных породах. Этот метод возможно использовать только для оценки долгосрочных изменений параметров температуры на планете.

Как оказалось, последние пять тысяч лет стали наиболее теплыми за период времени в 120 000 лет. Правда, температурный пик пришелся как раз на первые 5000 лет указанного временного отрезка. Тогда среднегодовой показатель температуры был примерно на 3,5 °C выше, чем сейчас. Теплее на Земле было только 2 млн лет назад, когда средняя температура составляла около +16°C. Сейчас среднегодовая температура на Земле составляет +14°C. Снайдер построила шкалу зависимости температуры от концентрации углекислого газа. Если использовать метод, предложенный Кэролин Снайдер, получается, что при уровне СО2 в 560 частей на миллион среднегодовая температура должна подняться с +14°C до +23°C.

Повышение концентрации диоксида углерода за последние 200 лет с 280 до 400 частей на миллион должно повлечь за собой увеличение среднегодовой температуры на Земле примерено на +5°C. Пока что ученые говорят о разнице с доиндустриальным периодом всего на +1°C. Снайдер утверждает, что причина — в инерционности климата планеты. Спустя некоторое время температура будет повышаться. И даже, если концентрация СО2 останется на текущем уровне, через 1000 лет среднегодовая температура на Земле повысится на прогнозируемые +5°C.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Снайдер говорит, что постепенное повышение температуры повлияет на динамику течений Мирового океана. Эти течения, по словам ученой, управляют 100 000-летними колебаниями климата. Если человек «надавит» на климат слишком сильно, климатические циклы нашей планеты могут быть разорваны. Правда, предсказать, какое влияние окажет человек на течения в ближайшем обозримом будущем пока что нельзя.

Тема климата в научных исследованиях — одна из наиболее противоречивых в науке. У сторонников теории антропогенного глобального потепления (АГП) много противников. Несколько лет назад в сеть был выложен пакет документов, похищенный из отделения климатологии (Climatic Research Unit, CRU) университета Восточной Англии (University of East Anglia, UEA). Противники теории АГП утверждали, что утечка подтверждает предположение о том, что климатологи искажают результаты наблюдений с тем, чтобы подтвердить глобальное потепление. И хотя проверка участников «Климатгейта» показала их невиновность, сомнения в реальности глобального потепления у некоторых специалистов остались.

Как будет изменяться температурная динамика климата, а также меняться концентрация СО2 в атмосфере Земли пока сложно сказать. Об этом ученые и обыватели узнают только спустя некоторое время.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Геохимический цикл показывает количество углерода в атмосфере, гидросфере и геосфере Земли, а также годовой перенос углерода между ними (все указанные величины — в гигатоннах)

Несколько лет назад Россия присоединилась к Парижскому соглашению по изменению климата. И хотя цель документа благая, изложенная там методика расчета эмиссии и поглощения парниковых газов на бумаге превратила нашу страну в один из основных источников загрязнения. И это несмотря на огромные лесные территории, которые участвуют в поглощении, но в расчет не принимаются.

В основе этого поста — лекция кандидата биологических наук Ольги Нестеровой «Морские экосистемы и глобальные изменения климата», которая прошла в Точке кипения Дальневосточного федерального университета.

Исходные данные

Глобальные изменения климата во многом происходят из-за парниковых газов в атмосфере — их присутствие создает парниковый эффект. Основные парниковые газы для нашей планеты: CO2, метан, водяной пар и озон. Особый интерес представляет геохимический цикл углерода. Естественные экосистемы как на суше, так и в океане спроектированы таким образом, чтобы углерод находился в равновесии. Но это равновесие может смещаться.

Из-за смещения возникает парниковый эффект, который через несколько десятков лет приведет к тому, что изменится климат планеты, уровень вод океана поднимется на 5–8 метров и затопит части суши, где сейчас проживает чуть ли не 30% населения планеты.

В целом мировое сообщество пристально следит за бюджетом углерода. Этим занимается огромное количество международных организаций. Например, вот отчет про общепланетарный углеродный бюджет американской ассоциации U.S. Carbon Cycle Science Program, которая объединяет как государственные, так и частные организации и лаборатории.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Фрагмент отчета U.S. Carbon Cycle Science Program по обороту диоксида углерода за 2020 год

Как проблему начали решать в мире и что не так с Россией

В 1992 году в Рио-де-Жанейро приняли соглашение — Рамочную конвенцию ООН об изменении климата, в которой развитые страны условились действовать совместно в условиях изменения климата. Дальнейшие конференции определяли и уточняли эти действия.

В 1997 году приняли Киотский протокол, который содержал обязательства для стран по сокращению выбросов.

Наследие Киотского протокола — Парижское соглашение от 12 декабря 2015 года. Оно регулирует меры по снижению содержания углекислого газа в атмосфере с 2020 года. 175 стран-участниц, в том числе Россия, подписали документ 22 апреля 2016 года. Сегодня 197 стран — участники Парижского соглашения, из них 185 его ратифицировали.

Парижское соглашение не предусматривает механизма квот и в нем отсутствуют санкции для стран, не справляющихся с выполнением национальных вкладов. Но обязательства стран — участниц Парижского соглашения планируют обновлять каждые пять лет, начиная с 2022 года. Не исключен сценарий появления штрафов за эмиссию.

К сожалению, при подготовке Парижского соглашения Россия не занимала активную позицию в формировании методик расчета экологического налога и выработке доктрины, связанной с низкоуглеродными технологиями. На тот момент было не очевидно, что обсуждались стратегически важные вопросы. Но теперь они могут повлиять на мировую экономику и экологическую политику в целом.

Принятые документы декларируют, что методики прямого измерения выбросов парниковых газов не целесообразны. Вместо этого документы рекомендуют применять коэффициенты в зависимости от состава топливно-энергетического комплекса в каждой стране.

Такой подход приводит к тому, что Россия в принципе всем должна, поскольку у нас есть нефть и газ, которые мы продаем другим странам. А нефте- и газодобыча приводит к огромным выбросам метана из-за утечек и двуокиси углерода при сжигании попутного газа.

И никакие стратегии компенсации этих выбросов в Парижском соглашении и связанных с ним стандартах не предусмотрены.

Естественно, научное сообщество на такое положение вещей отреагировало довольно бурно. Владимир Павленко, доктор политических наук, автор монографий и публикаций по теме глобальной мировой политики, анализируя Киотский протокол, упоминал, что документ не очень выгоден для России.

По его мнению, положение «загрязнителя» может иметь последствия не только для страны в целом, но и для частного бизнеса. Многие зарубежные компании пишут на упаковке товаров, сколько углерода было выброшено в атмосферу во время производства. Уже разработаны стандартные методики расчета такого персонального углеродного следа.

Надо быть готовым к тому, что товары российского производства могут просто не взять на европейский или азиатский рынок, потому что они не маркированы как низкоуглеродные согласно общепринятой методике.

В идеале мы тоже должны перестраивать свою экономику на низкоуглеродную. Но при нынешнем технологическом укладе выбросы пропорциональны развитию. Страны используют нефть и газ для своих производственных мощностей. Чтобы развиваться, нужно выбрасывать — просто нельзя этого не делать. А если мы отказываемся от этого вида энергии, встает вопрос, в какой стране будет размещаться очередное энергоемкое производство? Скорее всего там, где по какой-то методике насчитали положительный углеродный баланс. При этом общая ситуация с выбросами для планеты не изменится.

Леса в расчет не принимают

По оценкам ряда авторитетных экспертов (например, из Института физики атмосферы), Россия — первая в ряду доноров с показателем превышения поглощения над выбросами в 4–5 раз. К донорам также относятся: Канада, Бразилия, Австралия, Новая Зеландия и Швеция. В то время как выбросы превышают поглощение у остальной Европы, США, Китая и Индии.

Как выглядит ситуация согласно Парижскому соглашению?

Парижское соглашение запрещает национальные методики подсчета и использует методику МГЭИК — межправительственной группы экспертов по изменению климата.

Климатическая доктрина предусматривает компенсацию выбросов только за счет поглощения управляемыми лесами. Это такие территории, где ведется полный учет рубок, не бывает пожаров, и идут постоянные мониторинговые исследования. Как оказалось, на территории России таких лесов почти нет.

В наших масштабах управлять огромными лесными территориями крайне сложно и затратно. А один из немногих участков — заповедный бассейн реки Бикин на Дальнем Востоке — сдан в аренду на 49 лет немецким компаниям вместе с поглотительным ресурсом. В отчетах о своей хозяйственной деятельности этот ресурс засчитывается Германии.

По методике МГЭИК реальный поглотительный ресурс в секторе лесного хозяйства — 600 млн тонн, а по оценке наших экспертов, например профессора Владимира Лукьяненко, — свыше 12 млрд тонн в год. Следуя методике, МГЭИК занижает этот ресурс в 20 раз!

Чтобы привести данные МГЭИК в соответствие с реальностью, нам необходимо вести мониторинг всех земель лесного фонда.

На правительственном уровне уже звучат предложения сделать все леса управляемыми. Это технически сложно, поскольку необходимо устанавливать вышки с газоанализаторами для учета состава атмосферы и потоков воздуха, а это не всегда возможно сделать на сложном рельефе. Плюс необходимо будет проводить наземную инвентаризацию запасов углерода и их динамику в фитомассе, аэрофотосъемку гиперспектральной камерой с помощью дронов и дистанционное зондирование земли с искусственных спутников.

В чем смысл и проблема подсчетов

Мы понимаем, что если правильно все посчитаем, сможем заработать на поглощении. Но сначала нужно доказать мировому сообществу, что мы поглощаем.

К сожалению, мы отстаем по этому направлению. В России темой эмиссии парниковых газов в первую очередь заинтересовались энергетики, поскольку им платить экологические налоги. Сейчас подтягивается научное сообщество. Но климатические исследования до́роги. Необходимо ставить оборудование, обрабатывать терабайты записанных данных.

Газоанализатор, подходящий для этой задачи, годами мониторит 26 климатических параметров одновременно, делая 800 измерений в минуту. Для решения таких задач у нас не хватает ни оборудования, ни вычислительных мощностей.

В итоге пока Россия с точки зрения понимания климатических моделей — белое пятно для мирового сообщества.

8 февраля этого года президент подписал указ о необходимости создать собственную климатическую доктрину (Указ о мерах по реализации государственной научно-технической политики в области экологии и климата). Первое, что следует сделать в рамках этой стратегии, — изучать климат и механизмы адаптации к его изменениям. Второе — научиться прогнозировать последствия изменения климата. В результате на базе научных образовательных учреждений и организаций должны появиться новые подразделения, которые будут заниматься этой темой.

Предстоит исследовать много новых междисциплинарных областей. Мы должны показать, что у нас есть планы по снижению выбросов парниковых газов. Необходимо увязать выбросы с поглощением и доказать свое донорство. Иначе как страна рано или поздно мы будем платить огромный экологический налог.

Например, если ставка за одну тонну CO2 будет на уровне 15 долларов, о чем сейчас говорят на международном уровне, то с России попросят 42 млрд долларов, что соответствует ~3% ВВП! А с 2035 года ставка может подняться до 35 долларов за тонну.

Углерод в океане

Сегодня речь в Парижском соглашении идет только о суше. Но океан обеспечивает общемировой сток углерода, его тоже надо учитывать при расчете экологических квот.

Океаны занимают бо́льшую часть поверхности нашей планеты и количество углерода в них намного больше, чем на поверхности суши.

Глобальные циклы углерода в мировом океане очень сложны. Углекислый газ производится живыми организмами, а также попадает в океан из атмосферы. Часть его возвращается в атмосферу, а другая вместе с останками организмов оседает на морском дне: депонируется в донные осадки.

Есть два основных процесса в глобальном круговороте углерода в океане — биологический и физико-химический насосы. Вместе они обеспечивают поглощение CO2 океаном из атмосферы в объеме около 9,7 Гт в год (2,6 Гт углерода в год).

Последние 50 лет этот углеродный поток увеличивался вслед за антропогенным повышением уровня CO2 в атмосфере.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Процессы, обеспечивающие сток углерода в океан

Биологический насос — терра инкогнита. Мы более или менее представляем, что происходит около поверхности океана. Но про океанские глубины известно гораздо меньше.

Лишь малая часть углерода, связанного в верхнем слое океана в результате жизнедеятельности фитопланктона, достигает глубин, где больше не участвует в обмене с атмосферой.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Биологический насос — основные процессы

CO2, полученный в ходе обмена с атмосферой (на схеме выше под цифрой 1), потребляется при росте фитопланктона (2). Зоопланктон питается фитопланктоном и дышит, снова выделяя углекислый газ (3). Фрагменты распада фитопланктона и фекальные пеллеты, формируемые зоопланктоном (4), содержат углерод, частицы которого оседают по отдельности или в скоплениях (5). Но лишь 5–50% общего углерода достигает глубины 100 метров (6). От 2 до 25% оседает между 100 и 500 метрами. Микробы разлагают оседающие частицы, часть из них потребляется зоопланктоном (7), поэтому предполагается, что только 1–15% исходного углерода из поверхностных вод опускается ниже 500 метров. При этом CO2, образовавшийся при окислении органического вещества (дыхании), рециркулирует обратно в поверхностные слои.

Что именно происходит в океанских глубинах, для нас загадка, которая может привлечь будущих исследователей. При этом объемы поглощения CO2 сушей и морем сопоставимы между собой даже с учетом неопределенности расчетов.

В рассчитанных бюджетах углерода мировой океан в первую очередь выполняет роль стока — в отличие от суши, которая является источником парниковых газов.

Важный факт — растворимость CO2 в морской воде возрастает с понижением температуры. В полярных областях CO2 интенсивно поглощается океаном, а в теплой экваториальной зоне он может выделяться в атмосферу. Поэтому холодные воды Арктики и высоких широт в целом содержат больше углекислого газа, чем воды низких широт. В этом смысле другим странам просто невыгодно учитывать эти углеродные циклы.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Концентрация CO2 в воде в зависимости от температуры на разных этапах развития производства

Значительное содержание CO2 есть и в придонных холодных водах на глубине ниже 4–4,5 тысяч метров, где происходит растворение известковых раковин.

В данный момент концентрация CO2 в атмосфере повысилась с доиндустриального уровня примерно на 40% (по данным на 2016 год). Около трети CO2, поступившего в атмосферу с начала промышленной революции при сжигании ископаемого топлива и древесины, а также при производстве цемента, уже поглощено океаном.

Таким образом, океан — общемировой сток, и его никак нельзя сбрасывать со счетов при оценке углеродного баланса.

Карбоновые полигоны

Как узнать количество и концентрацию парниковых газов в океане и на суше? Проще всего взять готовые климатические модели, ввести туда данные и получить некие бюджеты — расчеты парниковых газов для определенной территории. Но этого недостаточно. Необходимы реальные исследования.

В марте этого года министр науки и высшего образования Валерий Фальков объявил о запуске нового большого научно-образовательного проекта по созданию карбоновых полигонов.

Карбоновые полигоны — специальные территории, где разместят оборудование для сбора данных, на основе которых планируют разработать методики измерения потоков и баланса основных парниковых газов.

Сейчас выделено семь пилотных геостратегических регионов — Калининградская, Свердловская, Новосибирская, Тюменская и Сахалинская области, Чеченская Республика и Краснодарский край. Конкретные территории еще обсуждают, но в Свердловской области уже подобрали две площадки — около Коуровской обсерватории и учебно-опытного лесхоза Уральского лесотехнического университета недалеко от поселка Северка — и выделили на них 40 млн рублей. Там сейчас закупают оборудование и готовятся к исследованиям.

Кстати, один карбоновый полигон в России уже есть — в Калужской области в границах нацпарка «Угра».

Пока речь идет о создании только лесных полигонов, причем на территории управляемых лесов. Но необходимы и морские полигоны, чтобы собрать доказательные данные для учета вклада океана. Такая площадка должна включать в себя сеть наземных стационарных площадок по непрерывному измерению концентрации и потоков парниковых газов в комплексе с гидрометеорологическими и почвенными данными, а также судовые экспедиционные измерения тех же параметров.

Только так мы сможем доказать, что территория Дальнего Востока и арктических морей действительно поглощает огромное количество углекислого газа и метана.

Я надеюсь, что нам удастся получить документальные подтверждения и потом вынести это на обсуждение мирового сообщества для одобрения новых методик. К тому же мы тут не одиноки — буквально на днях пришли новости из Китая, который также взялся за океан и активное озеленение на суше. Но надо понимать, что все это долго и дорого.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Экспедиция ДВФУ вместе с Тихоокеанским океанологическим институтом, где установили оборудование, способное измерять эмиссию паров воды и метана, рассчитывая их концентрацию по ходу судна

Открываем цикл статей о том, чем дышат жители разных городов. Начали со столицы. Генеральный директор «Тион Умный микроклимат» Михаил Амелькин проехался по Москве с датчиком СО2 и лично проверил столичный воздух.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Почему СО2?

Подавляющее большинство специалистов в области вентиляции сходятся во мнении: углекислый газ является индикатором состояния воздуха (авторитетный пруф из АВОК). Много СО2 — значит, много и более вредных веществ (формальдегиды и прочая ядовитая органика, PM2.5 и т.д.). Это логично: ведь если вентиляция не справляется с воздухообменом, то в помещении накапливается и выдыхаемый нами СО2, и весь остальной «воздушный коктейль». Так что вполне резонно измерять концентрацию СО2 в воздухе, чтобы оценить качество этого самого воздуха.

Является ли углекислый газ таким же загрязнителем воздуха, как автомобильные выхлопы или промышленные выбросы? Исследования на эту тему противоречивы. Есть много статей про вред СО2 (пример раз, пример два). Меньше исследований, согласно которым углекислый газ практически безвреден, но и такие есть (пример). Если вам интересна эта тема, пишите в комментариях. В будущем мы можем сделать подробный литобзор о влиянии СО2 на здоровье человека.

Наше мнение — углекислый газ однозначно влияет на самочувствие человека (вялость, утомляемость, сонливость). Вспомните, как вы чувствуете себя в душном офисе или квартире с закрытыми окнами. Усредненное влияние СО2 на человека выглядит примерно так:

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Как измерить количество СО2 в воздухе?

Уровень углекислого газа в воздухе измеряется в ppm: 1 ppm = 0.0001%, то есть одна миллионная доля. Для России 1400 ppm углекислого газа в воздухе — это уже недопустимое количество (согласно ГОСТу 30494—2011). В Америке общие стандарты ASHRAE (американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха) гласят: жалобы на головную боль начинаются с 2000 ppm.

В среднем по больнице получается такая картина:

  • 300 ppm – норма на улице на природе
  • 500 ppm – норма на улице в современном городе
  • 700-1500 ppm – норма в помещении, причем ближе к 1500 ppm уже начинаются жалобы на духоту, головную боль, вялость и т.д.

Последнее из вступительной части — название использованного датчика СО2. Это был Testo 480.

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Все, заканчиваем с введением. Приступаем непосредственно к измерением. Слово Михаилу Амелькину.

Транспорт

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Трип начался с самолёта. Перелет Новосибирск-Москва, около 4 часов. Самолёт полный, аэробус А316. Весь полёт концентрация СО2 около 2000 ppm! Добавьте сюда слишком высокую температуру на борту (около 28°С) и пониженное давление (786 гПа против 1007 гПа на земле), и поймете, почему нас так «колбасит» после перелетов. Для сравнения, в аэропорту прилета около 700 ppm, то есть норма. На обратном пути летел в полупустом самолёте и ситуация была гораздо лучше – весь полёт до 1000 ppm, что приемлемо.

Далее был аэроэкспресс. Оказалось, что при полном вагоне вентиляция тоже не справляется – более 1800 ppm! А вот на пути обратно вагон был пустой и вентиляция справлялась – около 500 ppm.

В метро все гораздо лучше. На самой станции под землёй 600 ppm. В старых, «дырявых» вагонах около 700 ppm. Вот в новых вагонах метро, где кондиционеры гоняют воздух по кругу, уже хуже – при неполной загрузке 1200 ppm. В набитом вагоне следует ожидать больше 2000 ppm. Но здесь стоит иметь в виду, что обычно в таких вагонах мы проводим мало времени, 10-20 минут, так что это не очень критично.

Улица

Сделал замер прямо на Красной Площади. Уровень около 450 ppm. Это выше, чем за городом, что, скорее всего, объясняется обилием транспорта, котельных и промышленности, которые активно выделяют в воздух СО2, создавая над городом «пузырь» углекислого газа. Но это не страшно. Пока.

Дом и отель

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Мне повезло, и в моём номере всю ночь концентрация СО2 была меньше 600 ppm. Отлично! Я спал не в духоте. Это потому, что попросил номер с окном во двор и смог держать окно на микропроветривании, не просыпаясь от шума машин. Но вентиляции в номере нет, поэтому плата за свежий воздух тоже не малая — московский смог. Была бы вентиляшка с профессиональными фильтрами — было бы на пятерочку!

Надо сказать, что замеры в квартирах с закрытыми окнами часто показывают очень плохие результаты, пара человек в комнате запросто могут «надышать» 2000 ppm минут за 40-60. А окна обычно закрыты, чтобы не было сквозняков и шума с улицы. Вывод тот же, что и в случае с отелем – дома вентиляция must have. При этом проще и дешевле поставить компактные бризеры, чем заморачиваться с полноценной вентиляцией.

Рестораны и кинотеатры

Атмосфера имеет рекордное содержание углекислого газа. Что будет дальше?

Тут картина сильно разная, но одно очевидно (кто-то скажет, что это ясно и без приборов) – любят наши рестораторы экономить на вентиляшке! Например, у меня была деловая встреча в кофейне «Хлеб насущный» на Никольской. Место хорошее, но вот с воздухом беда – 2000 ppm! В такой атмосфере очень сложно думать и решать деловые вопросы. В «Чайхоне №1» на Пушкинской было чуть лучше, до 1500 ppm.

Но есть и хорошие места: в «Старбакс» на Площади революции и в «Пять звёзд» на Павелецкой 700 ppm и 800 ppm соответственно. А вот в самом кинозале этого замечательного кинотеатра было «не айс» — до 1500 ppm весь сеанс. При этом администрация не поскупилась на кондиционеры – в залах было прохладно и это «скрашивало» ситуацию. Но кондеи не заменяют вентиляцию! Температура – температурой, а кислород – кислородом, должно быть и то, и другое.

Пока это вся информация по Москве. Обязуюсь сделать обзорный трип в Новосибирске. Что можно сказать по итогу?

Оцените статью
Анемометры