Что относится к автоматизированным системам управления

Что относится к автоматизированным системам управления Анемометр
Содержание
  1. Общие понятия автоматизированной системы
  2. Классификация автоматизированных систем
  3. Категории автоматизированных систем
  4. Типы автоматизированных систем
  5. Автоматизированные информационные системы
  6. Классификация по степени автоматизации
  7. Уровни автоматизированных систем
  8. Выводы
  9. Преимущества использования компьютерных систем для анализа данных
  10. Защита информационных баз данных
  11. Принципы и понятия АСОД
  12. Интеграция информации
  13. Задачи интеграции
  14. Классификация систем интеграции
  15. Современные методы передачи данных для обработки
  16. Способы защиты передаваемых данных
  17. Сжатие информации
  18. Управление информацией
  19. Управление внутренними бизнес-процессами
  20. Управление информационными ресурсами
  21. Программы для обработки информации
  22. Текстовые редакторы
  23. Графические редакторы
  24. Растровые
  25. Векторные
  26. Гибридные
  27. Системы управления базами данных (СУБД)
  28. Программы 1С
  29. Промышленное программирование, или Пара слов об АСУ ТП
  30. Верхний уровень
  31. Средний уровень

Общие понятия автоматизированной системы

Автоматизированная система, сокращенно АС – это система, в состав которой входит объект управления и управляющие системы, некоторые функции в таких системах отведены выполнению человеком. АС – это организационно-техническая система, которая гарантирует выработку решений, основанных на автоматизации информационных процессов во всевозможных отраслях деятельности (производство, управление, проектирование, экономика).

Все функции автоматизированных систем направлены на достижения определенной цели посредством определенных действий и мероприятий. Основополагающая цель АС – наиболее эффективное использование возможностей и функций объекта управления.

Выделяют следующие цели:

  • Обеспечение релевантных данных, необходимых для принятия решения.
  • Более быстрый и качественных сбор информации и ее обработке.
  • Уменьшение числа решений, которые обязано принимать лицо, принимающее решения (ЛПР).
  • Увеличение контроля и дисциплинарного уровня.
  • Оперативное управление.
  • Уменьшение затрат ЛПР на реализацию процессов.
  • Четко обоснованные принимаемые решения.

Классификация автоматизированных систем

Основные выделяемые признаки, по которым осуществляется классификация автоматизированных систем:

  • Сфера, в которой функционирует объект управления: строительство, промышленность, непромышленная сфера, сельское хозяйство.
  • Вид рабочего процесса: организационный, экономический, промышленный.
  • Уровень в системе государственного управления.

Категории автоматизированных систем

Классификация структур автоматизированных систем в промышленной сфере разделяется на такие категории:

Децентрализованная структура. Система с данной структурой применяется для автоматизации независимых объектов управления и является наиболее эффективной для этих целей. В системе имеется комплекс независимых друг от друга систем с индивидуальным набором алгоритмов и информации. Каждое выполняемое действие осуществляется исключительно для своего объекта управления.

Централизованная структура. Реализует все необходимые процессы управления в единой системе, осуществляющей сбор и структурирование информации об объектах управления. На основании полученной информации, система делает выводы и принимает соответствующее решение, которое направлено на достижение первоначальной цели.

Централизованная рассредоточенная структура. Структура функционирует по принципам централизованного способа управления. На каждый объект управления вырабатываются управляющие воздействия на основании данных обо всех объектах. Некоторые устройства могут быть общими для каналов.

Алгоритм управления основывается на комплексе общих алгоритмов управления, реализующиеся с помощью набора связанных объектов управления. При работе каждый орган управления принимает и обрабатывает данные, а также передает управляющие сигналы на объекты. Достоинством структуры является не столь строгие требования относительно производительности центров обработки и управления, не причиняя ущерба процессу управления.

Иерархическая структура. В связи с возрастанием количества поставленных задач в управлении сложными системами значительно усложняются и отрабатывающиеся алгоритмы. В результате чего появляется необходимость создания иерархической структуры. Подобное формирование значительно уменьшает трудности по управлению каждым объектом, однако, требуется согласовать принимаемые ими решения.

Типы автоматизированных систем

В зависимости от выполняемых функций АИС различают следующие типы автоматизированных систем:

  • АСУП – системы управления предприятием.
  • АСУТП – системы управления технологическими процессами.
  • АСУПП – системы подготовки производства.
  • ОАСУ – отраслевые системы управления.
  • организационно-административные.
  • АСК – системы контроля качества продукции.
  • ГПС- гибкие производственные системы.
  • ЧПУ – системы управления станками с числовым программным обеспечением.
  • группы систем или интегрированные системы.

Автоматизированные информационные системы

Автоматизированная информационная система – это комплекс аппаратных и программных средств, необходимых для реализации функций хранения данных и управления ими, а также для вычислительных операций.

Главная цель АИС – это хранение данных, обеспечение качественного поиска и передачи данных в зависимости от запросов для наибольшего соответствия запросов пользователей.

Выделяют наиболее важные принципы автоматизации процессов:

  • надежность;
  • окупаемость;
  • гибкость;
  • безопасность;
  • соответствие стандартам;
  • дружественность.

Классификация автоматизированных информационных систем имеет следующую структуру:

  • Система, охватывающая один процесс в организации.
  • Осуществляется несколько процессов с организации.
  • Нормальная работа одного процесса сразу в нескольких взаимосвязанных организациях.
  • Система, организующая функционирование нескольких процессов в нескольких взаимосвязанных системах.

Классификация по степени автоматизации

Информационные системы классифицируются также по степени автоматизации проводимых операций:

  • ручные;
  • автоматизированные;
  • автоматические.

Ручные – в них отсутствуют современные средства для обработки информации, и все операции осуществляются человеком в ручном режиме.

Автоматические – абсолютно все операции по обработке информации осуществляются с применением технических средств без участия человека.

Автоматизированные информационные системы производят операции как с помощью технических средств, так и с помощью человека, однако, основная роль передается компьютеру. ИС классифицируются по степени автоматизации, а также по сфере применения и характеру деятельности.

Уровни автоматизированных систем

Выделяют три уровня автоматизированных систем управления:

Нижний уровень. Оборудование. На этом уровне внимание отводится датчикам, измерительным и исполнительным устройствам. Здесь производится согласование сигналов с входами устройств и команд с исполнительными устройствами.

Средний уровень. Уровень контроллеров. Контроллеры получают данные с измерительного оборудования, а после передает сигналы для команд управления, в зависимости от запрограммированного алгоритма.

Верхний уровень – промышленных серверов и диспетчерских станций. Здесь осуществляется контроль производства. Для этого обеспечивается связь с низшими уровнями, сбор информации и мониторинг протекания технологического процесса. Этот уровень взаимодействует с человеком. Человек здесь производит контроль оборудования с помощью человеко-машинного интерфейса: графические панели, мониторы. Контроль за системой машин обеспечивает SCADA система, которая устанавливается на диспетчерские компьютеры. Данная программа собирает информацию, архивирует ее и визуализирует. Программа самостоятельно сравнивает полученные данные с заданными показателями, а в случае несоответствия проводит оповещение человека-оператора об ошибке. Программа производит запись всех операций, в том числе и действия оператора, которые необходимы в случае нештатной ситуации. Так обеспечивается контроль ответственности оператора.

Существуют также критичные автоматизированные системы. Это системы, которые реализуют различные информационные процессы в критичных системах управления. Критичность представляет собой вероятную опасность нарушения их стабильности, а отказ системы чреват значительными экономическими, политическими или другими ущербами.

Что же относится к критичным автоматизированным процессам? К критичным относят следующие системы управления: опасными производствами, объектами атомной отрасли, управления космическими полетами, железнодорожным движением, воздушным движением, управление в военных и политических сферах. Почему они критичны? Потому что решаемые ими задачи имеют критичный характер: использование информации с ограниченным доступом, использование биологических и электронных средств обработки информации, сложность технологических процессов. Следовательно, информационные автоматизированные системы становятся элементом критичных систем управления и в результате этого, получили принадлежность к этому классу.

Выводы

Подводя итоги, можно отметить важность автоматизации систем управления в различных сферах. На сегодняшний день внедрение подобных систем обеспечивает более качественное управление производством, сводя к минимуму участие человека в этих процессах и исключая тем самым, ошибки, связанные с человеческим фактором. Развитие и разработка автоматизированных систем управления дает возможность улучшать многие сферы: производство, экономику, энергетику, транспортную сферу и другие.

Про анемометры:  Датчики температуры показаны для Beckhoff и EasyHomePLC

Преимущества использования компьютерных систем для анализа данных

Стратегия развития фирмы напрямую связана со сбором и анализом данных, поступающих от внешних и внутренних источников. Внедрение автоматизированных систем управления (кратко АСУ) в производство для интеграции необходимой информации имеет ряд преимуществ:

  • уменьшается количество работников, что приводит к снижению издержек на заработную плату (ключевой признак);
  • при изменении каких-либо отдельных параметров в уже готовой отчетности новые значения пересчитываются в кратчайшие сроки;
  • при исследовании конкурентов, срезов рынка и внутренних бизнес-процессов компьютеризованные системы формируют единую базу данных с возможностью сортировать информацию по-разному для последующего сравнительного анализа по выбранным параметрам;
  • максимальная оперативность анализа.

Формализованные базы данных, образующиеся в результате автоматического сбора информации, включают в себя:

  • классификацию содержащихся объектов в соответствии с официально утвержденными классификаторами;
  • шаблонное описание параметров;
  • идентификацию каждого объекта на основании его уникальных характеристик;
  • кодирование и прочие средства безопасности для защиты информации.

Защита информационных баз данных

Защищенность от несанкционированного доступа в автоматизированную систему определяется следующей нормативной документацией:

  • ISO/IEC 15408 – стандарт международного уровня;
  • ГОСТ 15408-2002 – в России.

Безопасность любой базы данных основывается на трех параметрах:

  • конфиденциальность;
  • доступность;
  • целостность.

Важно! Большинству систем автоматизированной информационной обработки подходит модель, при которой происходит постоянная гонка средств защиты баз и новых угроз.

Иными словами, новая мера безопасности устанавливается после взлома предыдущей защитной системы. Но подобная схема неприемлема для структур критического применения:

  • военная отрасль;
  • экологически опасные производства;
  • транспортные объекты;
  • финансово-кредитные системы и т. д.

Ведь нарушение их работоспособности из-за несанкционированного взлома нанесет ощутимый урон не только представителям отдельных специальностей, но и обществу в целом, поэтому используемые для этих отраслей автоматизированные системы обработки данных (АСОД) отличаются приоритетом безопасности над функциональностью. Поэтому для них характерно применение проверенных технологий, уже опробованных в иных отраслях бизнеса и производства.

Принципы и понятия АСОД

Автоматизированные системы сбора и обработки информации (АСОИ), как правило, базируются на следующих принципах:

  • интеграция информации в режиме реального времени с условием совместной работы всех возможных пользователей;
  • распределение данных по современным каналам передачи с использованием современных коммуникационных методов;
  • применение различных управленческих техник;
  • моделирование рабочей ситуации в режиме изменяемых сведений (функция позволяет автоматизировать процессы онлайн);
  • учет особенностей анализируемой информации.

Также они включают в себя автоматизированные системы в делопроизводстве, о чем говорилось в предыдущей статье.

Интеграция информации

Использование средств комплексной автоматизации позволяет усовершенствовать интеграцию данных, расположенных в различных источниках, в единые базы для обработки. Особенно этот процесс актуален в тех случаях, когда необходимо на какой-то период синхронизировать работу двух производств или целых предприятий.

Задачи интеграции

К задачам создаваемого интеграционного комплекса традиционно относятся:

  • разработка системной архитектуры;
  • создание пользовательского интерфейса;
  • конструирование отображения информации в зависимости от используемых источников данных;
  • корректировка неоднородности поступающих сведений.

Классификация систем интеграции

В зависимости от особенностей обрабатываемой информации могут применяться различные интеграционные методы:

  • консолидация, при которой сведения из различных источников размещаются в единую базу данных, но из нее никуда больше не распространяются;
  • федерализация, при которой не происходит физического перемещения информации, а каждый пользователь системы может получить к ним доступ при формировании запроса (к примеру, интеграция корпоративной информации);
  • распространение данных в реальном времени, в рамках которого осуществляется двухсторонняя передача информации;
  • архитектура SOA (сервисно-ориентированная), благодаря которой данные остаются в источнике, их положение остается зашифрованным, а запрашивающему информацию пользователю они выдаются в виде специальной сервисной выборки;
  • гибридная или облачная интеграция, позволяющая легко коммутировать приложения, данные и процессы на предприятии с помощью поддержки API.

Современные методы передачи данных для обработки

Одними из ключевых характеристик каналов связи являются:

  • пропускная способность;
  • защищенность от помех.

Помехи связи в системе могут возникать из-за:

  • целенаправленных атак конкурентов;
  • атмосферных причин;
  • возникновения сбоя в работе сети и т. д.

Способы защиты передаваемых данных

Чтобы защитить каналы от подобных неполадок предприятия используют аналоговые и цифровые фильтры для сбора информации, а также специальные методики передачи сообщений (помимо стандартного двоичного кода):

  • кодирование с помощью добавления дополнительных символов, которые помогают контролировать целостность сообщения, но не искажают его смысл;
  • асимметричное шифрование информации, при котором используется сразу два ключа доступа, что защищает сеть от взлома;
  • стенография, скрывающая сам факт кодирования (т. е. в сообщение вставляются картинки, видео и т. д.), при этом сведения скрыты в пикселях изображения (появление исходной информации возможно только при действии специального декодера).

Сжатие информации

В результате повсеместной автоматизации и развития промышленных информационных систем появляется необходимость собирать и обрабатывать большие объемы данных в реальном времени. Одним из ключевых способов повышения эффективности от использования коммуникационных ресурсов предприятия является метод уменьшения избыточности. Благодаря ему большие информационные объемы могут сжиматься и свободно передаваться по существующим системам связи.

К плюсам использования методов повышенной защиты (помимо экономической выгоды) относятся:

  • разгрузка каналов передач и программ для обработки информации;
  • исключение дублирующих сообщений;
  • повышение пропускной способности коммуникационных систем;
  • увеличение емкости запоминающего оборудования.

Управление информацией

Автоматизированные системы обработки и управления (АСОИУ, АСОИИУ или АСУП) информацией позволяют вести учет основных факторов производства (труд, ресурсы, капитал) и получать максимальную финансовую выгоду от их эксплуатации.

Управление внутренними бизнес-процессами

В рамках этой системы все бизнес-процессы организации рассматриваются в виде определенных ресурсных составляющих. Для эффективной работы используются следующие действия:

  • камеральное моделирование;
  • использование специального программного обеспечения, позволяющая механизировать все подразделения;
  • перестройка бизнес-процессов в режиме реального времени силами обычных участников системы.

Управление информационными ресурсами

Важно! Методы информационного управления используются для сбора, накопления, сортировки, хранения, управления и доставки сведений внутри одного предприятия.

Они идеально подходят для структурирования разрозненной технической и прочей информации:

  • рисунков;
  • графиков;
  • документов Word и Excel;
  • файлов PDF;
  • сканов;
  • видео и т. д.

Благодаря современным программам автоматики и модулям управления происходит автоматизированная комплексная обработка всего контента за короткий промежуток времени, что существенно повышает эффективность предприятия.

Программы для обработки информации

Существует огромное количество программ для обработки данных, используемых в деятельности предприятие. Применение того или иного функционала зависит от особенностей бизнес-процессов организации, ее размера и структуры.

Текстовые редакторы

Для сбора и обработки информации стандартно используются текстовые редакторы:

  • Word (универсальная программа для набора текста);
  • Excel;
  • Блокнот;
  • Notepad;
  • WordPad;
  • LibreOffice (программа характерна для Linux, хотя существует версия и для Windows);

Графические редакторы

Для обработки данных в режиме офиса подходят всевозможные графические редакторы. Они классифицируются на:

  • растровые;
  • векторные;
  • гибридные.

Растровые

Эти графические редакторы предназначены для создания точечных или пиксельных изображений в форматах:

  • JPEG;
  • TIFE;
  • PNG;

Классический пример растрового редактора – Adobe Photoshop.

Векторные

Векторные редакторы позволяют создавать рисунки из геометрических элементов (линии, треугольники, многоугольники) и сохранять в форматах:

  • AL;
  • EPS;

Гибридные

В гибридных графических редакторах можно создавать разноформатные изображения. Примерами программ можно назвать RasterDesk и Autocad с универсальным рабочим функционалом для проектирования.

Про анемометры:  ᐅ Проточный газовый водонагреватель Ладогаз ВПГ-11PL отзывы — 27 честных отзыва покупателей о водонагревателе Проточный газовый водонагреватель Ладогаз ВПГ-11PL

Системы управления базами данных (СУБД)

Благодаря СУБД возможно выполнение следующих действий:

  • автоматизированная обработка информации и ее управление;
  • контроль задания структуры и описание всех данных;
  • организация коллективного пользования всеми сведениями;
  • создание каталогов и ведение больших информационных объемов.

СУБД бывают промышленными (профессиональными) и настольными.

К настольным можно отнести Microsoft Access – это простейшая программа (еще со школьных курсов информатики и техники) для определения, обработки и управления данными.

Профессиональными СУБД, например, являются:

  • Oracle;
  • PostgreSQL;
  • MicrosoftSQL;
  • MySQL;
  • MongoDB;
  • Redis;
  • DB2;
  • Sybase;
  • System Progress.

Они стандартно обеспечивают выполнение следующих условий:

  • возможность совместной работы сразу нескольких пользователей;
  • масштабируемость, в рамках которой система увеличивается при росте объекта;
  • переносимость на различные информационные платформы;
  • обеспечение безопасности хранимой информации.

Что такое базы данных, СУБД и язык SQL

Программы 1С

Весь спектр программ 1С позволяет наладить обработку данных (особенно связанных с бухгалтерской деятельностью). В них автоматизированная и структурированная информация попадает в систему и в зависимости от выбранных пакетов и модулей обрабатывается в комплексе с остальными сведениями. Подробнее ознакомиться с 1С вы можете в нашем специальном разделе.

Эта утилита может быть поставлена на персональном компьютере в условиях крупного офиса или частного дома. Стандартный продукт 1С состоит из платформы и прикладного решения. Благодаря сегментации каждый модуль программы может быть заменен без потери данных на другом. Из-за развернутых инструкций работать с программой может даже неподготовленный пользователь.

Компьютеризация офиса и производства помогает увеличить эффективность деятельности любого предприятия. Если организация работает без использования средств комплексной автоматизации, она становится неконкурентоспособной на современной рынке практически в каждой отрасли.

Промышленное программирование, или Пара слов об АСУ ТП

Время на прочтение

Что относится к автоматизированным системам управления

Есть такая профессия — производство автоматизировать. Аббревиатура АСУ ТП означает «автоматизированная система управления технологическим процессом» — это система, состоящая из персонала и совокупности оборудования с программным обеспечением, использующихся для автоматизации функций этого самого персонала по управлению промышленными объектами: электростанциями, котельными, насосными, водоочистными сооружениями, пищевыми, химическими, металлургическими заводами, нефтегазовыми объектами и т.д. и т.п.

Фактически, каждый человек, живущий не в лесу и пользующийся благами цивилизации, использует результаты труда предприятий, на которых функционируют АСУ ТП.

Иногда на эту тему проскакивают статьи и на хабре. Обычно они не пользуются особой популярностью, но всё же я хочу написать несколько обзорных статей об АСУ ТП в надежде рассказать хабравчанам что-то интересное (а возможно, кому-то даже полезное) и привлечь на хабр больше своих коллег.

Сначала пара слов о себе. Я только начинаю свой жизненный путь в автоматизации, опыт работы без малого два года. За это время побывал на нескольких газовых месторождениях, сейчас работаю на нефтяном.

Поскольку область обширная, несмотря ни на что развивающаяся, местами противоречивая и спорная, буду стараться обобщать не в ущерб достоверности, но не могу избежать перекоса в свою область — то оборудование, софт и сферу, с которыми лично я сталкивался.

Итак, программно-технический комплекс АСУ ТП делится на три уровня: верхний (компьютеры), средний (контроллеры), нижний (полевое оборудование, датчики, исполнительные механизмы). Про нижний уровень рассказывать не буду — слишком уж это далеко от от тематики хабра, да и статья получится слишком большая.

Верхний уровень

Верхний уровень — это серверы и пользовательские ПК (у нас они называются АРМ — автоматизированное рабочее место). Сюда выводится состояние технологического процесса, и отсюда при необходимости оператором подаются команды на изменение его параметров. Для упрощения разработки создано большое количество SCADA-систем (от англ. supervisory control and data acquisition — диспетчерское управление и сбор данных). Это в некотором роде расширенный аналог IDE, в котором скомпилированная «программа» и выполняется.

Системы SCADA

Вообще, если отбросить академизм, то на предприятии для всех кроме асушников скада выглядит вот так:

Что относится к автоматизированным системам управления

А если совсем не повезёт, то вот так:

Что относится к автоматизированным системам управления

Скады неявно можно разделить на серверную и клиентскую части. Опрос полевых устройств и сбор данных производится сервером (обычно, через ПЛК), с сервера клиенты забирают эти данные к себе на монитор. Сами по себе понятия «серверная» и «клиентская» части условны. Фактически разделение производится по лицензиям на компоненты скады, а политика лицензирования у каждого производителя своя. Вплоть до разделения на: количество обрабатываемых сигналов с поля, драйвера протоколов, количество рабочих станций, возможность создания веб-интерфейса, мобильного интерфейса, да и вообще целые куски функционала могут быть за отдельные денжеки. Чаще проще обратиться к поставщику, предоставив исходные данные по проекту, чтобы помогли с подбором лицензий.

Подразумеваются два режима функционирования: режим разработки и режим выполнения (runtime). Не обязательно эти режимы взаимоисключающи: можно редактировать проект на одном АРМе, инженерном, заливать его, он обновится на пользовательских. Это очень важно — изменять проект без простоев и отключений, потому что технологический процесс прерывать нельзя, и операторы всегда должны иметь возможность его контролировать. В скаде создаются графические интерфейсы, настраиваются источники данных с полевых устройств, она отвечает за взаимодействие пользователя (оператора, диспетчера, технолога) с происходящим на производстве, а также за архивирование всех нужных данных в БД.

Архивирование — одна из обязательных функций, очень важно иметь возможность «вернуться назад во времени» для разбора полётов в случае чего-то непредвиденного либо для глобального анализа при медленных, длительных процессах. Например, недавно геологи попросили меня выгрузить табличкой данные по давлению нефти на скважинах за последний год.

Периодически скада складывает все собранные данные в БД. Их потом можно посмотреть в виде графиков (называем их трендами), а при необходимости, если оговорено в ТЗ на АСУТП, реализуется выгрузка в виде отчётов в эксель или ещё как-нибудь. Архивация сделана по-разному: в MS SQL; MS Access; в ту же MS SQL, но по своему хитрому алгоритму с дополнительной архивацией; а у кого-то вообще в свою собственную бинарную БД.

Особым пунктом в скадах идёт информирование оператора: текущие сообщения и аварийные. Они тоже обязательно архивируются. В общем виде сообщения делятся на текущие и важные (аварийные). Текущие прячут подальше, но журнал аварийных всегда выводится на экране оператора. К текстовым аварийным сообщениям привязываются звуковые, чтобы кто-нибудь не проспал ЧП 🙂

Рынок SCADA

Самыми распространёнными, по-моему, считаются скады производства Invensys Wonderware, Iconics, Siemens, Indusoft, AdAstra, Emerson, Rockwell Automation.

Я лично работал с виндовыми: Invensys Wonderware InTouch и более мощной System Platform, с Iconics Genesis32 — и с (пока ещё?) малоизвестной B&R APROL под SLES (формально, это не совсем скада, а покруче — из-под апрола программируются и сами контроллеры).

По поисковым запросам, например, SCADA, HMI можно посмотреть примеры интерфейсов и мнемосхем.

Внешний вид и юзабилити по приоритету, увы, находятся на последнем месте. Причём, это касается не только рантайма, но и разработки. Для разработки в каждой скаде существуют как минимум дефолтные библиотеки символов — от кнопок и прочих контролов до графических изображений насосов, труб, задвижек, ёмкостей. Здесь-то и могли бы умные разработчики SCADA-пакетов (не путать с нами, асушниками — разработчиками проектов в этих пакетах) добиться принципиального преимущества над конкурентами, сделав продуманные библиотеки, из которых бы даже самый далёкий от дизайна и юзабилити инженер при всём нежелании делал бы гуманные интерфейсы и мнемосхемы. К сожалению, сейчас эта сфера идёт по пути экстенсивного развития, по которому развивалась IT до недавнего времени — наращивание функционала, добавление плюшек, больше, выше, сильнее, harder,

Про анемометры:  Возможно, вы не знали, как правильно пользоваться газом. Эксперт рассказал, как избежать утечки

, stronger, и о пользователях пока думают мало.

Средний уровень

Средний уровень — ПЛК, программируемые логические контроллеры. Здесь всё достаточно просто, чаще всего физически ПЛК состоят из отдельных модулей. Для программирования у каждого ПЛК есть своя среда разработки, иногда она объединена со средой для создания SCADA.

Состав ПЛК

Модули бывают такие:

  • блок питания;
  • процессорный;
  • дискретных входов;
  • дискретных выходов;
  • аналоговых входов;
  • аналоговых выходов;
  • температурных входов;
  • интерфейсные/коммуникационные.

Что относится к автоматизированным системам управления

Контроллер B&R серии X20

Зачем нужен блок питания — понятно. БП сделан отдельным именно модулем, а не устройством, чтобы гарантировать совместимость с данной линейкой ПЛК. Чаще всего входное напряжение у БП 220 В переменного тока, выходное — 24 В постоянного тока.

Процессорный модуль — это голова ПЛК. Внутри у него, само собой, ЦПУ, ОЗУ и ПЗУ, сервисный порт для прошивки и, возможно, коммуникационный порт (ethernet, RS232/422/485, Profibus, etc). Иногда коммуникационный порт используется и как сервисный. Иногда на модуле есть переключатель (у Allen Bradley ещё круче — там натуральный ключ с замочной скважиной) для перевода ПЛК в различные режимы работы. Отдельной кнопки включения/выключения нет, в лучшем случае — тот переключатель, иначе, если есть питание — ПЛК запускается, а выключается и перезагружается «по-варварски» отключением питания.

Что относится к автоматизированным системам управления

Контроллер Allen Bradley серии CompactLogix

Дискретные и аналоговые модули обрабатывают соответствующие сигналы. Входные модули принимают эти сигналы с поля, выходные — формируют их.

Дискретный сигнал — это обычно напряжение цепи 24 вольта. Есть 24 — это «1», нет — «0». Бывают модули на 220В, есть модули с проверкой целостности цепи. Дискретные сигналы, приходящие с поля, могут информировать, например, о состоянии насоса включен/выключен. Управляющие дискретные сигналы могут запускать либо останавливать этот насос. Оптимизация здесь не оправдана, поэтому на запуск будет отдельная цепь, на останов — отдельная.

Модули I/O одного типа могут быть объединены: например, один модуль с 16 дискретными входами и 16 дискретными выходами.

Аналоговые входные сигналы — это приходят показания с датчиков. Здесь чаще всего используется токовая петля 4-20 мА, в соотетствие которой ставятся пределы измерения датчика. Начинается от 4 мА для диагностирования обрыва цепи (если меньше 4 мА, значит где-то что-то не в порядке с проводкой).

Рассмотрим на примере уровня жидкости в резервуаре. Стоит уровнемер, он измеряет уровень от 0 до 2 метров. Тогда: уровень 0 метров — это 4 мА, уровень 2 метра — это 20 мА. Промежуточные значения калибруются по ситуации, не всегда 1 метр соответствует 4+(20-4)/2=12 мА, может быть небольшая погрешность, уровень в 1 метр может быть какие-нибудь 12,7553 мА.

Аналоговые выходные — то же, только на управление. Не встречал чтобы использовалось, т.к. всегда существуют наводки. В измерении это допустимая погрешность, в управлении — нет. Да и неудобно это. Вместо них используется цифровая передача данных по различным протоколам через коммуникационные модули.

Температурные модули замеряют сопротивление в цепи либо термо-ЭДС. Если на них подключаются термометры сопротивления — при нагревании металла его сопротивление, по законам физики, повышается, соответственно определяется температура. Если подключается термопара (два спаянных проводника из разных металлов, при нагревании стыка возникает разность потенциалов между другими концами), замеряется напряжение.

Интерфейсные (или коммуникационные) модули предоставляют нам порты под RJ45, DB9, DB15, просто клеммники или что ещё бог производителю на душу положит. Помимо реализации непосредственно интерфейса (физического разъёма под коннектор, физического уровня модели OSI) они также реализуют протокол обмена через этот разъём.

Протоколы и интерфейсы

Протоколов напридумывали и используют кучу: ModBus (RTU, TCP, ASCII), Profibus, Profinet, CAN, HART, DF1, DH485 и т.д. Некоторые особо хитрые производители реализуют свои протоколы поверх общепринятых.

Я достаточно тесно знаком с интерфейсами RS232/485 и протоколами Modbus. RS232 это всем знакомый COM-порт, с тремя основными линиями: Tx (transmit, передача), Rx (recieve, получение) и GND (ground, земля). RS485 это асинхронный полудуплексный последовательный интерфейс по 2 проводам (совмещённые Tx/Rx+ и Tx/Rx-) или 4 проводам (отдельно Tx+, Tx-, Rx+, Rx-) с разностью потенциалов на каждой паре от 2 до 10 вольт.

А модбас это в общем-то нехитрая штука, с проверкой целостности пакета по чексумме, подтверждением доставки и корректности запроса — или ответом, почему запрос неверен. В сети модбас есть два вида устройств: master — инициирует обмен; slave — выполняет запросы мастера. Пакет от мастера расходится ко всем слейвам, которые сравнивают адрес назначения со своим, если сходится, то смотрят следующие два байта — это команда работы с регистрами памяти — чтение/запись (за исключением нескольких редко используемых служебных команд), потом байты адреса и непосредственно данных, в конце чексумма. Достаточно подробно и понятно расписано на википедии.

Программная начинка

Первое, что нужно сказать, программа в ПЛК выполняется циклически с определённой частотой. Возможности зависят от контроллера, обычно это где-то 20, 50, 250 мс, 1, 2, 3, 4, 5 с. Естественно, это не гарантирует выполнение кода именно за такой промежуток времени, нельзя большие программы пихать в цикл 20 мс, к началу следующего цикла предыдущий должен быть завершён.

Второе, это языки программирования. По идее программируются ПЛК на языках, определённых стандартом МЭК61131:

  • IL (Instruction List) — низкоуровневый ассемблероподобный язык.
  • LD (Ladder Diagram) — графический язык, представляет собой программную реализацию электрических схем на базе электромагнитных реле. Придумано в лохматые года для тех асушников, которые больше электрики, чем программисты.

    IL и LD легко конвертируются друг в друга, кажется, всеми средами программирования. Они не очень читабельны, и потому неудобны для разработки, но в ситуациях, когда внутренней памяти контролера немного, приходится писать на них.

  • ST (Structured Text) — текстовый паскалеподобный язык. По-моему, из всех пяти самый удобный.
  • SFC (Sequential Function Chart) — графический высокоуровневый язык. Создан на базе математического аппарата сетей Петри. Описывает последовательность состояний и условий переходов. Ни разу не встречал и не слышал, чтобы где-то использовался.

Это «по идее». Но, например, Siemens придерживается своего наименования языков, а у B&R есть возможность писать на ANSI C.

Самые используемые контроллеры, безоговорочно, у Siemens и Allen Bradley (последним, к слову, принадлежит Rockwell Automation со своей линейкой SCADA-пакетов RSView). За ними по пятам идут Schneider Electric; ОВЕН; General Electric; AutomationDirect; ICP DAS; Advantech; Mitsubishi Electric; B&R.

Оцените статью
Анемометры
Добавить комментарий