Датчик углеводородных газов MQ-2 [База знаний “УмныеЭлементы”]

Датчик углеводородных газов MQ-2 [База знаний "УмныеЭлементы"] Анемометр

Arduino-kit | электронные конструкторы и наборы, контроллеры, модули и датчики

Одна из самых важных задач в вопросе безопасности умного дома –обнаружение утечки газа. Для того, чтобы плата Arduino успешно решала задачи такого рода, нужно подключить к ней датчик газа MQ-2. Датчик MQ-2 (рис. 4.24) определит концентрацию углеводородных газов (пропан, метан, н-бутан), дыма (взвешенных частиц, являющихся результатом горения) и водорода в окружающей среде. Датчик можно использовать для обнаружения утечек газа и задымления. В газоанализатор встроенный нагревательный элемент, который необходим для химической реакции. Поэтому во время работы сенсор будет горячим. Для получения стабильных показаний новый сенсор необходимо один раз прогреть (оставить включенным) в течение 24 часов. После этого стабилизация после включения занимать около минуты.
Датчик углеводородных газов MQ-2 [База знаний "УмныеЭлементы"]
Рис. 4.24. Датчик газов MQ-2.

В зависимости от уровня газа в атмосфере меняется внутреннее сопротивление датчика. MQ-2 имеет аналоговый выход, поэтому напряжение на этом выходе будет меняться пропорционально уровню газа в окружающей среде. Для определения по логическому уровню также имеется цифровой выход. На модуле датчика есть встроенный потенциометр, который позволяет настроить чувствительность этого датчика в зависимости от того, насколько точно вы хотите регистрировать уровень газа.
Теперь об единицах измерения. На территории бывшего Советского Союза, показатели принято измерять в процентах (%) или же непосредственно в массе к объему (мг/м3). В зарубежных странах применяет такой показатель как ppm.
Сокращение ppm расшифровывается как parts per million (частей на миллион). Например, 1 ppm = 0,0001%.
Диапазон измерений датчика:

•    Пропан: 200–5000 ppm;
•    Бутан: 300–5000 ppm;
•    Метан: 500–20000 ppm;
•    Водород: 300–5000 ppm.

Рассмотрим подключение датчика MQ-2 к плате Arduino Mega и модулю NodeMcu ESP8266.

4.5.1. Подключение датчика MQ-2 к плате Arduino Mega

Подключение датчика MQ-2 к плате Arduino Mega мы будем производить по аналоговому входу. Питание для датчика берем также с платы Arduino. Схема соединений представлена на рис. 4.25.
Датчик углеводородных газов MQ-2 [База знаний "УмныеЭлементы"]
Рис. 4.25. Схема подключений датчика MQ-2 к плате Arduino Mega

Загрузим на плату Arduino Mega скетч получения данных с датчика MQ-2 и вывода в последовательный порт Arduino. Процедуры определения по данным, приходящим с аналогового входа:

•    get_data_ppmpropan() – содержание пропана в  ppm;
•    get_data_ppmmethan() – содержание пропана в  ppm;
•    get_data_ppmsmoke() – содержание дыма.

Содержимое скетча представлено в листинге 4.10.
Листинг 4.10

#include <TroykaMQ.h>#define INTERVAL_GET_DATA 2000  // интервала измерений, мс #define MQ2PIN         A10MQ2 mq2(MQ2PIN);


unsigned long millis_int1=;
 
voidsetup() {
  
  Serial.begin(9600);
  
  mq2.calibrate();
  mq2.getRo();
}
 
voidloop() {
   if(millis()-millis_int1 >= INTERVAL_GET_DATA) {
      float  propan= get_data_ppmpropan();
      
      Serial.print("propan=");
      Serial.print(propan);
      Serial.println(" ppm ");
      float  methan= get_data_ppmmethan();
      
      Serial.print("methan=");
      Serial.print(methan);
      Serial.println(" ppm ");
      float  smoke= get_data_ppmsmoke();
      
      Serial.print("smoke=");
      Serial.print(smoke);
      Serial.println(" ppm ");
      
      millis_int1=millis();
   }
}

floatget_data_ppmpropan()  {

  Serial.println(mq2.readRatio());
  floatvalue=mq2.readLPG();
  
  returnvalue;
}
floatget_data_ppmmethan()  {

  Serial.println(mq2.readRatio());
  floatvalue=mq2.readMethane();
  
  returnvalue;
}
floatget_data_ppmsmoke()  {

  Serial.println(mq2.readRatio());
  floatvalue=mq2.readSmoke();
  
  returnvalue;
}

Загрузим скетч на плату Arduino Mega, откроем монитор последовательного порта и увидите вывод данных о содержании пропана, метана и дыма (рис. 4.26).
Датчик углеводородных газов MQ-2 [База знаний "УмныеЭлементы"]

Рис. 4.26. Вывод данных датчика MQ-2 в монитор последовательного порта.

Скачать данный скетч можно на сайте www.anemometers.ru по ссылке .

4.5.2. Подключение датчика MQ-2 к модулю NodeMcu ESP8266

Теперь рассмотрим подключение датчика MQ-2 к модулю NodeMcu ESP8266. Датчик MQ-2  подключаем к входу y2 мультиплексора. Для выбора аналогового входа мультиплексора используем контакты D5, D7, D8 модуля Node Mcu. Схема соединений представлена на рис. 4.27.
Датчик углеводородных газов MQ-2 [База знаний "УмныеЭлементы"]

Рис. 4.27. Схема подключений датчика MQ-2 к NodeMcu ESP8266

Про анемометры:  Четыре признака наличия утечки в выпускной системе автомобиля

Загрузим на модуль NodeMcu скетч получения данных с датчика MQ-2 и вывода в последовательный порт Arduino. Для выбора аналогового входа мультиплексора y2 подаем на контакты D5, D8 сигнал низкого уровня LOW, на контакт D7 сигнал высокого уровня HIGH.
Процедуры определения по данным, приходящим с аналогового входа:

•    get_data_ppmpropan() – содержание пропана в  ppm;
•    get_data_ppmmethan() – содержание пропана в  ppm;
•    get_data_ppmsmoke() – содержание дыма.

Содержимое скетча представлено в листинге 4.11.
Листинг 4.11

#include <TroykaMQ.h>#define INTERVAL_GET_DATA 2000  // интервала измерений, мс #define MQ2PIN         A0MQ2 mq2(MQ2PIN);


unsigned long millis_int1=;
 
voidsetup() {
   
   pinMode(14,OUTPUT);
   pinMode(13,OUTPUT);
   pinMode(15,OUTPUT);  
  
  Serial.begin(9600);
  
  digitalWrite(14,LOW);
  digitalWrite(13,HIGH);
  digitalWrite(15,LOW);    
  
  mq2.calibrate();
  mq2.getRo();
}
 
voidloop() {
   if(millis()-millis_int1 >= INTERVAL_GET_DATA) {
      
      digitalWrite(14,LOW);
      digitalWrite(13,HIGH);
      digitalWrite(15,LOW);    
      float  propan= get_data_ppmpropan();
      
      Serial.print("propan=");
      Serial.print(propan);
      Serial.println(" ppm ");
      float  methan= get_data_ppmmethan();
      
      Serial.print("methan=");
      Serial.print(methan);
      Serial.println(" ppm ");
      float  smoke= get_data_ppmsmoke();
      
      Serial.print("smoke=");
      Serial.print(smoke);
      Serial.println(" ppm ");
      
      millis_int1=millis();
   }
}

floatget_data_ppmpropan()  {
  Serial.println(mq2.readRatio());
  floatvalue=mq2.readLPG();
  returnvalue;
}
floatget_data_ppmmethan()  {
  Serial.println(mq2.readRatio());
  floatvalue=mq2.readMethane();
  returnvalue;
}
floatget_data_ppmsmoke()  {
  Serial.println(mq2.readRatio());
  floatvalue=mq2.readSmoke();
  returnvalue;
}

Загрузим скетч на модуль Node Mcu, откроем монитор последовательного порта и видим вывод данных, получаемых с датчика MQ-2 (рис. 4.28).
Датчик углеводородных газов MQ-2 [База знаний "УмныеЭлементы"]

Рис. 4.28. Вывод данных датчика MQ-2 в монитор последовательного порта.

Скачать данный скетч можно на сайте www.anemometers.ru по ссылке .

Датчик дыма и газа mq-2. беспроводной датчик газа. ардуино и esp.

Если у вас есть газовое оборудование, то вам надо подумать как обезопасить себя от утечки газа. Для этого можно собрать датчик обнаружения газов  на mq-2. Такой датчик  газа и дыма можно собрать на Ардуино, или на ESP. Сигнал тревоги можно отправлять в Телеграм. MQ-2 это датчик бытового газа. Собрав такой электронный датчик газа вы можете забыть про утечку газа и быть спокойным. За вас теперь будет работать датчик MQ-2, датчик дыма и газа.

Сегодня научимся отправлять сообщение при обнаружении утечки газа. Для этого будем использовать датчик широкого спектра газов MQ-2. Вообще датчиков серии MQ очень много и все они рассчитаны на работу в своей среде. Например, MQ-2 работает не только с газами, но и неплохо срабатывает на дым.

Прелесть этих датчиков в том, их можно использовать и без микроконтроллеров. Для этого надо подать на него 5 вольт. Тогда при работе, на цифровом выходе будет напряжение питания, то есть около 5 вольт, а при обнаружении газа, напряжение резко упадёт до 0,15 вольт. Это напряжение будет у каждого датчика немного отличаться. К датчику можно напрямую подключить реле. Так как многие реле управляются низким уровнем, то они будут срабатывают при обнаружении газа и смогут включать любую нагрузку.
Характеристики Датчика mq-2.
Вы видите диапазон измерений газов. Он выражается в ppm.
PPM – это Миллионная доля, от англ. parts per million, читается «пи-пи-эм» — «частей на миллион».
Напряжение питания 5 вольт. Потребление 150 ма.
При первом включении надо дать нагревателю прогреться примерно 1 минуту. После этого датчик будет готов к работе.

Диапазон измерений
Пропан: 200–5000 ppm
Бутан: 300–5000 ppm
Метан: 500–20000 ppm
Водород: 300–5000 ppm

Характеристики
Напряжение питания нагревателя: 5 В
Напряжение питания датчика: 3,3–5 В
Потребляемый ток: 150 мА
Габариты: 25,4×25,4 мм

Теперь давайте проверим как он работает.
Сначала будем использовать цифровой выход. Плата ESP 8266 у меня сейчас задействована только для питания датчика. На зелёный провод не обращайте внимания – это осталось от предыдущего примера. Мне лень было искать блок на 5 вольт, поэтому я запитался от платы.
Потенциометром устанавливаем чувствительность датчика. Крутим пока не погаснет светодиод.
Так как у меня дома нет ничего что работает от газа, то я использовал обычную зажигалку. При обнаружении газа на датчике загорается светодиод. Потом горит некоторое время, пока датчик не очистится от газа и гаснет. Теперь датчик снова в режиме ожидания.

Про анемометры:  Привод спидометра газель соболь

Загрузим первый скетч.
Он нам нужен для проверки подключения датчика, для определения значений в режиме покоя и вывода сообщений в монитор порта сообщения о тревоге.
Схему подключения я рисовать не буду. Здесь всё просто. Если вы питаете плату ESP от 5 вольт, то надо подключить датчик к контакту VIN. А аналоговый выход датчика подключить к контакту A0 платы.
Прошиваем скетч и открываем монитор.
Смотрим какие значения выводятся в состоянии покоя. Напоминаю, что датчик сначала должен прогреться. Затем поддаём газку и смотрим на значения. Проделываем так несколько раз и запоминаем значения.
У меня это. В состоянии покоя до 100, а при обнаружении газа от 300 до 400.

Теперь раскомментируем условия и вставим свои значения. Хотя у меня значения в состоянии покоя были 80-90, я установлю чуть побольше. Например 100. А состояние срабатывания выставлю в 150. Между значений покоя и срабатывания должен быть небольшой зазор, а то датчик в пограничном состоянии может многократно срабатывать.
Помимо вывода в монитор состояния датчика, я так же сделал так, что при обнаружении газа, на плате ESP зажигается светодиод.
Смотрим что получилось. В состоянии покоя в монитор выводится сообщение что всё ОК. Если датчик обнаружит утечку газа, то на плате ESP загорится светодиод, а в монитор выводится сообщение Тревога. После того как датчик перестаёт ощущать признаки газа, то он встаёт в обычное состояние и снова готов к работе.
Если у вас всё так же работает как у меня, то значит датчик подключен правильно и можно переходить к следующему этапу. Отправке сообщений в Телеграм.

Загружаем второй скетч из архива.
Этот скетч полная копия скетча использованного в примере про датчик протечки воды, я только изменил значение срабатывания и текстовое сообщение, изменив протечку на утечку.

Теперь скетч.
Эти библиотеки уже должны быть установлены.
Сюда вписываем настройки WIFI сети.
Вставляем токен бота и ID чата, кстати, чатов может быть несколько. Я потом сделаю отдельное видео, как добавлять несколько чатов.
Указываем, что датчик подключен к Аналоговому входу А0.
Переменная для хранения состояния датчика. В начале она равна false.
И количество сообщений которое будет отправлено в бот при обнаружении протечки. Если не указать количество, то сообщения в бот будут поступать бесконечно.
Сюда я вынес значение полученное в прошлом примере.  Это порог срабатывания датчика.

Дальше делаем внутреннюю подтяжку – это спасёт нас от случайных значений на входе А0.
Это код для соединения с WIFI сетью и получения IP адреса.
А это первое сообщение боту, что датчик подключен и начал свою работу.

Ни и сам код проверки.
Если на датчик учуял газ и счётчик не равен 0, то отправить сообщение в бот, что обнаружена утечка.
Уменьшить счётчик на единицу и подождать 10 секунд.
Если условие всё ещё верно, то отправить новое сообщение, уменьшить счётчик и снова подождать 10 секунд.
Если датчик всё ещё ощущает газ, то снова отправить сообщение, уменьшить счётчик и подождать 10 секунд.
А вот теперь условие не будет верно. Так как счётчик равен 0. И если датчик в воде, то нового сообщения не придёт.
Это сработает когда датчик выветрится, и снова установит счётчик на тройку.
Датчик снова готов к работе.

Про анемометры:  Ответ недели: классификация видов основных фондов из группировки ОКОФ - Дайджесты новостей

Давайте теперь посмотрим как это работает.
При подаче напряжения в Телеграм бот приходит сообщение, что бот начал работу.
Заходим в бот и смотрим, что будет когда датчик сработает при обнаружении газа. Подносим зажигалку и видим, что на датчике загорелся светодиод и в Телеграм отправилось уведомление об утечки газа.
Таких уведомлений будет 3 что бы не грузить бот, но что бы вы случайно не пропустили сообщение.

Теперь я перезапущу ESP и снова проверю работу. Как можно убедиться, срабатывание датчика происходит стабильно и сообщения в Телеграм отправляются. На этом можно считать нашу задачу выполненной. Теперь можно не волноваться за утечку газа, у вас ведь есть надёжный защитник.

Если вам интересна эта тема, то я могу снять ещё много видео про Использование Телеграм и не только про это.
Объём вашего интереса, я буду оценивать по количеству лайков и комментариев. Чем их будет больше, тем быстрее выйдет новое видео.
Ну, а если вам нравятся мои уроки, то ставьте лайк и делитесь моими видео, с другими. Это очень поможет мне в продвижении канала, а меня будет стимулировать выпускать уроки чаще и интереснее.

Вы видите ссылки на видео, которые, я думаю будут вам интересны. Перейдя на любое из этих видео вы узнаете что-то новое, а ещё поможете мне. Ведь любой ваш просмотр – это знак YOUTUBE, что это кому-то интересно и что его надо показывать чаще.

Спасибо.

А пока на этом всё.

Датчик углеводородных газов mq-2 [база знаний “умныеэлементы”]

В Вашем проекте нужно анализировать запахи, концентрацию газов, задымление? Может быть систему анализа качества воздуха в помещении? Или определения паров спирта в выдыхаемом воздухе? А может пожарная сигнализация? Тогда датчик MQ-2 будет отличным решением поставленных вопросов. MQ-2 – это довольно простой датчик для определения в воздухе концентрации угарного газа, метана, водорода, пропана, паров спирта, углеводородных газов (LPG – Liquefied petroleum gas – сжиженных углеводородных газов).

Датчик MQ-2 является одним из самых популярных датчиков серии MQ. Обнаружение концентрации газов в датчике происходит за счёт измерения сопротивления чувствительного материала при взаимодействии газов с этим чувствительным материалом. Датчик обнаруживает концентрации углеводородных газов, паров спирта, пропана, метана, водорода и дыма примерно от 300 до 10000 миллионных долей (ppm – parts per million).

Для описания количества газа в воздухе чаще всего пользуются либо процентным соотношением газа или миллионными долями. К примеру, Сто миллионных долей дыма означает, что если мы разобьём весь объём воздуха на 1’000’000 частей, то 100 из этих частей будут являться частями дыма, а 999’900 частей какие-то другие газы.

Основным рабочим элементом датчика является нагревательный элемент, за счет которого происходит химическая реакция, в результате которой получается информация о концентрации газа. В процессе работы датчик должен нагреваться – это нормально. Также необходимо помнить, что за счет нагревательного элемента, датчик потребляет большой ток, поэтому рекомендуется использовать внешнее питание.

Перед началом использования рекомендуется прогреть датчик, т.е. оставить его включенным на сутки. Это поможет достичь стабильных показаний в процессе его дальнейшей работы.

Обратите внимание, что показания датчика подвержены влиянию температуры и влажности окружающего воздуха. Поэтому в случае использования датчика в изменяющейся среде, будет необходима компенсация этих параметров.

Основным элементом датчика – является нагреватель, он же является и основным потребителем энергии. Ввиду этого, на плате предусмотрен вывод питания нагревателя. Таким образом, можно управлять нагревателем для экономии энергопотребления. Если же такой задачи не требуется, просто объедините выводы VDD и VH с помощью перемычки, и нагреватель будет запитан от сигнала .

Оцените статью
Анемометры
Добавить комментарий

Adblock
detector