Емкостный метод измерения

Емкостный метод измерения Анемометр

Библиографическое описание

Емкостный метод измерения

Емкостный метод измерения

Емкостный метод измерения

Емкостный метод измерения

– расстояние (зазор) между электродами конденсатора.

Контролируемая неэлектрическая величина обычно воздействует на какой-либо из этих параметров, меняя тем самым емкость КД. Таким образом, принцип работы емкостных датчиков (датчики давления, датчики угловых и линейных перемещений, влажности, датчики уровня жидких и сыпучих материалов и т. д.) определяется видом измеряемой величины и способом ее воздействия на емкость датчика.

Кроме того, при работе даже с хорошими диэлектриками (минеральные масла, нефтепродукты и др.) необходимо применять дополнительные меры по устранению влияния на метрологические характеристики изменения ɛж. Эти изменения могут быть вызваны колебаниями, как температуры, так и сменой состава или типа жидкости.

Основой для получения первичной информации о технологических параметрах являются первичные преобразователи различных неэлектрических величин, которые называют датчиками. Именно от метрологических характеристик первичных измерительных преобразователей и методов обработки измерительных сигналов будет зависеть эффективность всей измерительной системы.

Широкое распространение емкостных датчиков коаксиального типа обусловлено простой конструкции (при изготовлении), высокой помехоустойчивостью, жесткостью конструкции первичного преобразователя. Кроме того, емкостные датчики коаксиального типа входят в номенклатуру средств измерений уровня «Государственной системы промышленных приборов и средств автоматизации» (ГСП).

Емкостной датчик уровня коаксиального типа для неэлектропроводных жидкостей изображен на рисунке 1. Датчик состоит из двух коаксиально расположенных электродов 1 и 2, выполненных в виде труб круглого сечения, помещенных вертикально в резервуаре 3 с диэлектрической жидкостью, уровень которой необходимо измерить. Свободные концы датчика подключают к измерительному прибору.

Для каждого значения уровня жидкости в резервуаре емкость датчика определяется как емкость двух параллельно соединенных конденсаторов С1 и С2 (рис. 1), один из которых образован частью электродов датчика и жидкостью (часть датчика, погруженная в жидкость), уровень которой необходимо измерить, а второй — остальной частью электродов преобразователя и воздухом или парами жидкости (часть датчика не погруженная в жидкость).

В общем случае, когда уровень контролируемой жидкости находится между крайними отметками датчика, значение электрической емкости коаксиального датчика определяется следующим выражением:

где С1 — емкость незаполненной жидкостью части конденсаторного датчика уровня жидкости;

С2 — емкость погруженной части в жидкость этого датчика;

Емкостный метод измерения

Емкостный метод измерения

Рис. 1. Схема емкостного коаксиального датчика для измерения уровня неэлектропроводных жидкостей

Значение С1 и С2 изменяется вместе с изменением уровня жидкости в резервуаре, и соответственно, изменяется общая емкость датчика. При этом емкость С1 зависит от длины непогруженной части  конденсаторного датчика уровня жидкости, и соответственно, от удельной емкости пустого датчика. Относительная диэлектрическая проницаемость воздуха или газовой среды на изменение емкости С1 влиять не будет, так как диэлектрическая проницаемость воздуха и различных газовых  сред

Емкостный метод измерения

приблизительно равна единице и может считаться постоянной. Значение С2 зависит от длины погруженной части датчика и определяется значением относительной диэлектрической проницаемости контролируемой жидкости

Емкостный метод измерения

не зависит от изменения уровня жидкости в резервуаре, а определяется только свойствами изоляционного материала. При этом полное сопротивление датчика определяется значением емкости

и его активным сопротивлением утечки RУТ, которое обусловлено проводимостью изоляционного материала.

В общем виде емкость коаксиального датчика уровня определяется выражением:

Емкостный метод измерения

,                                                                                                                    (3)

где      L – длина электродов датчика;

d1 – наружный диаметр внутреннего электрода (цилиндра);

d2 – внутренний диаметр внешнего электрода.

Отсюда  не сложно записать выражения для определения С1 и С2:

Емкостный метод измерения

Емкостный метод измерения

– относительная диэлектрическая проницаемость воздушной или паровоздушной среды, находящейся над поверхностью контролируемой жидкости (

Емкостный метод измерения

Емкостный метод измерения

– относительная диэлектрическая проницаемость контролируемой жидкости;

h – уровень жидкости.

Тогда выражение (2) примет вид:

Емкостный метод измерения

;                                                                              (5)

Различие заключается в том, что при измерении уровня электропроводных жидкостей один из электродов датчика покрывают изоляционным материалом (в большинстве случаев это потенциальный электрод), в случае измерения уровня не электропроводных жидкостей электроды не изолируют. В случае измерения уровня электропроводных жидкостей, выражения для определения С1 и С2 примут иной вид.

1.                  Минаев И. Г., Воротников И. Н., Мастепаненко М. А. Универсальный способ контроля уровня различных жидкостей и аппаратный комплекс для его реализации // Вестник АПК Ставрополья. 2012. № 5. С. 55–58.

2.                  Минаев И. Г., Воротников И. Н., Мастепаненко М. А. Система непрерывного контроля уровня различных жидкостей на основе микроконтроллера // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве: сб. науч. тр. / СтГАУ. Ставрополь: АГРУС, 2011. C. 181–185.

3.                  Minaev I. G., Mastepanenko M. A. By a capacity liquidometer // Вiсник Черкаського державного технологiчного универсiтету: сб. ст. Спецвыпуск. Черкассы: Изд-во ЧГТУ, 2009. С. 69–71.

4.                  Минаев И. Г., Мастепаненко М. А. Емкостной способ измерения уровня электропроводных и диэлектрических жидкостей // Приборы и системы. Управление, контроль, диагностика. 2011. № 5. С. 52–55.

5.                  Математические модели и методы обработки измерительных сигналов емкостных преобразователей на постоянном токе: монография / М. А. Мастепаненко, И. Н. Воротников, С. В. Аникуев, И. К. Шарипов. — Ставрополь: АГРУС Ставропольского гос. Аграрного ун-та, 2015. 232с.

6.                  Минаев И. Г., Мастепаненко М. А. Информационно-измерительная система контроля уровня различных жидкостей // Вiсник Черкаського державного технологiчного универсiтету: сб. ст. — Черкассы: Изд-во Черкас. гос. техн. ун-та. 2010. № 3. С. 61–63.

7.                  Пат. 147261 Российская Федерация, МПК 8 G01F23/24. Емкостной измеритель уровня жидкости / Мастепаненко М. А., Воротников И. Н, Шарипов И. К., Аникуев С. В., Фалько К. А..; заявитель и патентообладатель ФГБОУ ВПО Ставропольский государственный аграрный университет. — № 2014119647; заявл. 15.05.2014; опубл. 27.10.2014, Бюл. № 30. -2 с.

8.                  Пат. 93975 Российская Федерация, МПК 8 G01F23/24. Емкостный уровнемер жидкостей / Минаев И. Г., Мастепаненко М. А.; заявитель и патентообладатель ФГБОУ ВПО Ставропольский государственный аграрный университет. — № 2009147414/22 (070186); заявл. 21.12.2009; опубл. 10. 05.2010.

9.                  Минаев И. Г., Воротников И. Н., Мастепаненко М. А. Способ измерения уровня жидкостей // Достижения науки и техники АПК. 2010. № 9. С. 68–70.

10.              Пат. 2407993 Российская Федерация, МПК 8 G01F23/24. Емкостной способ измерения уровня жидкостей и устройство для его осуществления / И. Г. Минаев, М. А. Мастепаненко; заявитель и патентообладатель ФГБОУ ВПО Ставропольский государственный аграрный университет. № 2009141472/28; заявл. 09.11.2009; опубл. 27.12.2010, Бюл. № 36. 2 с.

11.              Воротников И. Н., Мастепаненко М. А. Способы измерения электрической емкости по параметрам переходного процесса // Приборы и системы. Управление, контроль, диагностика. 2013. № 10. С. 60–65.

12.              Воротников И. Н., Мастепаненко М. А., Ивашина А. В. Вторичное измерительно-вычислительное устройство конденсаторного датчика уровня // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве: сборник научных трудов по материалам 76-й научно-практической конференции СтГАУ (г. Ставрополь, 10–25 марта 2012 г.) / Ставропольский государственный аграрный университет. Ставрополь: АГРУС, 2012. С. 9–13.

Основные термины (генерируются автоматически): относительная диэлектрическая проницаемость, датчик, жидкость, контролируемая жидкость, электрическая емкость, емкостный датчик уровня, измерение уровня, изоляционный материал, коаксиальный тип, межэлектродное пространство.

Емкостной метод измерения уровня топлива – более простой и дешевый. Он обеспечивает хорошую точность порядка 1,5 %, имеет те же ограничения, что и поплавковый – среда не должна налипать и образовывать отложения на ЧЭ(мембране). Вместе с тем, в отличие от поплавкового, он применим как для жидких, так и для сыпучих сред (размер гранул – до 5 мм.). Характерным принципиальным ограничением для емкостного метода является – однородность среды, среда должна быть однородной, по крайней мере, в зоне расположения ЧЭ.

ЧЭ емкостного уровнемера топлива представляет собой конденсатор, обкладки которого погружены в среду. Он может быть выполнен в виде двух концентрических труб, пространство между которыми заполняется средой, либо в виде стержня, при этом роль второй обкладки играет металлическая стенка емкости. В случае проводящей жидкости ЧЭ покрывается изолятором, обычно фторопластом. Изменение уровня жидкости приводит к изменению емкости ЧЭ, преобразуемой в выходной электрический сигнал.

Для датчиков топлива разработан широкий спектр модификаций предусматривающих применение в различных средах, в том числе агрессивных взрывоопасных, в различных температурных и климатических условиях при разных физических состояниях контролируемой среды.

Емкостный метод измерения

Рисунок 1. Принципиальная схема датчика емкостного уровнемера для непроводящей жидкости

Емкостный метод измерения

Рисунок 2. Принципиальная схема датчика емкостного уровнемера для проводящей жидкости

В измеряемую среду погружают один электрод, покрытый изоляционным материалом, вторым электродом являются жидкость и стенки сосуда (см. рис. 20-11, а). Здесь

С1 — емкость соединительных деталей датчика;С2 — емкость изоляционного покрытия электрода на участке L- lС3 — емкость между стенками сосуда и изоляционным слоем датчика на участке L – l;С4 — емкость изоляционного покрытия электрода на участке l;С5 — емкость между стенками сосуда и изоляционным покрытием датчика на участке l;C5 — активное сопротивление утечки жидкости.

С изменением уровня основное изменение Сд будет происходить за счет С4. Далее емкость Сд передается на измерительное устройство где считывается значение емкости и переводиться в соответствующие показания.

Емкостной датчик, как его определяет Большая Советская Энциклопедия, — измерительный преобразователь, позволяющий неэлектрические величины перевести в значения электрической емкости. Например, такие как давление, уровень жидкости, механическое усилие, влажность, и прочие. Изменения емкости оказываются пропорциональны колебаниям измеряемой величины, и это соответствие позволяет отследить ее поведение.

Емкостный метод измерения

Принцип работы емкостного датчика

Вот что такое емкостные датчики. Принцип работы их не так сложен, но для его понимания нужно кое-что знать. Для начала вспомним принцип определения емкости конденсатора. Выражается это действие при помощи следующей формулы:

Данное выражение многим известно из школьного курса физики, но не мешало бы освежить память и вспомнить, что подразумевает каждая из переменных:

Таким образом, из приведенной формулы следует, что изменить емкость конденсатора легко. Достаточно как-то подействовать на площадь пластины диэлектрического материала, на расстояние между пластинами или непосредственно на проницаемость использованного при производстве материала. Соответственно, выбор конкретной величины зависит исключительно от перечня задач, которые конструкторы поставили перед прибором.

Таким образом, можно даже сделать емкостной датчик своими руками, так как с конструктивной точки зрения это – обычный плоский или цилиндрический конденсатор, одна из пластин которого постоянно испытывает контролируемое перемещение в пространстве, что приводит к изменению емкости. Следует помнить, что приведенная выше формула верна только в том случае, если вы полностью пренебрегаете краевыми эффектами. Мы еще поговорим об этом в заключительной части нашей статьи.

Следует знать, что такого рода электронные приборы интенсивно используются для измерения угловых и линейных перемещений предметов, вычисления размеров, прикладываемой работы, влажности, концентрации действующего вещества и прочих характеристик. Что касается конструктивной стороны вопроса, то упомянутые КИПы изготавливают плоскопараллельными, в цилиндрических корпусах, со штыревыми электродами, с прокладкой из диэлектрического материала и вовсе без него.

Вот как функционируют емкостные датчики. Принцип работы некоторых из них нужно знать особенно подробно. В рамках этой статьи мы приведем несколько формул, которые могут оказаться для вас полезными.

Как работает такой измеритель

По сути дела, подобный сенсор представляет собой конденсатор. На определении его характеристики базируется работа измерителя и контроль параметров. Поэтому вполне к месту будет вспомнить о том, что такое конденсатор.

Про конденсатор, его характеристики

Как известно, емкость конденсатора определяется формулой

Емкостный метод измерения

В этой формуле три переменные величины — диэлектрическая проницаемость Ɛ, площадь S обкладок конденсатора и зазор между обкладками d. Изменение любой из них приведет к изменению емкости, а отслеживание колебаний позволит контролировать характеристики среды или другого параметра.

Принцип работы емкостного измерителя

Самое простое техническое решение — включить измерительный сенсор во времязадающую цепь генератора. Не вдаваясь в тонкости схемотехники, можно сказать, что принцип работы любого емкостного датчика тем или иным образом связан с изменением параметров генератора. Это происходит из-за колебаний емкости конденсатора, что приводит к генерации им колебаний другой частоты.

Таким образом, отслеживая ее значение на выходе измерителя, можно оценивать изменения контролируемого параметра. Конечно, в каждом конкретном случае схемотехническое решение может быть разным. Во многом оно будет зависеть от параметра конденсатора, на который оказывается воздействие со стороны внешней среды.

Емкостный метод измерения

Это может быть изменение зазора между обкладками конденсатора из-за их сближения или удаления. Или при заполнении резервуара другой средой, например водой, изменится значение диэлектрической проницаемости. Или обкладки конденсатора после внешних воздействий будут располагаться друг относительно друга по-разному.

Любое подобное воздействие вызовет изменение значения емкости конденсатора, а значит, повлияет на работу схемы. Например, емкостные датчики уровня контролируют степень заполнения резервуара или бункера. Зная зависимость между уровнем жидкости и емкостью конденсатора, можно определить, насколько заполнен бак.

Хотя надо отметить, что могут применяться и другие способы обработки сигналов датчика. Их достаточно много, выбор того или иного зависит от конкретных условий. Современный уровень развития электроники позволяет получать обработанный сигнал в виде цифрового кода.

Еще один метод измерения емкости — использование аналого-цифровых преобразователей. Микроконтроллеры вполне могут справиться подобной задачей. В этом случае значительно упрощается измерительная часть приборов на их основе.

Формулы для описания принципа действия некоторых видов датчиков

Емкостный метод измерения

Под «Х» в данном случае понимается длина перекрытия используемых электродов. Соответственно, «а» обозначает ширину пластин самого конденсатора. Нужно заметить, что такие приборы нашли свое применение в самых различных областях промышленности, где их используют для точнейшего измерения угловых величин. Емкость преобразователя в таком случае находят посредством следующего выражения:

С= εεₒ(r₂- r₁)/2δ * (φₒ-φ).

Дабы точно измерить чувствительность, следует применять несколько иную формулу:

K= εεₒ(r₂- r₁)/2δ.

Давайте разберемся, что подразумевается под теми переменными, которые входят в состав данных уравнений:

Наконец, разберем математическое выражение, которое описывает принцип работы емкостного измерителя с изменяемым воздушным зазором:

Нетрудно догадаться, что под δₒ понимается первичный зазор, литерой же Х обозначают величину перемещения пластины. Обратите внимание! Так как статические характеристики сугубо не линейны, обычно датчик уровня такого типа применяют для измерения чрезвычайно малых перемещений, величина которых не превышает 0,1δₒ. Естественно, эти приборы крайне востребованы в точном машиностроении, где даже меньшая погрешность может привести к возникновению достаточно серьезных проблем.

Где они могут быть использованы?

Области их возможного применения чрезвычайно разнообразны. Так, практически во всех отраслях промышленности можно встретить операции, которые контролируются именно этими приборами. Их применяют для контроля над заполнением различных резервуаров, причем их содержимое может быть жидким, сыпучим или же газообразным (датчик газа).

Емкостный метод измерения

Кроме того, емкостной датчик может быть использован в качестве конечного выключателя на конвейерной линии или станке производственного цеха. Необходим он и для наиболее точного позиционирования различных механизмов.

Где купить

Различные сенсорные устройства можно купить в специализированном магазине. Но существует другой вариант, который недавно получил ещё и значительные улучшения. Долго ждать посылку из Китая больше не требуется: в интернет-магазине АлиЭкспресс появилась возможность отгрузки с перевалочных складов, расположенных в различных странах. Например, при заказе вы можете указать опцию «Доставка из Российской Федерации».

Переходите по ссылкам и выбирайте:

Датчики приближения

Но в настоящее время особым спросом пользуются датчики приближения, которые выполнены по точно такому же принципу. Спектр их использования еще шире. Связано это с копеечной стоимостью устройств и возможностью работы практически во всех видах промышленности. Впрочем, имеются типичные отрасли, где приборы этого типа являются наиболее востребованными:

Неудивительно, что эти электронные приборы являются наиболее распространенной в точном машиностроении, энергетике и многих других отраслях разновидностью датчиков.

Датчики присутствия

Другим, не менее важным и востребованным вариантом применения датчиков на основе емкости является их использование для обнаружения кого- или чего-либо в зоне контроля. Самый простой пример — включение освещения на лестничной площадке. Хотя этим далеко не исчерпываются возможности таких измерителей. Не менее востребовано применение таких сенсоров в системах охранной сигнализации. Или подсчета количества штучной продукции.

Как это работает

Выше уже отмечалось, что человеческое тело обладает определенной диэлектрической проницаемостью и проводимостью.

Емкостный метод измерения

На рисунке представлено схематическое изображение такой системы. Имеются два электрода, подключенные к измерителю. Каждый из них обладает своей емкостью, обозначенной С1. В результате есть определенная результирующая емкость у всей системы.

При появлении в контролируемой зоне какого-то нового объекта, например человека, у системы образуются две дополнительные емкости: Са — между электродом и телом человека, и Сb — между человеком и землей. Результирующая емкость всей системы изменится, и это изменение может быть отслежено схемой контроля.

Еще один способ обнаружения присутствия

В этом случае также используется эффект увеличения емкости при появлении постороннего предмета в зоне контроля. Только в данном случае применяется механизм активного воздействия на контролируемый участок. Для этого используется схема датчика с активным излучателем.

Емкостный метод измерения

В состав такого измерителя входят генератор сигналов, компаратор и усилитель-преобразователь. При включении схемы в пространстве перед измерителем возникает электрическое поле. Генератор настроен таким образом, чтобы при отсутствии посторонних предметов он не запускался. Достигается это тем, что свободное пространство считается развернутым конденсатором с диэлектрической проницаемостью равной 1. Значение емкости получается недостаточным для запуска генератора.

При появлении каких-либо материалов, объектов, людей перед измерителем диэлектрическая проницаемость среды изменяется (увеличивается), также растет емкость конденсатора. Это приводит к запуску генератора. Амплитуда колебаний будет зависеть от расстояния до предмета, его материала и диэлектрической проницаемости.

При достижении амплитуды колебаний определенной величины, срабатывает компаратор и выдает сигнал на усилитель. Посторонний предмет обнаружен.

Данная схема может применяться не только в системах охранной сигнализации для фиксации вторжения в закрытую зону, но и для других целей. На этом принципе может работать система подсчета количества штучного товара, например, упаковок молока, консервных банок или любых других аналогичных предметов.

Инклинометры

Приборами, которые стали сравнительно распространенными только в последние годы, являются малогабаритные емкостные инклинометры, обеспечивающие передачу электрического выходного сигнала, величина которого прямо пропорциональна углу наклона используемого датчика.

Наиболее распространенные основные области использования данных приборов: системы выравнивания платформ, определение величины прогиба и технической деформации разного рода опорных балок, а также точнейший контроль уклона автомобильных, железнодорожных путей еще на этапе их строительства.

Емкостный метод измерения

Очень важны емкостные датчики уровня топлива в нефтяной промышленности. Они используются даже на супертанкерах, которые за один рейс перевозят десятки и сотни тысяч тонн переработанных нефтепродуктов. Чрезвычайно эффективны эти приборы даже в условиях образования крайне обильного конденсата и высокой степени запыленности производственного помещения (тот же датчик газа).

Находят они свое применение и при измерении величины абсолютного и относительного уровня давления, а также толщины диэлектрического материала, что чрезвычайно важно практически во всех отраслях промышленности, где используются действительно мощные конденсаторы.

Что такое ёмкостный датчик его устройство и режим работы

Этот тип датчика не очень сложен как устройство и обычно состоит из:

Корпус дает возможность собрать все элементы в одно целое. Кроме того, он обеспечивает надежную защиту элементов от внешних факторов, которые могут повлиять на его эффективность. Корпус емкостного датчика обычно выполнен из латуни или полиамида.

Это специальная смола, которая защищает сенсорные элементы от влаги или других вредных веществ.

Триггер создает необходимую мощность сигнала переключения и величину гистерезиса (это разница в расстоянии до включения).

Светодиоды обеспечивают быструю настройку и показывают положение переключателя.

Усиливает выходной сигнал до желаемого значения.

Демодулятор изменяет высокочастотные колебания, пока не изменится напряжение.

Он создает электрическое поле, которое воздействует на объект.

Рабочая поверхность емкостного датчика обычно представляет собой два электрода, которые действуют как конденсаторные пластины, которые подключены к цепи обратной связи генератора. Он, в свою очередь, настроен на изменение своей мощности по мере приближения к контролируемому объекту.

В результате этих колебаний, когда датчик приближается к объекту, генератор генерирует возрастающую амплитуду, которая обрабатывается и создает выходной сигнал.

ЕМКОСТНЫЙ ПРИНЦИП ИЗМЕРЕНИЯ:

В 60-х годах XX в. были разработаны первые аналоговые электронные датчики давления, в которых использовался емкостный принцип измерения.

Атмосферное для датчиков избыточного давления и вакуум для датчиков абсолютного давления.

Емкостный сенсор в его современном варианте представляет собой конденсатор, образованный диэлектрической оболочкой сенсора, помещенной внутри прочного металлического корпуса, измерительными электродами, выполняющими функцию обкладок конденсатора, и упругой металлической или керамической мембраной. Пространство между мембраной и электродами заполнено силиконовым маслом, служащим для передачи давления на мембрану и одновременно для увеличения емкости конденсатора. При подаче разности давлений на сенсор мембрана деформируется, и емкость между обкладками изменяется. Измерение емкости производится электронным модулем датчика, подключенным к обкладкам сенсора. Кроме того, сенсор обычно содержит еще термопреобразователь (на рисунке не показан).

Недостатки и ограничения емкостных сенсоров, вытекающие из базовых законов физики и до конца неустранимые за счет совершенствования конструкции, материалов и технологии изготовления:   • нелинейный выходной сигнал сенсора;   • значительный гистерезис (из-за неидеальных упругих свойств мембраны);   • сильное влияние статического давления (за счет изменения диэлектрической проницаемости заполняющей жидкости);   • существенное влияние температуры (за счет температурного расширения элементов сенсора и изменения диэлектрической проницаемости);   • недостаточная стабильность (из-за “усталости” материала мембраны);   • чувствительность к вибрации (резонансная частота колебаний мембраны находится в пределах спектра промышленных вибраций).

Часть этих недостатков (нелинейность, влияние температуры и отчасти давления) до определенной степени компенсируется в современных серийных датчиках путем так называемой “характеризации”, т. е. калибровки датчиков на заводе-изготовителе при различных температурах и давлениях с дальнейшим расчетом и “прошивкой” таблицы поправочных коэффициентов в память микропроцессорного электронного модуля. Это весьма трудоемкая и дорогостоящая проце­дура, требующая специального высокоточного оборудования, что сказывается на стоимости датчиков.

Другие недостатки (гистерезис, дрейф нуля, остаточное влияние статического давления, чувствительность к вибрации) не могут быть скомпенсированы характеризацией. Чтобы уменьшить эти недостатки, изготовители применяют современные прогрессивные материалы для центральной мембраны сенсора, а также различные, все более изощренные варианты конструкции сенсора. Определенный прогресс в данном вопросе имеется, однако, кардинальные решения, устраняющие указанные недостатки, невозможны в принципе, поскольку эти недостатки заложены в самом емкостном принципе измерения. А каждое следующее небольшое улучшение характеристик значительно усложняет конструкцию и технологию изготовления датчика, что ведет к его удорожанию и не способствует повышению надежности.

ТЕНЗО- ИЛИ ПЬЕЗОРЕЗИСТИВНЫЙ ПРИНЦИП ИЗМЕРЕНИЯ:

Тензо- или пьезорезистивный принцип измерения давления основан на изменении удельного сопротивления вещества при деформации (тензорезистивный эффект).

Термин “тензорезистивный” употребляется, как правило, по отношению к сенсорам, в которых используются тонкопленочные тензопреобразователи, либо структуры КНС (кремний на сапфире). В таких сенсорах упругим элементом является металлическая или керамическая мембрана, на которую наклеивается полупроводниковый тензопреобразователь.

“Пьезорезистивными” обычно называют монокристаллические кремниевые сенсоры с диффузионными пьезорезисторами, в которых упругим элементом служит сама кремниевая мембрана.

Конструкция тензорезистивного сенсора:типичный тензорезистивный сенсор давления на основе структуры КНС состоит из упругой металлической мембраны, к которой припаян тензопреобразователь, представляющий собой подложку из сапфира, на которой методом гетероэпитаксиального наращивания сформирован измерительный мост Уитстона из кремниевых тензорезисторов. Кроме тензомоста, на подложке сформирована схема температурной компенсации (на рисунке не показана). Мембрана по технологическим соображениям делается достаточно толстой, поскольку поверхность, на которую припаивается КНС, должна быть отполирована с высокой чистотой.

Достоинства тензорезистивного принципа измерения давления:   • сравнительная простота в изготовлении;   • потенциально широкий диапазон рабочих температур.

Недостатки тензорезистивных сенсоровувствительность (в пределах 1%);   • значительные гистерезисные явления и нестабильность (из-за неоднородности конструкции и “усталости” металла мембраны);   • сильное влияние температуры (за счет различия коэффициентов температурного расширения элементов сенсора и изменения электропроводности кремния);   • сильное влияние статического давления (из-за различия упругих свойств элементов конструкции);

Так же, как и емкостные, современные тензорезистивные датчики подвергаются при выпуске характеризации.

Данный тип сенсора нашел применение в аналоговых однопредельных датчиках избыточного и абсолютного давления, требования к которым существенно менее жесткие, чем к многопредельным датчикам давления. Ведущими мировыми производителями тензорезистивные многопредельные датчики давления сейчас практически не выпускаются.

Конструкция пьезорезистивного сенсора:

Пьезорезистивный сенсор, как и тензорезистивный, содержит упругую мембрану, закрепленную на стеклянном основании, на которой имеется мост Уитстона, преобразующий деформацию мембраны в электрический сигнал. Однако в данном случае мембрана изготавливается из монокристаллического кремния, а вместо тензорезисторов используются сформированные методом диффузии пьезорезисторы. Поскольку жесткость кремниевой мембраны значительно ниже, чем металлической, разность давлений передается от наружных разделительных мембран через силиконовое масло непосредственно на сенсор без использования рычагов, тяг и т. п.

Достоинства пьезорезистивных сенсоров:   • малый гистерезис,   • стойкость к вибрации   • однородность упругой мембраны.

При применении емкостных, тензо- и пьезорезистивных сенсоров в многопредельных перенастраиваемых датчиках давления имеет значение еще один их недостаток – аналоговый выходной сигнал, который необходимо усиливать и оцифровывать для обработки микропроцессором электронного модуля.

Обобщенная функциональная схема датчика давления с аналоговым сигналом сенсора представлена на рисунке. Несмотря на наличие микропроцессора, такой датчик не может полностью реализовать все преимущества цифровой схемотехники, поскольку аналоговые цепи измерительного усилителя и АЦП являются потенциальным источником шумов, нелинейности и дрейфа. Кроме того, в этой схеме при перенастройке шкалы для максимального использования разрядности АЦП изменяется коэффициент усиления сигнала с сенсора. Это приводит к необходимости проверки и подстройки нуля после перенастройки шкалы (для лучших датчиков такого типа) и даже к многократной итерационной подстройке нуля и шкалы с использованием калибратора давления и тока (для менее совершенных датчиков). Использование цифровых коммуникационных протоколов (типа HART и других) не избавляет от этой процедуры, просто подстройка производится с клавиатуры коммуникатора, а не с помощью потенциометров и кнопок.

РЕЗОНАНСНЫЙ ПРИНЦИП ИЗМЕРЕНИЯ ДАВЛЕНИЯ:

Резонансный принцип измерения давления основан на преобразовании резонатора деформации в частоту колебаний.

Конструкция и схема подключения резонансного сенсора представлены на рисунке. Сенсор представляет собой монокристаллическую кремниевую мембрану специальной конструкции, на которой методом эпитаксиального наращивания сформированы два резонатора Н-образной формы. Мембрана закреплена на стеклянной подложке, разность давлений от внешних разделительных мембран датчика передается на сенсор через силиконовое масло. Резонаторы находятся в поле постоянного магнита, и каждый из них подключен в качестве частотно-задающего элемента в цепь обратной связи генератора переменного напряжения. За счет пьезоэлектрического эффекта, которым обладает кремний, напряжение на одной паре контактов резонатора преобразуется в его деформацию, а затем обратно в напряжение на другой паре контактов. В результате в цепи генерируется синусоидальное переменное напряжение на собственной частоте резонатора, поскольку он обладает очень высокой добротностью. Кварцевые резонаторы более простой конструкции повсеместно используются в электронике в качестве высокостабильных частотнозадающих элементов. Хорошо известно, что собственная частота такого резонатора определяется только тремя параметрами: его массой, геометрическими размерами и модулем Юнга.

При приложении к сенсору разности давлений мембрана изгибается, в результате ее деформации собственные частоты резонаторов изменяются пропорционально приложенному давлению. Сенсор спроектирован таким образом, что один резонатор при этом растягивается, а другой сжимается. Соответственно частота первого резонатора уменьшается, а второго увеличивается. Разность этих частот, прямо пропорциональная разности давлений, измеряется электронным модулем датчика и по ней вычисляется разность давлений.

Преимущества резонансного принципа измерения:Дифференциально-резонансный принцип измерения и конструкция кремниевого резонансного сенсора обладают целым рядом очень важных преимуществ и обеспечивают разработчикам практически неограниченные возможности для совершенствования датчиков давления.

1. Резонансный сенсор благодаря абсолютным упругим свойствам монокристаллического кремния не имеет гистерезиса (<0,001% измеряемой величины, в пределах пог­решности эталонных средств измерения) и практически лишен нелинейности (<0,003% измеряемой величины). Собственные частоты резонаторов (порядка 90 кГц) лежат далеко за пределами спектра промышленных шумов, что обеспечивает сенсору иммунитет к вибрации.

Разность давлений: ∆P ~ f1 – f2.Статическое давление: Рст. ~ f1΄ – f1.Температура: T ~ R.

2. Дифференциальный выходной сигнал сенсора в сочетании с очень низким коэффициентом температурного расширения кремния.

3. У резонансного сенсора отсутствуют факторы дрейфа, поскольку монокристаллический кремний химически инертен и не подвержен “усталости”, что обеспечивает практически абсолютную стабильность. Ниже приведены результаты многолетних исследований стабильности одного из первых серийно изготовленных резонансных сенсоров.

4. Частотный выходной сигнал с сенсора не требует аналого-цифрового преобразования. Резонансные частоты измеряются непосредственно цифровыми счетчиками с очень высокой точностью (<0,004% в серийных датчиках).

Это позволяет сделать датчик в полном смысле слова цифровым, устранить такие традиционные проблемы, как временную и температурную нестабильность аналоговых цепей измерительного усилителя и АЦП, необходимость подстройки нуля и калибровки датчика после перенастройки шкалы (у цифрового датчика перенастройка сводится к изменению коэффициентов, используемых микропроцессором для пересчета результатов измерения в аналоговый выходной сигнал). При передаче результатов измерений по цифровым протоколам перенастройка шкалы такому датчику вообще не требуется.

Сущность способа заключается в поочередном измерении электрической емкости рабочего и компенсационного датчиков и определении уровня по формуле:

Емкостный метод измерения

Рис. 1. Емкостной измеритель уровня жидкости

Конструктивные константы емкостных датчиков определяются следующим образом:

Емкостный метод измерения

— относительная диэлектрическая проницаемость воздуха(

Емкостный метод измерения

Рис. 2. Эквивалентная схема участка датчика 2 на границе раздела «воздух-жидкость»

Вторичное измерительно-вычислительное устройство обладает свойствами универсальности: способно измерять как электрическую емкость датчиков, по оптимальному алгоритму, так и вести расчет уровня жидкости. Полученные значения электрических емкостей конденсаторных датчиков 1 и 2 измеряются поочередно и многократно, а затем усредняются, статистически обрабатываются и участвуют в дальнейших расчетах, согласно алгоритму функционирования системы. Измеритель уровня обладает функцией выведения сигналов о состоянии контролируемых параметров для управления внешними исполнительными устройствами.

1.                  Minaev I. G., Mastepanenko M. A. By a capacity liquidometer // Вiсник Черкаського державного технологiчного универсiтету: сб. ст. Спецвыпуск. Черкассы: Изд-во ЧГТУ, 2009. С. 69–71.

2.                  Мастепаненко М. А., Воротников И. Н., Гурковский А. А., Тарануха Д. С. Аппаратно-алгоритмический комплекс информационно-измерительной системы контроля уровня топлива на основе емкостных датчиков // Молодой ученый. 2015. № 7. С. 168–172.

3.                  Минаев И. Г., Мастепаненко М. А. Информационно-измерительная система контроля уровня различных жидкостей // Вiсник Черкаського державного технологiчного универсiтету: сб. ст. — Черкассы: Изд-во Черкас. гос. техн. ун-та. 2010. № 3. С. 61–63.

4.                  Пат. 2407993 Российская Федерация, МПК 8 G01F23/24. Емкостной способ измерения уровня жидкостей и устройство для его осуществления / Минаев И. Г., Мастепаненко М. А.; заявитель и патентообладатель ФГБОУ ВПО Ставропольский государственный аграрный университет. — № 2009141472/28; заявл. 09.11.2009; опубл. 27. 12.2010, Бюл. № 36. — 2 с.

5.                  Пат. 147261 Российская Федерация, МПК 8 G01F23/24. Емкостной измеритель уровня жидкости / Мастепаненко М. А., Воротников И. Н, Шарипов И. К., Аникуев С. В., Фалько К. А..; заявитель и патентообладатель ФГБОУ ВПО Ставропольский государственный аграрный университет. — № 2014119647; заявл. 15.05.2014; опубл. 27.10.2014, Бюл. № 30. -2 с.

6.                  Пат. 85641 Российская Федерация, МПК 8 G01F23/24. Емкостной измеритель уровня / Минаев И. Г., Ушкур Д. Г., Мастепаненко М. А., Самойленко В. В.; заявитель и патентообладатель ООО НПО Электроимпульс. — № 2009105632/22; заявл. 19.02.2009; опубл. 19.02. 2009, Бюл. № 22. — 1 с.

7.                  Пат. 93975 Российская Федерация, МПК 8 G01F23/24. Емкостный уровнемер жидкостей / Минаев И. Г., Мастепаненко М. А.; заявитель и патентообладатель ФГБОУ ВПО Ставропольский государственный аграрный университет. — № 2009147414/22 (070186); заявл. 21.12.2009; опубл. 10. 05.2010.

8.                  Математические модели и методы обработки измерительных сигналов емкостных преобразователей на постоянном токе: монография / М. А. Мастепаненко, И. Н. Воротников, С. В. Аникуев, И. К. Шарипов. — Ставрополь: АГРУС Ставропольского гос. Аграрного ун-та, 2015. 232с.

9.                  Минаев И. Г., Мастепаненко М. А. Емкостной способ измерения уровня электропроводных и диэлектрических жидкостей // Приборы и системы. Управление, контроль, диагностика. 2011. № 5. С. 52–55.

10.              Минаев И. Г., Воротников И. Н., Мастепаненко М. А. Система непрерывного контроля уровня различных жидкостей на основе микроконтроллера // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве: сб. науч. тр. / СтГАУ. Ставрополь: АГРУС, 2011. C. 181–185.

11.              Электромагнитная совместимость в электроэнергетике: учебное пособие / А. Ф. Шаталов, И. Н. Воротников, М. А. Мастепаненко, И. К. Шарипов, С. В. Аникуев. Ставрополь: АГРУС, 2014. 64 с.

12.              Минаев И. Г., Воротников И. Н., Мастепаненко М. А. Универсальный способ контроля уровня различных жидкостей и аппаратный комплекс для его реализации // Вестник АПК Ставрополья. 2012. № 5. С. 55–58.

13.              Моделирование в электроэнергетике: учебное пособие / А. Ф. Шаталов, И. Н. Воротников, М. А. Мастепаненко, И. К. Шарипов, С. В. Аникуев. Ставрополь: АГРУС, 2014. 140 с.

14.              Воротников И. Н., Мастепаненко М. А., Байрамалиев С. Ш., Тарануха Д. С., Фалько К. А. Оценка влияния нелинейности функции преобразования АЦП на погрешность оценки постоянной времени при измерении электрической емкости на постоянном токе // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве: сборник научных трудов по материалам 77-й научно-практической конференции Ставропольского ГАУ (г. Ставрополь, март — апрель 2013 г.) — Ставрополь: АГРУС Ставропольского гос. Аграрного ун-та, 2013. С. 178–184.

15.              Мастепаненко М. А., Воротников И. Н., Шарипов И. К. Алгоритмы оценки постоянной времени измерительной цепи с использованием цифрового дифференцирования // Молодой ученый. 2015. № 7. С. 172–176.

16.              Воротников И. Н., Мастепаненко М. А., Ивашина А. В. Вторичное измерительно-вычислительное устройство конденсаторного датчика уровня // Методы и технические средства повышения эффективности использования электрооборудования в промышленности и сельском хозяйстве: сборник научных трудов по материалам 76-й научно-практической конференции СтГАУ (г. Ставрополь, 10–25 марта 2012 г.) / Ставропольский государственный аграрный университет. Ставрополь: АГРУС, 2012. С. 9–13.

17.              Введение в специальность: учебное пособие / М. А. Мастепаненко, И. К. Шарипов, И. Н. Воротников, Габриелян Ш. Ж., А. В. Ивашина, С. В. Аникуев, В. Н. Шемякин. — Ставрополь: АГРУС Ставропольского гос. аграрного ун-та, 2015. 113 с.

Основные термины (генерируются автоматически): изоляционное покрытие, контролируемая жидкость, граница раздела, датчик, электрическая емкость, компенсационный датчик, относительная диэлектрическая проницаемость, потенциальный электрод, эквивалентная схема участка датчика, электрическая емкость рабочего.

Про анемометры:  Пищит кнопка газа. Что делать?
Оцените статью
Анемометры
Добавить комментарий