Естествознание для взрослых

Естествознание для взрослых Анемометр

ВОЗДУХ

Естествознание для взрослых

ВОЗДУХ – СМЕСЬ ДЕВЯТИ ГАЗОВ. На температурной шкале показаны их температуры плавления и кипения при атмосферном давлении. Для диоксида углерода температуры кипения нет, так как он переходит из газообразной фазы сразу в твердую, минуя жидкую. Газы ожижаются при температуре кипения и затвердевают при температуре плавления.

РЕКТИФИКАЦИОННОЕ РАЗДЕЛЕНИЕ ВОЗДУХА

Естествознание для взрослых

СХЕМА ВОЗДУХОРАЗДЕЛИТЕЛЬНОЙ УСТАНОВКИ. Перед разделением (ректификацией) воздух осушается, очищается и отделяется от углекислого газа в секции очистки. (Порядок следования показан сплошной линией со стрелками.) В следующей секции осуществляется его ожижение. В газообразном виде воздух проходит через теплообменники, где дополнительно очищается от углекислого газа и паров воды. Одновременно остальные составляющие газы охлаждаются и ожижаются. Газы с самыми низкими температурами кипения дополнительно охлаждаются, расширяясь и отдавая свою энергию в детандере. В третьей секции воздух подвергается ректификации в колоннах, в результате чего большинство газов отделяется и замораживается. Дальнейшая обработка может состоять в разделении газов с близкими температурами кипения и очистке кислорода.

Удаление примесей. Прежде чем воздух поступит на вход ожижительной и ректификационной секций воздухоразделительной установки, из него удаляются все примеси, которые либо взвешены в атмосферном воздухе в виде твердых частиц, либо легко могут превратиться в твердые при понижении температуры. В противном случае неизбежна быстрая закупорка узких каналов оборудования. К таким посторонним примесям относятся водяной пар, пыль, дым и пары других веществ, а также углекислый газ. Основная часть этих примесей задерживается масло- и влагоуловителями, как правило, после компрессорного сжатия. Осушка воздуха после сжатия более предпочтительна, так как в этом случае меньше воды приходится удалять в виде пара, поскольку при сжатии он большей частью превращается в жидкость. Дальнейшая сушка воздуха производится пропусканием его через адсорберы с активированным оксидом алюминия или силикагелем (частично дегидратированным диоксидом кремния). Углекислый газ можно удалять химическим путем за счет реакции с гидроксидом калия (едким кали) или натрия (едким натром). Однако эти химикаты быстро расходуются и требуют частого пополнения. На крупных воздухоразделительных установках используются теплообменные аппараты, в которых удаляются одновременно углекислый газ и водяной пар, а также охлаждается воздух, поступающий на вход системы. Легкозамораживаемые газы оседают в твердом виде на металлических поверхностях теплообменников, которые поддерживаются при очень низких температурах потоком отделенных газов, проходящим по их внутренним каналам. Систему периодически очищают от накопившихся примесей, обращая поток газов в теплообменнике.Ожижение. Очищенный воздух поступает в секцию ожижения и охлаждается в системе механической рефрижерации, пока основная его часть не превратится в жидкость. В зависимости от давления, до которого воздух был сжат первоначально, его температура здесь снижается до примерно 100 К. Давления цикла находятся в пределах от 0,6 до 20 МПа. При охлаждении используется холод отделенных ранее газов, поступающих из ректификационной секции. В оптимально сконструированном теплообменнике холод отделенных газов практически полностью передается входящему воздуху. На некоторых установках, в частности таких, где часть отделенных газов отбирается в жидком виде, для предварительного охлаждения до примерно -40° С (230 К) предусматриваются теплообменники с фреоном или метилхлоридом. При более низких температурах, необходимых для ожижения воздуха, охлаждающей средой служит либо входящий воздух, либо отделенный азот. Этот газ, сжатый до определенного давления, приводит в движение расширительную машину, или детандер (обращенный компрессор). Расширяясь, газ перемещает поршень, который через коленчатый вал приводит во вращение электрогенератор, выполняющий функцию “тормоза”. Поскольку газ при расширении в детандере совершает работу, его теплосодержание и температура понижаются. При первом пуске установки необходимо сначала охладить ее до рабочей температуры, а для этого требуется больше холода, чем в установившемся рабочем режиме (захолаживание установки). Охлаждение можно также осуществлять за счет расширения сжатых газов в газообразной или жидкой фазе при истечении через дроссельный клапан. В этом случае понижение температуры обусловлено эффектом Джоуля – Томсона (дроссель-эффектом). Указанные методы охлаждения основаны на разных термодинамических эффектах, и если ввести их в цикл в правильной последовательности, то можно использовать преимущества каждого из них

(см. такжеТЕПЛОТА;ТЕРМОДИНАМИКА;ФИЗИКА НИЗКИХ ТЕМПЕРАТУР).
Секции ожижения и ректификации, работающие при криогенных температурах, требуют хорошей наружной теплоизоляции. Поэтому аппараты названных секций снабжаются кожухами, заполненными такими теплоизолирующими материалами, как минеральная вата, стекловата и пористый вулканический пепел. Конструкционные материалы теплообменников, ректификационных колонн и соединительных трубопроводов выбираются очень тщательно. Углеродистые стали при криогенных температурах становятся хрупкими. Поэтому предпочтение отдается таким материалам, как медь, бронза, латунь, нержавеющая сталь и алюминий, обнаруживающим в криогенных условиях превосходные прочностные характеристики.Ректификация. Разделение ожиженного воздуха на составляющие производится в вертикальных цилиндрических аппаратах, называемых ректификационными колоннами. Внутри такой колонны имеется вертикальный ряд горизонтальных “тарелок” с отверстиями, через которые вниз стекает жидкость, а из нижней части колонны поднимается газ, вступая в контакт с жидкостью на тарелках. В установках для выделения с высокой степенью чистоты всех компонентов воздуха предусматривается целый ряд таких колонн. В верхнюю часть каждой колонны вводится жидкость соответствующего состава, а в нижней создаются условия, необходимые для достаточно интенсивного парообразования, так что в колонне происходит постепенное разделение смеси. В условиях нормального атмосферного давления воздух ожижается при температуре около 80 К (-190° C); состав смеси изменяется по сравнению с первоначальным. Если исходный воздух содержит приблизительно 79% азота и 21% кислорода, то в результате естественного кинетического перераспределения в жидкости будет 65% азота и 35% кислорода, а в газе над жидкостью – 87% азота и 13% кислорода. Другие составляющие газы ведут себя точно так же, независимо от соотношения между кислородом и азотом. Как правило, пар над жидкостью обогащен компонентом с более низкой температурой кипения. Соотношение между фазами зависит, конечно, от давления. По мере того как жидкость опускается, а пары поднимаются по ректификационной колонне, концентрации выделяемых компонентов в них повышаются; в конце концов, в нижней части колонны отбирается кислород “товарной” чистоты, в ее верхней части – высококачественный азот, в других точках – аргон и смесь “более редких” газов. Поскольку на воздухоразделительных установках температура, как правило, не опускается ниже точки кипения азота, неон и гелий остаются неожиженными, и их можно несконденсированными выводить в виде смеси с азотом из основной ректификационной колонны. Смеси кислорода с аргоном разделять труднее, чем смеси газов с большой разницей в температурах кипения. На крупных воздухоразделительных установках конденсационно-испарительный процесс для увеличения выхода аргона высокой чистоты дополняется химическим процессом. К смеси кислорода, азота и аргона, отбираемой из криогенной секции системы, добавляется дозированное количество газообразного водорода. Кислород вступает в реакцию с водородом в присутствии палладиевого катализатора, и образуется вода, которая удаляется в осушителях. Остающаяся газообразная смесь аргона и азота вновь охлаждается и направляется на повторную ректификацию. Редкие газы (гелий, неон, криптон и ксенон) окончательно разделяются на комбинированных установках, где конденсационно-испарительный метод сочетается с методом селективной адсорбции. В качестве адсорбента часто применяется активированный уголь, охлажденный до температуры жидкого азота.Транспортировка и хранение. Кислород, азот и аргон транспортируются и хранятся как в жидком, так и в газообразном виде. Для криогенных жидкостей используются специальные теплоизолированные сосуды. Низкотемпературные газы хранятся под давлением до 17 МПа в стальных баллонах. Редкие газы отпускаются в стеклянных сосудах Дьюара вместимостью 1-2 л; применяются и стальные термосы.

Про анемометры:  Настенные газовые котлы купить в Саранске, цены от 27 500 руб. | интернет-магазин PRO Комфорт

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ РАЗДЕЛЕННЫХ ГАЗОВ

Естествознание для взрослых

ПНЕВМОДРЕЛЬ В РАЗРЕЗЕ. 1 – вход сжатого воздуха; 2 – регулятор числа оборотов; 3 – клапан-выключатель; 4 – автоматическая масленка; 5 – ротор; 6 – лопасть ротора; 7 – редуктор; 8 – патрон для сверла.

Поршневые пневмодвигатели. Поршневой пневмодвигатель сходен с паровой машиной. Сжатый воздух поступает в клапанную коробку, и клапан, срабатывая, впускает порцию воздуха в цилиндр. Под давлением воздуха поршень совершает полезную работу через кривошипный или другой механизм, после чего отработанный воздух выпускается в атмосферу. Пневмоцикл может быть без расширения и с расширением.Пластинчатые ротационные пневмодвигатели. Ротор такого двигателя смещен относительно осевой линии неподвижного корпуса. Прямоугольные пластины (или лопасти), установленные в радиальных пазах ротора, прижимаются к внутренней стенке корпуса. Сжатый воздух поступает в цилиндрический корпус через отверстие в стенке и заполняет “камеру”, образуемую стенкой ротора, стенкой корпуса и одной из пластин. Под давлением воздуха пластина вместе с ротором поворачивается, а следующая пластина, проходя мимо отверстия, прерывает поступление воздуха в данную камеру и открывает ему доступ в следующую. Захваченный воздух расширяется, отдавая часть своей энергии, пока не достигается полный объем камеры. После этого открывается выпускное отверстие, и порция отработанного воздуха выходит наружу.Турбинные пневмодвигатели. В воздушной турбине энергия давления сжатого воздуха преобразуется в кинетическую энергию его направленного движения при расширении воздуха в соплах. Высокоскоростная воздушная струя ударяется о лопатки ротора, действует на него с тангенциальной силой и заставляет вращаться (воздушные турбины сходны с паровыми).
Разделение воздуха методом глубокого охлаждения. М., 1973 Головко Г.А., Ручкин А.В. Разделение воздуха. Л., 1982 Вассерман А.А. и др. Теплофизические свойства воздуха и его компонентов. М., 1986

Энциклопедия Кольера. — Открытое общество.
.

Смотреть что такое “ВОЗДУХ” в других словарях

Во́здух — естественная смесь газов, главным образом азота и кислорода, образующая земную атмосферу. Воздух необходим для нормального существования подавляющего числа наземных живых организмов: кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии (метаболизм, аэробы). В промышленности и в быту кислород воздуха используется для сжигания топлива с целью получения тепла и механической энергии в двигателях внутреннего сгорания. Из воздуха методом сжижения получают инертные газы. В соответствии с Федеральным Законом «Об охране атмосферного воздуха» под атмосферным воздухом понимается «жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений».

Химический состав

Воздух всегда содержит пары воды. Так, при температуре 0 °C 1 м³ воздуха может вмещать максимально 5 граммов воды, а при температуре +10 °C — уже 10 граммов.

Воздух в искусстве

  • Фантастический роман Продавец воздуха (1929 год, автор Беляев, Александр Романович) и одноимённая экранизация этого романа.
  • Одна из песен группы «Алиса» из альбома «Блок ада» (1987) называется «Воздух».
  • Одна из песен группы «Nautilus Pompilius» из альбома «Титаник на Фонтанке» (1993) называется «Воздух».

АТМОСФЕРА

по С.П. Хромову

Состав сухого воздуха у земной поверхности

Атмосфера состоит из смеси газов, называемой воздухом, в которой находятся во взвешенном состоянии жидкие и твердые частички. Общая масса последних незначительна в сравнении со всей массой атмосферы.

Атмосферный воздух у земной поверхности, как правило, является влажным. Это значит, что в его состав, вместе с другими газами, входит водяной пар, т.е. вода в газообразном состоянии. Содержание водяного пара в воздухе меняется в значительных пределах, в отличие от других составных частей воздуха: у земной поверхности оно колеблется между сотыми долями процента и несколькими процентами. Это объясняется тем, что при существующих в атмосфере условиях водяной пар может переходить в жидкое и твердое состояние и, наоборот, может поступать в атмосферу заново вследствие испарения с земной поверхности.

Воздух без водяного пара называют сухим воздухом. У земной поверхности сухой воздух на 99% состоит из азота (78% по объему или 76% по массе) и кислорода (21% по объему или 23% по массе). Оба эти газа входят в состав воздуха у земной поверхности в виде двухатомных молекул (N2 и О2).

Оставшийся 1% приходится почти целиком на аргон (Аr). Всего 0,08% остается на углекислый газ (СО2). Многочисленные другие газы входят в состав воздуха в тысячных, миллионных и еще меньших долях процента. Это криптон, ксенон, неон, гелий, водород, озон, йод, радон, метан, аммиак, перекись водорода, закись азота и др.

Все перечисленные выше газы всегда сохраняют газообразное состояние при наблюдающихся в атмосфере температурах и давлениях не только у земной поверхности, но и в высоких слоях.

Процентный состав сухого воздуха у земной поверхности очень постоянен и практически одинаков повсюду. Существенно меняться может только содержание углекислого газа. В результате процессов дыхания и горения его объемное содержание в воздухе закрытых, плохо вентилируемых помещений, а также промышленных центров может возрастать в несколько раз — до 0,1—0,2%. Совершенно незначительно меняется процентное содержание азота и кислорода.

Водяной пар в воздухе

Процентное содержание водяного пара во влажном воздухе у земной поверхности составляет в среднем от 0,2% в полярных широтах до 2,5% у экватора, а в отдельных случаях колеблется почти от нуля до 4%. В связи с этим становится переменным и процентное соотношение других газов во влажном воздухе. Чем больше в воздухе водяного пара, тем меньшая часть его объема приходится на постоянные газы при тех же условиях давления и температуры.

Водяной пар непрерывно поступает в атмосферу путем испарения с водных поверхностей, с влажной почвы и путем транспирации растений, при этом в разных местах и в разное время он поступает в различных количествах. От земной поверхности он распространяется вверх, а воздушными течениями переносится из одних мест Земли в другие.

В атмосфере может возникать состояние насыщения. В таком состоянии водяной пар содержится в воздухе в количестве, предельно возможном при данной температуре. Водяной пар при этом называют насыщающим, а воздух, содержащий его, насыщенным.

Состояние насыщения обычно достигается при понижении температуры воздуха. Когда это состояние достигнуто, то при дальнейшем понижении температуры часть водяного пара становится избыточной и конденсируется, переходит в жидкое или твердое состояние. В воздухе возникают водяные капельки и ледяные кристаллики облаков и туманов. Облака могут снова испаряться; в других случаях капельки и кристаллики облаков, укрупняясь, могут выпадать на земную поверхность в виде осадков. Вследствие всего этого содержание водяного пара в каждом участке атмосферы непрерывно меняется.

С водяным паром в воздухе и с его переходами из газообразного состояния в жидкое и твердое связаны важнейшие процессы погоды и особенности климата. Наличие водяного пара в атмосфере существенно сказывается на тепловых условиях атмосферы и земной поверхности. Водяной пар сильно поглощает длинноволновую инфракрасную радиацию, которую излучает земная поверхность. В свою очередь и сам он излучает инфракрасную радиацию, большая часть которой идет к земной поверхности. Это уменьшает ночное охлаждение земной поверхности и тем самым также нижних слоев воздуха. На испарение воды с земной поверхности затрачиваются большие количества тепла, а при конденсации водяного пара в атмосфере это тепло отдается воздуху. Облака, возникающие в результате конденсации, отражают и поглощают солнечную радиацию на ее пути к земной поверхности. Осадки, выпадающие из облаков, являются важнейшим элементом погоды и климата. Наконец, наличие водяного пара в атмосфере имеет важное значение для физиологических процессов.

Упругость водяного пара и относительная влажность

Содержание водяного пара в воздухе называют влажностью воздуха. Основные характеристики влажности – это упругость водяного пара и относительная влажность. Абсолютная влажность воздуха – количество водяного пара в единице объема (г/м3).

Про анемометры:  Переключатель воздушного потока. Переключатель потока

Водяной пар, как всякий газ, обладает упругостью (давлением). Упругость водяного пара е пропорциональна его плотности (содержанию в единице объема) и его абсолютной температуре. Она выражается в тех же единицах, что и давление воздуха, т. е. либо в миллиметрах ртутного столба, либо в миллибарах.

Упругость водяного пара в состоянии насыщения называют упругостью насыщения. Это максимальная упругость водяного пара, возможная при данной температуре. Например, при температуре 0° упругость насыщения равна 6,1 мб. На каждые 10° температуры упругость насыщения увеличивается примерно вдвое.

Например, при температуре 20° упругость насыщения равна 23,4 мб. Если при этом фактическая упругость пара в воздухе будет 11,7 мб, то относительная влажность воздуха равна (11,7/23,4)*100 = 50%.
Упругость водяного пара у земной поверхности меняется от сотых долей миллибара (при очень низких температурах зимой в Антарктиде и в Якутии) до 35 мб и более (у экватора). Чем теплее воздух, тем больше водяного пара может он содержать без насыщения и, стало быть, тем больше может быть в нем упругость водяного пара.

Относительная влажность воздуха может принимать все значения от нуля для вполне сухого воздуха (е = 0) до 100% для состояния насыщения (е=Е).

Изменение состава воздуха с высотой

Процентное содержание составных частей сухого воздуха в нескольких нижних десятках километров (до 100-120 км) с высотой почти не меняется. Воздух, находящийся в постоянном движении, хорошо перемешивается по вертикали, и атмосферные газы не расслаиваются по плотности, как это было бы в условиях спокойной атмосферы (где доля более легких газов должна была бы возрастать с высотой).

Однако выше 100 км такое расслоение газов по плотности начинается и постепенно увеличивается с высотой. Примерно до высоты 200 км преобладающим газом атмосферы все-таки остается азот. Выше начинает преобладать кислород, причем кислород в атомарном состоянии: под действием ультрафиолетовой радиации Солнца его двухатомные молекулы разлагаются на заряженные атомы. Выше 1000 км атмосфера состоит главным образом из гелия и водорода, причем водород – также в атомарном состоянии, т. е. в виде заряженных атомов, – преобладает.

Процентное содержание водяного пара в воздухе меняется с высотой. Водяной пар постоянно поступает в атмосферу снизу, а распространяясь вверх конденсируется, сгущается. Поэтому упругость и плотность водяного пара убывают с высотой быстрее, чем упругость и плотность остальных газов воздуха.

На высоте 5 км упругость водяного пара и, следовательно, его содержание в воздухе в десять раз меньше, чем у земной поверхности, а на высоте 8 км – в сто раз меньше. Таким образом, выше 10-15 км содержание водяного пара в воздухе ничтожно мало.

Распределение озона в атмосфере

Изменение с высотой содержания озона в воздухе особенно интересно. У земной поверхности озон содержится в ничтожных количествах. С высотой содержание его возрастает, причем не только в процентном отношении, но и по абсолютным значениям. Максимальное содержание озона наблюдается на высотах 25-30 км; выше оно убывает и на высотах около 60 км сходит на нет.

Процесс образования озона из кислорода происходит в слоях от 60 до 15 км при поглощении кислородом ультрафиолетовой солнечной радиации. Часть двухатомных молекул кислорода разлагается на атомы, а атомы присоединяются к сохранившимся молекулам, образуя трехатомные молекулы озона. Одновременно происходит обратный процесс превращения озона в кислород. В слои ниже 15 км озон заносится из вышележащих слоев при перемешивании воздуха.

Если бы можно было сосредоточить весь атмосферный озон под нормальным давлением, он образовал бы слой только около 3 мм толщиной (приведенная толщина слоя озона). Но и в таком ничтожном количестве озон важен потому, что, сильно поглощая солнечную радиацию, он повышает температуру тех слоев атмосферы, в которых он находится. Ультрафиолетовую радиацию Солнца с длинами волн от 0,15 до 0,29 мк (один микрон – тысячная доля миллиметра) он поглощает целиком. Эта радиация производит физиологически вредное действие, и озон, поглощая ее, предохраняет от нее живые организмы на земной поверхности.

Жидкие и твердые примеси к атмосферному воздуху

Кроме перечисленных выше атмосферных газов, в воздух местами могут проникать другие газы, особенно соединения, возникающие при сгорании топлива (окислы серы, углерода, фосфора и др.). Наиболее заражается такими примесями воздух больших городов и промышленных районов.

В состав атмосферы входят также твердые и жидкие частички, взвешенные в атмосферном воздухе. Кроме водяных капелек и кристаллов, возникающих в атмосфере при конденсации водяного пара, это пыль почвенного и органического происхождения; твердые частички дыма, сажи, пепла и капельки кислот, попадающие в воздух при лесных пожарах, при сжигании топлива, при вулканических извержениях; частички морской соли, попадающие в воздух при разбрызгивании морской воды во время волнения; микроорганизмы (бактерии); пыльца, споры; наконец, космическая пыль, попадающая в атмосферу (около миллиона тонн в год) из межпланетного пространства, а также возникающая при сгорании метеоров в атмосфере. Особое место среди атмосферных примесей занимают продукты искусственного радиоактивного распада, заражающие воздух при испытательных взрывах атомных и термоядерных бомб.

Небольшую часть перечисленных примесей составляет крупная пыль, с частичками радиусом более 5 мк. Почти 95% частичек имеет радиусы менее 5 мк. Вследствие такой малости они могут длительное время удерживаться в атмосфере во взвешенном состоянии. Удаляются из атмосферы они главным образом при выпадении осадков, присоединяясь к капелькам и снежинкам.

Все эти так называемые, аэрозольные примеси, или аэрозоли, в наибольшем количестве содержатся в самых нижних слоях атмосферы: ведь основной их источник – земная поверхность. Особенно загрязнен ими воздух больших городов. Не говоря о вредных газовых примесях (SO2, CO и др.), на каждый кубический сантиметр воздуха здесь приходятся десятки тысяч аэрозольных частичек, а за год на каждый квадратный километр выпадают из атмосферы сотни тонн аэрозолей. В сельских местностях количество частичек аэрозольных примесей в приземном воздухе исчисляется только тысячами на кубический сантиметр, а над океаном – только сотнями.

С высотой число взвешенных частичек быстро убывает; на высотах 5-10 км их всего десятки на кубический сантиметр.

В общем, в атмосферном столбе над каждым квадратным сантиметром земной поверхности содержится 108-109 аэрозольных частичек. Общий их вес в атмосфере не менее 108 т. Это огромное число; но оно мало по сравнению со всей массой атмосферы, которая, как мы увидим дальше, определяется в 5*1015 т.

Бактерии в центральных частях океанов встречаются в количестве нескольких единиц на кубический метр воздуха; в больших городах их уже тысячи и десятки тысяч в том же объеме.

От количества и рода аэрозольных примесей зависят явления поглощения и рассеяния радиации в атмосфере, т. е. ее большая или меньшая прозрачность для радиации. Наличие взвешенных частичек создает в атмосфере также ряд оптических явлений, свойственных коллоидным растворам.

Наиболее крупные аэрозольные частички, обладающие гигроскопическими свойствами, играют в атмосфере роль ядер конденсации, т. е. центров, к которым присоединяются молекулы водяного пара, образуя водяные капельки.

Аэрозольные примеси к воздуху могут легко переноситься воздушными течениями на большие расстояния. Песчаная пыль, попадающая в воздух над пустынями Африки и Передней Азии, неоднократно выпадала в больших количествах на территории Южной и Средней Европы. Дым и пепел больших вулканических извержений неоднократно распространялись в высоких слоях атмосферы на огромные расстояния, окутывая весь Земной шар. Помутнение воздуха и аномально красная окраска зорь наблюдались в течение многих месяцев после извержений.

Дымка, облака, туманы

Капельки и кристаллы, в отличие от пылинок, возникают в самой атмосфере при конденсации водяного пара и могут исчезать, не выпадая, вследствие испарения. Если они очень разрежены и мелки, то обнаруживаются по некоторому помутнению воздуха синеватого или сероватого цвета – дымке. Более плотные их скопления – облака и туманы.

Про анемометры:  6 признаков неисправности датчика положения педали акселератора и стоимость замены - Авто Ремонт - 2022

Капельки облаков обычно очень мелки – от единиц до десятков микронов в диаметре. В каждом кубическом сантиметре облачного воздуха содержится несколько десятков или сотен капелек. Это значит, что на один кубический метр облачного воздуха приходится всего несколько граммов или даже долей грамма жидкой воды. Кристаллики в облаках также в большинстве очень мелки. Поэтому облака могут длительно удерживаться в атмосфере во взвешенном состоянии вследствие сопротивления воздуха и его восходящих движений. Но в облаках может происходить и укрупнение облачных элементов; достигнув определенных размеров, они начинают выпадать из облаков в виде осадков – капелек дождя, кристаллов снега и пр.

Нередко облакоподобные скопления капелек и кристаллов начинаются от самой земной поверхности; в этих случаях они называются туманами.

Ионы в атмосфере

Часть молекул атмосферных газов и частиц атмосферного аэрозоля – капелек, пылинок, кристаллов – несет электрические заряды. Эти заряженные частички называются ионами.

Молекулы воздуха заряжаются вследствие потери электрона или присоединения свободного электрона. К заряженной молекуле присоединяются другие молекулы, в которых происходит путем индукции разделение зарядов. Так возникает электрически заряженный комплекс молекул, называемый легким ионом. Заряженные молекулы могут также присоединяться к ядрам конденсации или пылинкам, взвешенным в воздухе, вследствие чего возникают более крупные тяжелые ионы с массами в тысячи раз большими, чем у легких ионов.

Капельки и кристаллы облаков и осадков, возникая на ионах как на ядрах конденсации, присоединяя их в дальнейшем, а также, получая электрические заряды другими способами, также могут стать носителями электрических зарядов. Заряды капелек и кристаллов гораздо больше, чем заряды ионов: они могут достигать многих миллионов элементарных зарядов (зарядов электрона).

С высотою содержание ионов увеличивается, особенно в слоях выше 80-100 км. Как говорилось выше, ионы являются здесь в основном заряженными атомами кислорода, гелия и водорода и окиси азота. Кроме того, значительная часть ионов в высоких слоях представляет собой свободные электроны.

Так же как и незаряженные частички, ионы в атмосфере постоянно перемещаются. Именно благодаря этому атмосфера обладает электропроводностью, в нижних слоях малой, в высших – значительной.

Электрическое поле атмосферы

Итак, в атмосфере всегда существуют подвижные электрические заряды, связанные с ионами, а также с элементами облаков и осадков. Заряды эти – обоих знаков, причем преобладают положительные, так что суммарный заряд атмосферы – положительный. При этом с высотой он растет. Сама земная поверхность также обладает электрическим зарядом, притом в сумме отрицательным (порядка -6*105 кулонов).

В грозовых облаках происходит сильная электризация облачных элементов и разделение положительных и отрицательных зарядов по отдельным частям облака. Вследствие этого в облаках, а также между облаками и землей возникают огромные разности потенциалов, при которых напряженность поля доходит до десятков тысяч вольт на метр. При этом в атмосфере возникают не только положительные, но и отрицательные заряды, индуцирующие положительный заряд на земной поверхности. В связи с указанными огромными разностями потенциалов в атмосфере возникают искровые электрические разряды, молнии, как в облаках, так и между облаками и землей. При напряженности поля, направленной вверх, молнии могут переносить к земной поверхности очень большие отрицательные заряды, которые и компенсируют потерю отрицательного заряда земной поверхностью в спокойную погоду.

Уравнение состояния газов

Основными характеристиками физического состояния газа являются его давление, температура и плотность. Эти три характеристики не независимы одна от другой. Газы сжимаемы; поэтому плотность их меняется в широких пределах в зависимости от давления и, кроме того, зависит от температуры. Связь между давлением, температурой и плотностью для идеальных газов дается уравнением состояния газов, известным из физики. Оно пишется

ρ = p/RT

Уравнение состояния газов с достаточным приближением применимо и к сухому воздуху, и к водяному пару, и к влажному воздуху. В каждом случае будет своя величина газовой постоянной R. Для влажного воздуха R меняется в зависимости от упругости водяного пара, содержащегося в воздухе.

Атмосферное давление

Всякий газ производит давление на ограничивающие его стенки, т. е. действует на эти стенки с какой-то силой давления, направленной перпендикулярно (нормально) к стенке. Числовую величину этой силы давления, отнесенную к единице площади, и называют давлением. Давление газа объясняется движениями его молекул, той “бомбардировкой”, которой они подвергают стенки. При возрастании температуры и при сохранении объема газа скорости молекулярных движений увеличиваются и, следовательно, давление растет.

В каждой точке атмосферы имеется определенная величина атмосферного давления, или давления воздуха.

Атмосферное давление можно выразить, например, в граммах или килограммах веса на один квадратный сантиметр или метр. На уровне моря оно близко к одному килограмму на квадратный сантиметр. В метеорологии его выражают, однако, в других единицах.

С давних пор принято выражать атмосферное давление в миллиметрах ртутного столба. Это значит, что давление атмосферы сравнивают с эквивалентным ему давлением столба ртути. Когда говорят, например, что атмосферное давление на земной поверхности в данном месте равно 750 мм, это значит, что столб ртути высотою 750 мм давил бы на земную поверхность так же, как давит воздух.

Выражение давления в миллиметрах ртутного столба появилось в метеорологии не случайно. Оно связано с устройством основного прибора для измерения атмосферного давления – ртутного барометра. В этом приборе, известном из элементарного курса физики, атмосферное давление как раз уравновешивается давлением столба ртути; по изменениям высоты ртутного столба можно судить об изменениях атмосферного давления.
На уровне моря среднее атмосферное давление близко к 760 мм рт. ст.

В отдельных случаях давление может меняться на уровне моря в пределах 150 мм рт. ст. С высотой атмосферное давление быстро убывает.

В настоящее время в метеорологии давление выражают в абсолютных единицах – миллибарах (мб). Один миллибар есть давление, которое сила в 1000 дин производит на площадь в один квадратный сантиметр. Среднее атмосферное давление на уровне моря – 760 мм рт. ст. – близко к 1013 мб, а 750 мм рт. ст. эквивалентны 1000 мб. Таким образом, для перехода от величины давления в миллиметрах ртутного столба к величине в миллибарах нужно давление в миллиметрах ртутного столба умножить на 4/3.

Температура воздуха

Воздух, как и всякое тело, всегда имеет температуру, отличную от абсолютного нуля. У земной поверхности температура воздуха варьирует в довольно широких пределах: крайние ее значения, наблюдавшиеся до сих пор, немного ниже +60° (в тропических пустынях) и около -90° (на материке Антарктиды).

С высотою температура воздуха меняется в разных слоях и в разных случаях по-разному. В среднем она сначала понижается до высоты 10-15 км, затем растет до 50-60 км, потом снова падает и т. д.

Температура воздуха, а также почвы и воды в большинстве стран выражается в градусах международной температурной шкалы, или шкалы Цельсия (°С), общепринятой в физических измерениях. Нуль этой шкалы приходится на температуру, при которой тает лед, а +100° – на температуру кипения воды (то и другое при давлении 760 мм рт. ст., близком к фактически существующим на уровне моря условиям). Однако в США и во многих странах Содружества наций употребительна шкала Фаренгейта (F). В этой шкале интервал между точками таяния льда и кипения воды разделен на 180°, причем точке таяния льда приписано значение +32°. Нуль шкалы Цельсия соответствует +32°F, a +100°C = +212°F.

Кроме того, в теоретической метеорологии применяется абсолютная шкала температуры (шкала Кельвина, К).

Оцените статью
Анемометры
Добавить комментарий