- Виды выходов и способы подключения
- Индуктивные датчики
- Pnp npn датчики разница
- Условное обозначение датчика приближения
- Погрешности датчиков
- Датчики с транзисторным выходом PNP/NPN, схема подключения, разница и отличия
- Рекомендуемое оборудование
- Устройство и принцип действия
- Принцип работы и подключение индуктивных датчиков
- Параметры индуктивных датчиков
- Система обозначений индуктивных датчиков
- Маркировка при подключении
- Цветовая маркировка выводов
- Скачать инструкции и руководства на некоторые типы индуктивных датчиков
- Замена датчиков
- Схемы подключения датчиков PNP и NPN
- Конкретный производители
- Бесконтактные датчики PNP и NPN
- Как проверить индуктивный датчик?
- А что там свежего в группе ВК СамЭлектрик. ру?
- Как отремонтировать и проверить индуктивный датчик?
- Реальные датчики
Виды выходов и способы подключения
Для оценки действия чувствительного прибора вводится особая характеристика, оцениваемая по состоянию полярности его выходных параметров. В соответствии с общепринятым обозначением полупроводниковых элементов (транзисторов), входящих в состав электронной схемы датчика, эти выходы называются «PNP» и «NPN».
Отличие этих наименований состоит в том, что они обозначают различные полярности (полюса) источника питания чувствительных приборов. PNP транзисторы коммутируют его положительный выход, а NPN – отрицательный. Нагрузкой выходных схем чаще всего является управляющий микропроцессор.
Основные виды подключений разных индуктивных датчиков
В зависимости от схемы управления контроллером индуктивные датчики обозначаются как HO (нормально открытые) или HЗ – с нормально закрытым входом.
Вариант с NPN транзистором – наиболее распространенный способ включения датчика, поскольку согласно стандартным схемным решениям отрицательный провод делается общим для всех компонентов. В этом случае входы микропроцессоров и других контролирующих устройств активируются положительным напряжением.
Индуктивные датчики
В первой части статьи были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным не все так просто. Нужно учитывать много нюансов: полярность, логика работы, напряжение.
Для примера показаны упрощенные схемы подключения датчиков с транзисторным выходом (рис. 1). Нагрузка, как правило, это вход контроллера.
Рис. 1, а — датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае — отрицательный провод источника питания. Нагрузка (Load) постоянно подключена к «плюсу» (+V). Здесь активный уровень (дискретный «1») на выходе датчика — низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.
Рис. 1, б — случай с транзистором PNP на выходе. Нагрузка (Load) постоянно подключена к «минусу» (0V), подача дискретной «1» (+V) коммутируется транзистором. Этот случай — наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим (нулевым), а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.
Напряжение на транзисторном выходе, как правило, определяется напряжением питания, обычно ограниченным узкими пределами. Например, от 18 до 30 В. На это можно посмотреть с другой стороны — сейчас большинство устройств стандартизовано по напряжениям.
Далее от теории перейдем к практическим вопросам.
Pnp npn датчики разница
В статье рассмотрен такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании встречаются повсеместно. Кроме того, описаны реальные датчики приближения — неотъемлемая часть работы инженера-электронщика, их плюсы, минусы и примеры применения. Часть первая опубликована в предыдущем номере (№5-6, 2017) журнала.
Условное обозначение датчика приближения
На принципиальных схемах индуктивные датчики (датчики приближения) обозначают квадратом с двумя линиями в нем, повернутым на 45°. Пример на рис. 3.
На верхней схеме нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема — нормально закрытый, и третья схема — оба контакта в одном корпусе.
Погрешности датчиков
Бесконтактный индуктивный датчик
Погрешность снятия показаний контрольной системой существенно влияет на работу бесконтактного индуктивного датчика. Ее общая величина набирается из отдельных ошибок измерений по различным показателям: электромагнитным, температурным, аппаратным, магнитной упругости и многим другим.
Электромагнитная погрешность определяется как случайно проявляющаяся величина. Она появляется из-за паразитной ЭДС, наведенной в катушке внешними магнитными полями. В производственных условиях этот компонент создается силовым оборудованием с рабочей частотой 50 Герц. Температурная погрешность – один из важнейших показателей, поскольку работать большинство датчиков могут лишь в определенном диапазоне температур. Она обязательно учитывается при проектировании устройств этого класса.
Погрешность магнитной упругости вводится как показатель нестабильности деформаций сердечника, возникающей в процессе сборки прибора, а также как тот же фактор, но проявляющийся при его работе. Нестабильности внутренних напряжений в магнитопроводе приводит к ошибкам в обработке выходного сигнала. Погрешность, возникающая в самом чувствительном устройстве, проявляется из-за влияния полевой структуры на коэффициент деформации металлических элементов датчика. Кроме того, на ее суммарное значение существенно влияют люфты и зазоры в подвижных частях конструкции.
Погрешность соединительного кабеля набирается из отклонений величины сопротивления его проводных жил в зависимости от температурного фактора, а также как наводки посторонних электромагнитных полей и ЭДС. Тензометрическая погрешность как случайная величина зависит от качества изготовления намоточных элементов датчика (его катушки, в частности). В различных условиях эксплуатации возможно изменение сопротивления обмотки по постоянному току, приводящее к «плаванию» выходного сигнала. Погрешность старения проявляется вследствие износа подвижных элементов датчика, а также изменения электромагнитных свойств магнитопровода.
Проверить реальную величину этого параметра удается только с помощью сверхточных измерительных приборов. При этом обязательно принимаются во внимание кинематические особенности самого датчика. При проектировании и изготовлении чувствительных элементов такая возможность заранее учитывается в его конструкции.
Для индуктивных и емкостных датчиков характерны режимы работы со многими факторами влияния, определяемыми конкретными условиями эксплуатации. Именно поэтому выбор подходящих для данной марки прибора чувствительности и набора выходных параметров является определяющим при его использовании в качестве конечного выключателя.
Датчики с транзисторным выходом PNP/NPN, схема подключения, разница и отличия
Среди всех используемых в промышленности датчиков до сих пор превалируют дискретные, т. е. имеющие два состояния выходного сигнала – включен/выключен (иначе – 0 либо 1). В основном подобные датчики используются для определения некоторых конечных положений, и принцип действия может быть любым – индуктивным, оптическим, емкостным и так далее.
Все подобные датчики объединяет одна характеристика – схемотехника выхода. Основных вариантов здесь два:
— релейный выход основывается, очевидно, на использовании реле. Схема питания датчика при этом гальванически развязана с выходом, что даёт возможность использовать такие датчики для коммутации высокого напряжения.
— транзисторный выход использует PNP либо NPN транзистор на выходе и подключает соответственно плюсовой либо минусовой провод.
Немного теории. Транзисторы PNP и NPN относятся к категории биполярных и имеют три вывода: коллектор, база и эмиттер. Сам транзистор состоит из трёх частей, называемых областями, разделенных двумя p-n переходами. Соответственно, транзистор PNP имеет две области P и одну область N, а NPN, соответственно, две N и одну P. Направление протекания тока также разное:
— для PNP при подаче напряжения на эмиттер ток протекает от эмиттера к коллектору;
— для NPN подача напряжения на коллектор вызывает протекание тока от коллектора к эмиттеру.
Это обуславливает необходимость подключения питания с прямой полярностью относительно общих клемм для транзисторов NPN, и обратной – для PNP.
Любой биполярный транзистор работает по принципу управления током базы для регулирования тока между эмиттером и коллектором. Единственное различие в принципе работы транзисторов PNP и NPN заключается в полярности напряжений, подаваемых на эмиттер, базу и коллектор. В зависимости от реализации смещений p-n переходов возможны различные режимы работы транзисторов, но в общем случае в датчиках используются два:
— насыщение: прямое прохождение тока между эмиттером и коллектором (замкнутый контакт)
— отсечка: отсутствие тока между эмиттером и коллектором (разомкнутый контакт)
Рассмотрим подробнее подключение и особенности применения, например, индуктивных датчиков с транзисторным выходом. Отличием является коммутация разных проводов цепи питания: PNP соединяет плюс источника питания, NPN – минус. Ниже наглядно показаны различия в подключении; справа изображён датчик с выходом PNP, слева – NPN.
Принципиальное отличие логики PNP от NPN
Выбор датчика по типу используемого транзистора обуславливается в первую очередь схемотехникой используемого контроллера или иного оборудования, к которому предполагается подключать датчик. Обычно в документации на контроллеры и устройства коммутации указывается, какой транзисторный выход они позволяют использовать.
Теперь о совместимости. Вообще, существует четыре основных разновидности выхода датчиков:
Помимо типа используемого транзистора, различие также заключается в исходном состоянии выхода – он может быть в нормальном (если датчик не активирован) состоянии либо разомкнутым (открытым), либо замкнутым (закрытым). Отсюда обозначения NO (НО) – normally open (нормально открытый) и normally closed (нормально закрытый).
Что делать, если требуется заменить один датчик на другой, но нет возможности установить аналог с идентичной логикой и схемотехникой выхода? В случае, если меняется только исходное состояние выхода (НО на НЗ и наоборот), путей решения может быть несколько:
— внесение изменений в конструкцию, инициирующую датчик
— внесение изменений в программу (смена алгоритма)
— переключение выходной функции датчика (при наличии такой возможности)
Замена же оптического датчика с изменением типа используемого транзистора представляет собой проблему большую, нежели просто поменять алгоритм или сместить какой-то элемент конструкции. Изменение схемотехники датчика влечет за собой также необходимость внесения существенных изменений в схему его подключения. Конечно, это не всегда допустимо, однако в ряде случаев это единственный выход.
Замена датчика PNP на NPN
Рассмотрим схему, представленную выше слева (для примера взят датчик с транзистором PNP). В случае неактивного датчика с нормально открытым выходом ток не протекает через его выходные контакты; для нормально закрытого, соответственно, ситуация обратная. Благодаря протекающему току на нагрузке создаётся падение напряжения.
Наряду с основной (внешней) нагрузкой датчика, которой может являться вход контроллера, в нём может присутствовать также внутренняя нагрузка, однако она не гарантирует, что датчик будет работать стабильно. Если внутреннего сопротивления нагрузки у датчика нет, такая схема называется схемой с открытым коллектором – она может функционировать исключительно при наличии внешней нагрузки.
Вернемся к схеме. Активация датчика с выходом PNP обеспечивает подачу напряжения +V через транзистор на вход контроллера. Реализация этой схемы с датчиком, имеющим выход NPN, требует добавления в схему дополнительного резистора (номинал которого обычно подбирается в диапазоне 4.9-10 кОм) для обеспечения функционирования транзистора. В этом случае при неактивном датчике напряжение поступает через добавленный резистор на вход контроллера, что делает схему, по сути, нормально закрытой. Активация датчика обеспечивает отсутствие сигнала на входе контроллера, поскольку транзистор NPN, через который проходит почти весь ток дополнительного резистора, шунтирует вход контроллера.
Таким образом, подобный подход обеспечивает возможность замены датчика PNP на NPN при условии, что перефазировка датчика не является проблемой. Это допустимо, когда датчик исполняет роль счетчика импульсов – контроль числа оборотов, количества деталей и т. д.
Если подобное изменение не является приемлемым, и требуется сохранить в том числе логику работы системы, можно пойти по более сложному пути.
Схемы подключения датчиков PNP к устройству со входом NPN и наоборот
Суть заключается в добавлении в схему подключения дополнительного биполярного транзистора, тип которого выбирается исходя из типа входа прибора, к которому подключается датчик, а также двух дополнительных сопротивлений нагрузки. Если используется прибор с входом NPN, то и дополнительный транзистор требуется такой же. Активация датчика инициирует переключение внешнего транзистора, который уже подаёт напряжение на вход прибора. Данная схема, в отличие от рассмотренной ранее, сохраняет логику работы системы, однако более сложна в сборке.
Рекомендуемое оборудование
В наличии 30 шт.
Тип корпуса: Цилиндрический с резьбой
Конструкция корпуса: Короткий корпус
Размер корпуса: Ø 12 мм
Монтажное исполнение: Утапливаемое
Расстояние срабатывания Sn, мм: 4
Рабочее напряжение, В: 10-30 DC
Схема выхода: PNP
Функция выхода: НО
Вид подключения: Разъем M12 × 1
Степень защиты: IP67
Габаритный размер, мм: M12 x 1 / L = 54,5
4 078.00 ₽
В наличии 26 шт.
Тип корпуса: Цилиндрический с резьбой
Конструкция корпуса: Короткий корпус
Размер корпуса: Ø 12 мм
Монтажное исполнение: Утапливаемое
Расстояние срабатывания Sn, мм: 4
Рабочее напряжение, В: 10-30 DC
Схема выхода: PNP
Функция выхода: НЗ
Вид подключения: Разъем M12 × 1
Степень защиты: IP67
Габаритный размер, мм: M12 x 1 / L = 54,5
4 153.00 ₽
В наличии 0 шт.
Тип корпуса: Цилиндрический с резьбой
Конструкция корпуса: Средний корпус
Размер корпуса: Ø 18 мм
Монтажное исполнение: Утапливаемое
Расстояние срабатывания Sn, мм: 8
Рабочее напряжение, В: 10-30 DC
Схема выхода: PNP
Функция выхода: НО/НЗ
Вид подключения: Кабель с разъемом М12 х 1
Регулировка чувствительности: Потенциометр многооборотный
Степень защиты: IP67
Габаритный размер, мм: M18 x 1 / L = 64,7
6 000.00 ₽
Тип корпуса: Цилиндрический с резьбой
Конструкция корпуса: Средний корпус
Размер корпуса: Ø 18 мм
Монтажное исполнение: Утапливаемое
Расстояние срабатывания Sn, мм: 8
Рабочее напряжение, В: 10-30 DC
Схема выхода: NPN
Функция выхода: НО/НЗ
Вид подключения: Кабель с разъемом М12 х 1
Регулировка чувствительности: Потенциометр многооборотный
Степень защиты: IP67
Габаритный размер, мм: M18 x 1 / L = 64,7
Тип корпуса: Цилиндрический с резьбой
Конструкция корпуса: Короткий корпус
Размер корпуса: Ø 30 мм
Монтажное исполнение: Утапливаемое
Расстояние срабатывания Sn, мм: 15
Рабочее напряжение, В: 10-30 DC
Схема выхода: PNP
Функция выхода: НО/НЗ
Вид подключения: Разъем M12 × 1
Регулировка чувствительности: Потенциометр многооборотный
Степень защиты: IP67
Габаритный размер, мм: M30 x 1,5 / L = 50,5
5 424.00 ₽
В наличии 2 шт.
Тип корпуса: Цилиндрический с резьбой
Конструкция корпуса: Короткий корпус
Размер корпуса: Ø 30 мм
Монтажное исполнение: Утапливаемое
Расстояние срабатывания Sn, мм: 15
Рабочее напряжение, В: 10-30 DC
Схема выхода: NPN
Функция выхода: НО/НЗ
Вид подключения: Разъем M12 × 1
Регулировка чувствительности: Потенциометр многооборотный
Степень защиты: IP67
Габаритный размер, мм: M30 x 1,5 / L = 50,5
Устройство и принцип действия
Индуктивный датчик LJ12A3-4-Z/BX (D-12мм)
Индукционные датчики положения, помимо электронного компаратора, содержат в своем составе следующие обязательные компоненты:
- стальной корпус с разъемом для соединительного шнура;
- встроенный чувствительный элемент, регистрирующий на изменения магнитного поля, выполнен в виде стального сердечника с катушкой;
- исполнительный релейный модуль;
- индикатор активации на светодиоде.
Конструкции различных моделей датчиков металла могут иметь некоторые отличия. Они не влияют на сам индукционный датчик, принцип работы его от этого не меняется.
Внутреннее строение индуктивного датчика перемещения
В соответствии с устройством прибора суть его работы описывается следующим образом:
- перемещение металлической части контролируемого объекта приводит к изменению индуктивности чувствительного элемента датчика;
- отклонение объясняется искажением его магнитного поля, следствием которого является изменение параметров электрической схемы и ее активация (светодиод загорается);
- после этого срабатывает электронный модуль и посылает сигнал на исполнительное устройство;
- при поступлении импульса о превышении перемещением допустимого предела выходной (релейный) узел отключает контролируемое оборудование от сети.
Каждая модель имеет собственный показатель чувствительности по перемещению — зазор смещения. Для различных образцов этот параметр варьируется в пределах от 1 микрона до 20 миллиметров.
Принцип работы и подключение индуктивных датчиков
Бесконтактный датчик индуктивности позиционируется как сенсор, способный реагировать на металлические предметы, оказавшиеся в его электромагнитном поле. Благодаря этому свойству индуктивных бесконтактных датчиков удается отслеживать перемещение подвижных частей оборудования и при необходимости отключать двигатель приводного механизма. Для распознавания и анализа изменений магнитного поля в их состав вводится специальный электронный узел, называемый контроллером (компаратором).
Параметры индуктивных датчиков
Индуктивные датчики с различными характеристиками
Помимо диапазона срабатывания или чувствительности индуктивный датчик характеризуется следующими рабочими показателями:
- Размер (диаметр) посадочной резьбы, у различных образцов принимающий значения от 8-ми до 30-ти мм.
- Номинальное напряжение питания при температуре плюс 20 градусов, до 90 Вольт постоянного и до 230 Вольт – переменного токов.
- Общая длина корпуса — ее значение зависит от рабочего напряжения.
Последний показатель у различных образцов может варьироваться в значительных пределах.
Для чувствительной или активной зоны прибора вводится еще один параметр, называемый гарантированным пределом срабатывания. Его нижняя граница равна нулю, а верхняя составляет 80 процентов от номинального значения. Этот показатель иногда называют поправочным коэффициентом рабочего зазора.
Не менее важный показатель функциональности чувствительного прибора – количество соединительных проводов в разъеме. Обычно их насчитывается два или три: два питающих и один для активации схемы. Однако возможны варианты подключения, при обустройстве которых используются четыре или пять контактных точек. Подобные образцы кроме двух питающих проводников содержат два выхода на нагрузку. При этом пятый проводник используется для выбора режима работы самого устройства.
Система обозначений индуктивных датчиков
Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics.
Система обозначений датчиков Autonics
Маркировка при подключении
На принципиальных схемах индуктивные датчики принято обозначать в виде ромба или квадрата с двумя вертикальными линиями внутри. Нередко в них также указывается тип выхода (нормально открытый или закрытый), соответствующий одной из разновидностей полупроводниковых транзисторов. В большинстве вариантов схем указывается нормально закрытая группа или оба типа в одном корпусе.
Цветовая маркировка выводов
Перед установкой датчика необходимо сверить данные с инструкцией
На практике применяется стандартная система маркировки выводов датчиков индуктивности, которой придерживаются все без исключения производители чувствительных приборов. Тем не менее, перед их монтажом рекомендуется внимательно следить за полярностью подключения и обязательно сверяться с прилагаемой к изделиям инструкцией.
На корпусах всех датчиков имеется рисунок с цветной маркировкой проводов, если это позволяют его размеры.
Стандартный порядок обозначения:
- синий (Blue) всегда означает минусовую шину питания;
- коричневым цветом (Brown) обозначается плюсовой проводник;
- черный (Black) соответствует выходу датчика;
- белый (White) – это дополнительный выход или вход.
Для уточнения последнего маркировочного обозначения его следует сверить с данными инструкции, прилагаемой к конкретному прибору.
Скачать инструкции и руководства на некоторые типы индуктивных датчиков
• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан:986 раз./
• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан:1296 раз./
• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан:1374 раз./
• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан:2250 раз./
Замена датчиков
Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:
Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.
Это реализуется такими способами:
- Переделка устройства инициации – механически меняется конструкция.
- Изменение имеющейся схемы включения датчика.
- Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
- Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.
Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:
PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.
Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).
На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.
НО НЗ датчики. Принципиальные схемы.
На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.
Схемы подключения датчиков PNP и NPN
Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.
Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.
PNP выход датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)
NPN выход датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.
Призываю всех не путаться, работа этих схем будет подробно расписана далее.
На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.
Схемы подключения NPN и PNP выходов датчиков
На левом рисунке – датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.
Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.
Конкретный производители
Ниже — мое субъективное мнение по датчикам, с которыми приходилось иметь дело.
«ТЕКО». Для тех, кто выбирает отечественного производителя. Эта челябинская компания существует с советских времен и в настоящее время выпускает большое разнообразие датчиков. К сожалению, по моему опыту, на их долю приходится большое количество электрических отказов. Также у них слабая механическая прочность. Надеюсь, в настоящее время фирма улучшила качество продукции. Несомненное преимущество этой компании — цена, которая может быть в 2–3 раза ниже импортных аналогов (исключение Китай). Пример применения индуктивного датчика «Теко» — рис. 4.
Рис. 4 — Пример применения индуктивного датчика «TEKO»
В данном случае активатор, который проезжает мимо датчика, сместился и поломал оригинальный датчик. Выход — был установлен датчик «Теко» с большой зоной срабатывания.
AUTONICS. Оптимальный выбор по соотношению цена/качество. Эта корейская фирма выпускает большое количество датчиков с неплохим качеством. Благодаря скромным вложениям в раскрутку бренда, цены остаются весьма приемлемыми.
На рис. 5 показан пример модернизации спаивающей головки упаковочной линии.
Рис. 5 — Пример модернизации спаивающей головки упаковочной линии
В верхней части — датчик Autonics. Ранее установили электрический концевой выключатель, как на нижней части фото. Чтобы исключить проблемы с контактами, было решено установить индуктивный датчик, с чем Autonics прекрасно справился и сбои прекратились. Завершением стала прокладка дополнительного провода питания и изготовление крепежной пластины.
OMRON. Это старый раскрученный бренд, поэтому цена на эти датчики довольно высока. Однако и качество на уровне.
На рис. 6 — датчики показывают положение механизма редуктора.
Рис. 6 — Датчик показывает положение механического редуктора.
В большинстве случаев установка датчиков раскрученных брендов нецелесообразна, поэтому они устанавливаются в оборудовании высокой ценовой категории.
ALLEN BRADLEY. Этот американский бренд, как Rolls-Royce в мире моторов. Цена весьма высока, а вот качество в конкретно взятом случае подкачало: датчик, установленный на крышке бункера сыпучего вещества, перестал работать (рис. 7).
Рис. 7 — Дитчик Allen Bradley
Оказалось, проблема в контактах разъема. Их подогнули и почистили. В данном случае при грамотной установке датчик «Теко» прекрасно бы справился. Кстати, разница в цене этих датчиков — примерно в 10 раз!
Следует сказать, что в настоящее время более 90% от общего числа индуктивных датчиков имеют замену на датчики других производителей. Редко бывают случаи, когда нужен какой-то определенный тип. Как правило, это связано с габаритами и особенностями монтажа. В пределах одного предприятия целесообразно остановить выбор на одном производителе.
Данная статья – вторая часть статьи про разновидности и принципы работы датчиков. Кто не читал – рекомендую, там очень много тонкостей разложено по полочкам.
Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.
Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.
В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.
Рекомендую тем, кто интересуется, также мою статью про параллельное подключение транзисторных выходов.
Бесконтактные датчики PNP и NPN
Основное назначение бесконтактных датчиков приближения — это позиционирование и обнаружение объектов без физического контакта. Особенно они применяются там, где требуется обнаружение равномерных движений – например в качестве бесконтактного переключателя (концевого индуктивного выключателя) для определения движущихся частей машин (станков), а также в качестве генератора импульсов и т.п.
По принципу действия чувствительного элемента бесконтактные датчики (выключатели) бывают индуктивные, оптические, ультразвуковые, ёмкостные.
Возможности коммутационного элемента бесконтактного датчика различаются по схеме (типу) выхода PNP, NPN и по возможности коммутационного элемента по коммутационной функции:
- НО (NO) – замыкающий;
- НЗ (NC) – размыкающий;
- НО/НЗ (NO/NC) – переключающий.
Как проверить индуктивный датчик?
Как я уже писал в предыдущей части статьи, есть четыре вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения: PNP NO; PNP NC; NPN NO; NPN NC.
Бывает, что нужного типа датчика нет под рукой, а оборудование должно работать без простоя! Хорошая новость — перечисленные типы датчиков можно заменить друг на друга.
Это реализуется следующими способами:
- Переделка устройства инициации — механически меняется конструкция. Например, если NO датчик реагировал на наличие металла, то NC будет реагировать на его отсутствие. Если выход той же полярности, то не изменится ни программа, ни алгоритм работы.
- Изменение имеющейся схемы включения датчика (рассмотрим подробнее ниже).
- Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
- Перепрограммирование программы контроллера (изменение активного уровня входа, изменение алгоритма программы).
Естественно, производители умалчивают о таких возможностях, чтобы продавать большое количество и номенклатуру изделий. Ниже приведен пример, как можно заменить датчик PNP на NPN, изменив схему подключения (рис. 2).
Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле.
На рис. 2, а показана схема датчика с нормально открытым выходом типа PNP. Когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. И наоборот, если контакты замкнуты, то протекающий ток создает падение напряжения на нагрузке.
При активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?
Смотрим на изменения в схеме на рис. 2, б. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 4,7–10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется.
Когда датчик активен, на входе контроллера дискретный «0», поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.
А что там свежего в группе ВК СамЭлектрик. ру?
Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.
Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.
Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.
Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?
Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.
Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.
В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.
Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.
Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.
Как отремонтировать и проверить индуктивный датчик?
Ремонту датчики приближения практически не подлежат, поскольку имеют цельный корпус, залитый компаундом. К тому же, большинство поломок связано с механическими повреждениями из-за неаккуратного персонала или сдвига активатора.
Реальные датчики
Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.
А вот какие оптические датчики я встречаю в своей работе.
Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!
Вариант №1: воспользоваться специальным преобразователем, например устройством согласования сигналов УСМ, которое представлено у нас в ассортименте, или аналогичным.
Вариант №2: если вы хотя бы минимально дружите с паяльником, сделать преобразователь самому.
Если в наличии есть датчик с PNP выходом, а нужен NPN — собираем вот такую схему:
Транзистор Q1 — любой подходящий NPN, например 2SC495, BC445, BD237.
Если же в наличии имеется датчик с NPN выходом, а нужен PNP — такую схему:
Транзистор Q1 — любой подходящий PNP, например 2N5401, КТ502Д.