Измерение температуры металлов

Измерение температуры металлов Анемометр

Измерение температуры металлов

Идёт ли речь о производстве металла или его переработке, контроль температуры металла с помощью датчиков бесконтактного способа измерения служит не только для контроля и оптимизации процессов, но при высоких температурах до 3 000 °C повышает безопасность на рабочем месте.

Особенно важно постоянно контролировать температуру металла на прокатном стане, при поверхностной закалке с применением индукционного нагрева или объёмной штамповке. С этой целью фирма Optris разрабатывает инфракрасные измерительные приборы, отвечающие особым требованиям металлообрабатывающей промышленности, ведь бесконтактный способ измерения температуры металлов не так прост, как Вы можете убедиться, прочитав нашу специальную статью по бесконтактному измерению температуры поверхностей металлов с помощью инфракрасного излучения. Для термометров от Optris, используемых при измерении температуры металлов, не являются проблемами ни высокие температуры окружающего воздуха, ни суровые окружающие условия измерения.

Далее приводятся некоторые примеры применения устройств. Ваш случай применения отсутствует? Нет проблем, обратитесь к нашей брошюре по металлу, или свяжитесь напрямую с одним из наших инженеров, который поможет вам выбрать подходящее измерительное устройство.

Для измерения температур при термической обработке используют специальные приборы — пирометры.

Наибольшее распространение получили термоэлектрические и оптические пирометры.

Измерение температуры металлов

Схема термоэлектрического пирометра приведена на рисунке:

Он представляет собой термопару с гальванометром. Термопара — это две проволочки из разнородных металлов или сплавов, сваренные между собой.

Если место спая проволочек поместить в расплавленный металл, температуру которого мы хотим определить, то на свободных концах проволочек КК возникнет термоэлектродвижущая сила, тем большая, чем больше разность температур «горячего спая» — спая, погруженного в металл, и свободных концов — «холодного спая».

Отклонение стрелки гальванометра, подключенного к свободным концам термопары, при постоянной температуре окружающей среды будет пропорционально температуре исследуемого металла.

Для удобства пользования гальванометром на нем имеется температурная шкала.

Содержание
  1. Приближенные методы определения значения температуры металла
  2. Виды термометров по принципу действия
  3. Контактные
  4. Термометры сопротивления
  5. Электронные термопары
  6. Манометрические
  7. Бесконтактные пирометры
  8. Виды термометров по используемым материалам
  9. Приборы для измерения температуры в промышленности
  10. Общая классификация приборов
  11. Сфера применения датчиков измерения температуры
  12. Процессы закалки и отпуска металла с применением индукционного нагрева
  13. Термоэлектрический метод
  14. Оптический метод
  15. Металлические поверхности в качестве селективного излучателя
  16. Измерение температуры на прокатном стане
  17. Расчёт температуры с помощью инфракрасного излучения
  18. Модель АЧТ — важная опорная характеристика
  19. Бесконтактное измерение температуры металлов
  20. Измерение температуры на установке непрерывной разливки
  21. Инфракрасный спектр излучения
  22. Техобслуживание
  23. Измерение температуры при объёмной штамповке
  24. Инфракрасный термометр optris для измерения металлов
  25. Высокотемпературные измерения металлов
  26. Низкотемпературные измерения металлов
  27. Измерение температуры жидких металлов
  28. Тепловизоры для измерения температуры металлов
  29. Промышленные способы измерения температуры расплавленного металла
  30. Поверхностная закалка с применением индукционного нагрева
Для термопар используют различные металлы и сплавы.

Так, например, для измерения температур 1000–1300° термопару изготовляют из платины и сплава платины с родием.

Для температур 700–950° применяют термопару — хромель (хромоникелевый сплав) и алюмель (алюминеникелевый сплав), еще при более низких температурах используют железо-константановую (медно-никелевый сплав) и медно-константановую термопары.

Температуру раскаленного металла можно определять оптическим пирометром — путем сравнения яркости его свечения с накалом нити электрической лампочки.

На рис. 63, а показан оптический пирометр. Объектив пирометра направляют на раскаленный предмет. Внутри пирометра светится электрическая лампочка. В поле зрения окуляра видны одновременно нить накала и раскаленный металл.

Изменяя с помощью реостата силу электрического постоянного тока, питающего электрическую лампу, подбирают такой ток, чтобы яркость нити накала электрической лампы и раскаленного металла совпала (рис. 63, б).

В зависимости от величины тока стрелка прибора отклонится по шкале на различный угол. Для удобства шкала отградуирована на градусы Цельсия.

Приближенные методы определения значения температуры металла

Помимо перечисленных методов, в практике термической обработки используют приближенные методы, дающие только, ориентировочные значения температуры металла. К таким методам следует отнести определение температуры металла по цветам каления при нагреве под закалку или отжиг и определение температуры металла при отпуске по цветам побежалости, появляющимся на светлой поверхности деталей (рис. 64).

Измерение температуры металлов

Большинство технологических процессов корректно проходят только при определенной температуре. Кроме того, измеряемые температурные показатели помогают определять, насколько корректно используется затрачиваемая энергия.

  • Виды термометров по принципу действия
  • Виды термометров по использованию

Иными словами, это — та величина, которую нужно постоянно контролировать. Все виды приборов для измерения температуры делятся на контактные и бесконтактные. Также они классифицируются по материалам, принципам и способам действия.

Виды термометров по принципу действия

Процесс измерения температуры может основываться на разных физических процессах. Исходя из этого, выделяют 5 видов термометров.

Контактные

Такие приборы еще называют термометрами расширения. Они основаны на отслеживании изменения объема тел под действием меняющейся температуры. Обычно измеряемый диапазон температур составляет от -190 до +500 градусов по Цельсию.

К этой категории относятся жидкостные и механические устройства. Жидкостные представляют собой приборы в стеклянном корпусе, заполненные спиртом, ртутью, толуолом или керосином. Они прочные и устойчивые к внешним воздействиям. Температурный диапазон измерений зависит от типа используемой жидкости (наибольший — у ртутных, наименьший — у цифровых).

Механические могут работать с разными типами сред, включая жидкостные, газообразные, твердые или сыпучие. Универсальность позволяет использовать их в разных инженерных системах.

Термометры сопротивления

К этой категории относятся приборы, которые способны измерять электрическое сопротивление веществ, меняющееся в зависимости от температурных показателей. Рабочий диапазон этих устройств — от -200 до +650 градусов.

Такие термометры состоят из чувствительных термодатчиков и точных электронных блоков, контролирующих изменения проводимости, сопротивления и электрического потенциала. Обычно их встраивают в общую систему мониторинга и оповещения, туда, где нужно отслеживать меняющиеся параметры и не допускать их превышения.

В котельных установках наибольшее применение получили термометры сопротивления медные (ТСМ). Термометрами сопротивления можно измерять температуры от -50 до +600°С.

Электронные термопары

При нагревании эти приборы генерируют ток, что и позволяет измерять температуру. Принцип действия основан на замерах термоэлектродвижущей силы. Диапазон измерений в этом случае — от 0 до +1800 градусов.

Манометрические

Такие термометры учитывают зависимость между температурными показателями и давлением газа. В измеряемую среду помещают термобаллон, соединенный с манометром латунной трубкой. При нагреве термобаллона давление внутри него увеличивается, и эта величина измеряется манометром. Таким образом проводят замеры температуры в диапазоне от -160 до +600 градусов.

Бесконтактные пирометры

В основе этих приборов — инфракрасные датчики, считывающие уровень излучения. Они подразделяются на два вида: яркостные, проводящие измерения излучений на определенной длине волны (диапазон — от +100 до +6000 градусов), и радиационные, когда определяется тепловое действие лучеиспускания (от -50 до +2000 градусов). Они могут использоваться в том числе и для определения температуры нагретого металла, а также при наладке и испытаниях котлов.

Про анемометры:  Расчет мощности газового котла: рассчитать расход газа по потребляемой мощности, как выбрать котел малой мощности, примеры на фото и видео

Виды термометров по используемым материалам

Здесь различают 7 категорий:

  • Жидкостные. Представляют собой корпус, заполненный жидкостью, которая подвержена температурному расширению. Колба с жидкостью прикладывается к шкале. При нагреве жидкость расширяется, и столбик растет, а при охлаждении — наоборот, сжимается (уменьшается). Погрешность измерений такими приборами составляет менее 0,1 градуса.
  • Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
  • Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
  • Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
  • Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
  • Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света). Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
  • Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.

Компания «Измеркон» предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.

Приборы для измерения температуры в промышленности

Температура – статистическая величина, которая характеризует тепловое состояние тела пропорционально кинетической энергии его молекул. Обращаем внимание, что системной единицей измерения является кельвин, а не общепринятый градус Цельсия. Это связано с тем, что за нуль по шкале Кельвина принят абсолютный нуль, так что любая температура по умолчанию будет положительной.

Еще один важный момент заключается в том, что температуру невозможно определить непосредственно, как линейные размеры тела. Параметр измеряется по косвенным признакам – изменению физических свойств. Эти свойства тела называются термометрическим. Измерить температуру – значит преобразовать сигнал измерительной информации в какое-то из термометрических свойств.

В промышленности применяются несколько методов для определения температуры, основанные на изменении физических свойств тел и сред:

  • Тепловое расширение жидкой или газообразной среды, твердого тела при повышении температуры.
  • Изменение давления внутри замкнутого объема – манометрический принцип.
  • Изменение электрического сопротивления под воздействием температуры: методика применяется в терморезисторах.
  • Термоэлектрический эффект.
  • Электромагнитное излучение нагретого тела.

Общая классификация приборов

Принципом для разделения измерительных устройств стали физические свойства тел, которые используются для измерения температуры. В зависимости от этого выделяют несколько групп приборов:

  • Термометры расширения. Эти устройства позволяют фиксировать температуру в широком диапазоне величин: от -190 до +500 градусов. Принцип действия основан на свойстве тел, жидкой или газовой среды расширяться при повышении температуры. Термометры расширения дополнительно делятся на жидкостные стеклянные и механические.
  • Манометрические термометры. Имеют примерно такой же диапазон измерений, а принцип определения температуры основан на изменении давления среды. При нагревании жидкой, газовой или парообразной среды в замкнутом контуре изменяется ее объем, а значит – и давление на стенки контура.
  • Электрические термометры сопротивления. Позволяют измерить температуру в диапазоне от -200 до +650 градусов. Приборы измеряют электрическое сопротивление среды, которое меняется при нагревании или охлаждении.
  • Термопары. Измеряют только положительные температуры в диапазоне до +1800 градусов. Принцип действия основан на свойстве металлов или их сплавов возбуждать электродвижущую силу, величина которой пропорциональна изменениям температуры.
  • Пирометр – устройство для бесконтактного измерения температуры рабочей среды. Прибор определяет характеристики излучаемой телами энергии, которые меняются при нагревании или охлаждении.

Сфера применения датчиков измерения температуры

Для большинства технологических и производственных процессов температура – ключевой фактор, контроль над которой позволяет добиться максимального качества продукции. Измерение термометрических характеристик рабочей среды позволяет избежать аварийных ситуаций, выхода из строя оборудования, остановки производства. Вот только несколько примеров повсеместного использования приборов для измерения температуры в промышленности:

  • Современное автомобильное производство подразумевает выполнение большого количества операций по дополнительной обработке материалов с различными свойствами. Многие производители предлагают отдельную линейку измерительного оборудования для автомобильной промышленности, позволяющего контролировать и оптимизировать рабочий процесс за счет внедрения инфракрасных термометров и тепловизоров.
  • Температурные датчики широко востребованы в полимерной промышленности, производстве и переработке пластмасс. Литье под давление или термоформование полимерных пленок требует непрерывного измерения температуры производственного процесса бесконтактным способом. Правильно подобранное оборудование позволяет добиться максимального качества и минимизировать процент брака.
  • Контроль над температурой необходим в производстве и обработке металлов. Измерения выполняются бесконтактным способом, особенно, когда речь идет о контроле рабочих параметров металла на прокатном стане, при объемной штамповке или закалке путем индукционного нагрева заготовок. Внедрение высокоточных приборов измерения температуры поможет изготавливать качественные изделия, снизить производственные издержки и оптимизировать технологический процесс.
  • Лазерная сварка и резка требует непрерывного контроля над температурой, причем для каждого материала допустимые параметры сильно различаются. В этой сфере востребованы инфракрасные датчики, которые бесконтактно замеряют температуру на стыках или в местах резки, регулируя ее для достижения максимальной производительности.
  • Профилактический ремонт оборудования – залог качественного и бесперебойного производства. При техобслуживании механического или электрического оборудования, эксплуатации систем кондиционирования воздуха важно использовать качественные инфракрасные термометры и тепловизоры. Высокоточные устройства позволяют заранее распознать дефекты или слабые места производственной цепочки – участки перегрева и недогрева. Тем самым снижается риск серьезной неисправности и уменьшаются затраты на техобслуживание и ремонт.
Про анемометры:  STK412-230 SANYO SIP18 Modules

Процессы закалки и отпуска металла с применением индукционного нагрева

Измерение температуры металлов

При термообработке посредством закалки с применением индукционного нагрева деталь попадает в сильное переменное поле, вследствие чего нагревается и остывает в требуемой структуре. За счёт управления частотой имеется возможность локально регулировать глубину проникновения тепла в материал и таким способом обрабатывать отдельные участки детали. Требуемое структурное состояние металла зависит от оптимального температурно-временного режима. Поэтому необходимо постоянно контролировать температуру.

Рекомендуемые устройства: optris CTlaser 1M/2M

Термоэлектрический метод

Данный метод основан на свойствах работы термопары. Термопара представляет собой спайку из металлических проводов из двух неоднородных металлов. Принцип работы термопары заключается в том, что на ее концах при разных температурах возникает разное напряжение. Другими словами каждому показанию температуры соответствует свое напряжение. На этом принципе работают датчики для измерения температуры жидких металлов и их сплавов, приобрести которые можно на сайте http://olil.ru/thermoolil/dditjmis.

Измерение температуры металлов

Термоэлектрические системы измерения температур работают в области 2000 градусов Цельсия, хотя это не является пределом. Их термопарные датчики изготовлены из сплавов драгоценных и редких металлов — например из платины. Недостатком термоэлектрического метода является невозможность постоянного использования датчика в измеряемой высокотемпературной среде, из-за технических сложностей в создании защитной оболочки для датчика — термопары. Сам процесс периодических измерений сопряжен с рисками для рабочего персонала. Так же сюда можно отнести инерционность показания прибора и невозможность его подключения в общую технологическую цепочку.

Оптический метод

Такой метод измерения высоких температур основан на анализе излучаемого инфракрасного света. Приборы этого типа называются пирометрами от греческого слова «pyr» – огонь. По принципу работы пирометр бывает:

  • оптический;
  • радиационный;
  • фотоэлектрический.

Их основное преимущество заключается в способности замерять температуру на безопасном расстоянии от раскаленных сплавов, а верхний предел измерений может превышать 3000 градусов Цельсия. К недостаткам можно отнести большие погрешности измерений. Неточность измерений может быть так же сопряжена из-за наличия шлаков и испарений на поверхности расплавленного металла.

Кроме вышеперечисленных способов температуру расплавленных металлов можно приблизительно определить визуально при помощи специальных цветовых таблиц, где каждому оттенку соответствует свой диапазон температур.

Металлические поверхности в качестве селективного излучателя

В реальности едва ли тело соответствует идеалу АЧТ. На практике же поверхности излучателя используются для калибровки датчиков, которые в требуемом диапазоне длин волн достигают коэффициенты излучения до 0,99. С помощью коэффициента излучения ε (эпсилон), который показывает соотношение реальной величины излучения объекта и чёрного излучателя при одинаковой температуре, можно прекрасно измерять температуру объекта посредством измерения излучения. Коэффициент излучения при этом всегда находится между нулём и единицей; недостающая доля излучения компенсируется посредством указания коэффициента излучения.

Многие измеряемые поверхности имеют постоянный коэффициент излучения высших длин волн, но испускают по сравнению с АЧТ меньше излучения. Они называются серыми излучателями. Большое количество неметаллических материалов обладают как минимум в длинноволновой спектральной области, независимо от свойств их поверхности, высоким и относительно постоянным коэффициентом излучения.

Объекты, чьи коэффициенты излучения среди прочего зависят от коэффициента излучения и длины волны, например, металлические поверхности, называются селективными излучателями. Имеются несколько важных причин, по которым измерение металлов должно всегда выполняться в коротковолновом диапазоне. Во-первых, металлические поверхности при высоких температурах и коротких длинах измеряемых волн (2,3 мкм 1,6 мкм; 1,0 мкм, 0,525 мкм) имеют не только максимальную интенсивность излучения, но и максимальный коэффициент излучения. Во-вторых, здесь они уравниваются с коэффициентом излучения оксидов металлов, так что погрешности температуры, вызванные изменяемым коэффициентом излучения (побежалостью), уменьшаются.

Измерение температуры металлов

Другим важным моментом, влияющим на выбор инфракрасного термометра, выполняющего измерения в диапазоне коротких волн, является то обстоятельство, что металл по сравнению с другими материалами может обладать неизвестными коэффициентами излучения. Пирометры, выполняющие измерения в диапазоне коротких волн, существенно уменьшают погрешности измерения при неправильно настроенном коэффициенте излучения.

Измерение температуры металлов

Измерение температуры на прокатном стане

Измерение температуры металлов

На прокатных станах требуется непрерывное измерение температуры формования между валками для оптимизации процессов и обеспечения качества. Мы рекомендуем для данного процесса использовать быстрый пирометр для измерения температуры листа металла, а также пирометр спектрального соотношения для измерений температуры зоны охлаждения или проволоки.

Рекомендуемые устройства: быстрый инфракрасный термометр optris ctlaser 1m/2m и пирометр спектрального соотношения optris CTratio 1M

Расчёт температуры с помощью инфракрасного излучения

Будучи приёмником излучения, детектор является самым важным элементом каждого инфракрасного термометра. Вследствие поступающего электромагнитного излучения возникает электрический сигнал, который можно точно проанализировать. Сигнал детектора U и температура объекта TОбъекта имеют следующую взаимосвязь:

Измерение температуры металлов

Сигнал детектора, полученный из испускаемого излучения объекта в общем спектре излучения, увеличивается пропорционально четвёртой степени абсолютной температуры объекта. Это означает следующее: если температура объекта измерения увеличивается в два раза, сигнал детектора повышается на коэффициент 16.

Поскольку необходимо учитывать вместе со степенью излучения ε объекта и отраженное излучение окружающей среды на поверхность объекта TОкр. ср. и собственное излучение инфракрасного термометра TПиром. (C — специфичная для устройства постоянная), формула меняется следующим образом:

Модель АЧТ — важная опорная характеристика

Уже в 1900 году Планк, Стефан, Больцман, Вин и Кирхгоф дали точное определение электромагнитному спектру и установили количественные и качественные взаимосвязи для описания инфракрасной энергии. Модель АЧТ образует базу для понимания физических основ бесконтактной технологии измерения температуры и калибровки инфракрасных термометров.

С одной стороны, модель АЧТ представляет собой тело, которое поглощает всё падающее на него излучение; на нем не появляется ни отражение (ρ = 0), ни передача (τ = 0). Его коэффициент поглощения α составляет единицу. С другой стороны, модель АЧТ в зависимости от своей собственной температуры для каждой длины волны испускает максимально возможное количество энергии. Его коэффициент излучения ε также составляет единицу.

Конструкция модели АЧТ очень проста. Нагреваемое закрытое полое тело, которое на одном конце имеет небольшое отверстие. Если это тело довести до любой, но постоянной температуры, то эта полость будет находиться в температурном равновесии, и из отверстия будет выходить идеализированное излучение общего электромагнитного спектра.

Закон излучения Планка показывает основную взаимосвязь для бесконтактного измерения температуры. Он описывает специфичное спектральное излучение M модели АЧТ в полупространстве в зависимости от своей температуры T и рассматриваемой длины волны λ (c: скорость света, h: квант действия по Планку):

Про анемометры:  Что такое температура воздуха и какими приборами ее измеряют

Измерение температуры металлов

Измерение температуры металлов

Verlauf der spezifischen spektralen Ausstrahlung eines schwarzen Strahlers

На прилагаемой диаграмме для примеров температуры показано в каждом случае в логарифмическом виде спектральное излучение M модели АЧТ выше длины волны λ.

Можно вывести несколько взаимосвязей. Краткая характеристика двух из них даётся далее. За счёт интеграции спектральной интенсивности излучения по всем длинам волн от нуля до бесконечности получают величину для всего испускаемого телом излучения. Эту взаимосвязь обозначают как Закон Стефана-Больцмана. Практическое значение бесконтактного измерения температуры уже пояснялось в разделе по расчёту температуры.

Второй видимой из графического изображения взаимосвязью является то, что длина волны, при которой возникает максимальная интенсивность излучения, при увеличении температуры смещается в область коротковолнового диапазона. Эта характеристика лежит в основе Закона смещения Вина и выводится путем дифференцирования из уравнения Планка.

Следовательно, высокая интенсивность излучения является основанием, но не самым важным, для того, почему металлы, имеющие высокую температуру, измеряются при коротких длинах волн. В длинноволновом диапазоне тоже имеется весьма высокая интенсивность. Наибольшее влияние оказывают коэффициент излучения и отражения, а также вытекающие из них ошибки измерения, поскольку в случае с металлом речь идёт о селективном излучателе.

Бесконтактное измерение температуры металлов

Почти на всех промышленных этапах производства поддержание заданной температуры является фактором, обеспечивающим технологический процесс и качество продукции. Бесконтактные инфракрасные термометры получили при этом широкую известность в качестве измерительной техники, поскольку они не оказывают влияния на объект измерения. Это касается и процесса измерения металлов.

Правильный контроль и управление температурой технологического процесса требуют качественного консультирования со стороны изготовителя или базовых знаний по измерительной технике у клиента. В данной статье приводится основная информация по важным параметрам, например, коэффициенту излучения и отражения, а также вытекающим из них ошибкам измерения. Дополнительно показывается, какое влияние они оказывают на измерение металлов, и почему здесь возможно использование надёжного и воспроизводимого бесконтактного способа измерения.

Измерение температуры на установке непрерывной разливки

Измерение температуры металлов

Вместе с ростом эффективности повышается и нагрузка установок непрерывного литья. Это требует широких мероприятий по контролю производственных процессов. Исходя из этого, реализованы некоторые решения, особенно в области измерения температуры: измерительная техника при более высокой точности стала более доступной, благодаря чему оправдывается её широкое применение. Вложенные эксплуатирующими оборудование организациями затраты окупаются, поскольку затратоёмкое прерывание процесса разливки можно предотвратить уже на начальной стадии и тем самым дополнительно повысить качество изделий.

Рекомендуемые устройства: тепловизор optris pi и пирометр спектрального соотношения optris CTratio 1M Специальная статья: «Контроль термических процессов на установках непрерывной разливки»

Инфракрасный спектр излучения

Если объект имеет температуру выше абсолютного нуля 0 K (–273,15 °C), то он испускает пропорциональное своей собственной температуре электромагнитное излучение. Инфракрасная спектральная область занимает при этом во всём электромагнитном спектре излучения только очень ограниченный участок. Он располагается от конца видимой спектральной области около 0,78 мкм до значений длины волны 1 000 мкм. Спектр представляющего интерес для измерения температуры инфракрасного излучения достигает диапазона от 0,8 до 14 мкм. Выше данных значений длины волны количества энергии незначительны до такой степени, что чувствительность детекторов недостаточна для их измерения.

Измерение температуры металлов

Испускаемое объектом инфракрасное излучение проходит сквозь атмосферу и может с помощью линзы фокусироваться на детектор. Детектор генерирует электрический сигнал, соответствующий излучению. Преобразование сигнала в пропорциональную температуре объекта выходную величину осуществляется посредством усиления сигнала и последующей цифровой обработки. Измеряемая величина может отображаться на дисплее или выдаваться в качестве электрического сигнала.

Стандартные выходы для передачи измеряемых величин в системы регулирования доступны в форме линейных сигналов 0/4–20 мА, 0–10 В и в качестве сигналов термопар. Помимо этого, большинство используемых сегодня инфракрасных термометров имеют цифровые интерфейсы (USB, RS232, RS485, реле, PROFIBUS DP, шина данных CAN, Ethernet) для вывода данных, а также для прямого доступа к параметрам устройств.

Измерение температуры металлов

Характеристика инфракрасного излучения металлических поверхностей подробнее описывается в следующих разделах. Сначала даётся краткая информация о детекторе и преобразовании сигнала в температуру объекта.

Техобслуживание

Измерение температуры металлов

Техническое обслуживание оборудования в металлообрабатывающей промышленности помогает своевременно распознавать износ огнеупорных материалов чугуновозов, шлаковозов и литейных котлов, а также снижает опасность возникновения прорывов. Для этого мы рекомендуем применять стационарные тепловизоры для непрерывного контроля с автоматической подачей сигналов тревоги при обнаружении перегрева внешней стенки.

Измерение температуры при объёмной штамповке

Измерение температуры металлов

При объёмной штамповке следует измерять температуру заготовки перед формованием. К тому же температура формованного изделия измеряется после формования и перед размещением на складе. Как правило, при таком процессе температуру измеряют двумя способами: постоянно с помощью стационарного пирометра или периодически с помощью ручного пирометра.

Рекомендуемые устройства: стационарный инфракрасный термометр optris ctlaser 1m и ручной пирометр optris P20 1M

Инфракрасный термометр optris для измерения металлов

Фирма Optris GmbH предлагает широкий выбор пирометров измерения температуры металлов и тепловизоров для разнообразных областей применения в металлообрабатывающей промышленности.

Измерение температуры металлов

Высокотемпературные измерения металлов

Следующие инфракрасные термометры отлично подходят для измерения очень высоких температур металлов, оксидов металлов и керамики:

Низкотемпературные измерения металлов

Измерительные приборы широко используются в металлообрабатывающей промышленности и для измерений в низком диапазоне температур. Для данного случая применения фирма Optris предлагает следующие инфракрасные термометры:

  • Пирометр optris CT 3M: 50–1 800 °C*
  • Пирометр optris CTlaser 3M с инновационным двойным лазером: 50–1 800 °C*

Измерение температуры жидких металлов

Благодаря очень короткой длине волны измерения, следующие инфракрасные термометры наилучшим образом подходят для измерения температуры жидких металлов:

Тепловизоры для измерения температуры металлов

Тепловизоры серии optris PI могут применяться также для измерений температуры металла в следующем диапазоне:

Промышленные способы измерения температуры расплавленного металла

Дата публикации: 4 ноября 2017 15:11

В современной металлургии для измерения высоких температур используют два метода:

Поверхностная закалка с применением индукционного нагрева

Измерение температуры металлов

При поверхностной закалке с применением индукционного нагрева обязательным условием технологического процесса является поддержание оптимального температурно-временного режима для получения требуемых свойств структуры металла. Процесс, который протекает в диапазоне температур от 700 до 1 100 °C, рекомендуется контролировать с помощью стационарного инфракрасного термометра и/или переносного пирометра.

Рекомендуемые устройства: стационарный инфракрасный термометр optris ctlaser 1m и ручной пирометр optris P20 1M/2M

Оцените статью
Анемометры
Добавить комментарий