Как использовать углекислый газ в пищу

Как использовать углекислый газ в пищу Анемометр
Содержание
  1. Характеристики и применение
  2. Что такое углекислый газ
  3. Свойства углекислого газа
  4. Получение в промышленности
  5. Применение углекислого газа
  6. Хранение и транспортировка
  7. Карбонизация напитков
  8. Производство сельхозпродукции (Подкормка растений)
  9. Охлаждение и заморозка продуктов
  10. Противопожарная защита объектов
  11. Сварка в среде защитных газов
  12. Углекислый газ, свойства, получение и применение.
  13. Углекислый газ, формула, молекула, строение, состав, вещество
  14. Физические свойства углекислого газа
  15. Получение углекислого газа
  16. Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа
  17. Что такое диоксид углерода
  18. Углекислый газ в природе
  19. Углекислый газ в организме человека
  20. Углекислый газ и мы
  21. Углекислый газ в атмосфере Земли
  22. Заключение
  23. Получение и формы выпуска углекислого газа
  24. Особенности диоксида углерода
  25. Области применения углекислоты

Характеристики и применение

Как использовать углекислый газ в пищу

Человечество научилось использовать газообразные вещества для поддержания искусственных процессов и реакций, в результате которых удаётся получить другие химические соединения. Кроме этого, различные газы используются для получения определённых физических явлений и свойств. Углекислый газ или СО2 обладает большим количеством качеств, которые не могут не использоваться в химической промышленности и быту.

Что такое углекислый газ

Оксид углерода (IV) представляет собой тяжёлый газ. Плотность углекислоты примерно в полтора раза больше чем у атмосферного воздуха.  Несмотря на то, что этот газ уже при температуре минус 78,3 градуса Цельсия превращается в снегообразную массу, получить жидкую углекислоту при нормальном давлении не представляется возможным. Так называемый сухой лёд при малейшем повышении температуры сразу переходит из твёрдой, в газообразную форму. Получить жидкую углекислоту можно только при давлении более 60 атмосфер. В таких условиях газ конденсируется даже при комнатной температуре с образованием бесцветной жидкости.

Углекислый газ не окисляется, но может поддерживать горение некоторых металлов. В среде углекислоты, при определённых условиях, могут возгораться такие активные элементы как магний, кальций и барий. Этот газ хорошо растворим в воде, а в воздухе его содержится большое количество благодаря дыханию живых организмов и растений, наличию вулканической активности на земле, а также в результате сгорания органических веществ.

Про анемометры:  Кратность воздухообмена в жилых помещениях

В результате растворения СО2 в воде в большой концентрации образуется угольная кислота. Это вещество может вступать в реакцию с фенолом и магнийорганическими соединениями. Углекислый газ также реагирует с щелочами. В результате такой реакции образуются соли и эфиры угольной кислоты.

Свойства углекислого газа

Как использовать углекислый газ в пищу

Углекислый газ невозможно определить органами зрения или обоняния. Если концентрация СО2 невелика, то не будет ощущаться и вкуса, но при наличии большого количества этого газа в воздухе может ощущаться кисловатый привкус.

При большой концентрации углекислоты во вдыхаемом воздухе может наступить отравление. Признаками негативного воздействия СО2 на организм человека являются:

  • Шум и гул в ушах.
  • Обильный холодный пот.
  • Потеря сознания.

Учитывая тот факт, что углекислый газ тяжелее воздуха, его концентрация в нижней части помещения будет более значительной. По этой причине, первую очередь симптомы отравления могут наблюдаться у животных и детей, а также у взрослых очень маленького роста. Большая концентрация СО2 может привести к гибели людей. При потере сознания человек может оказаться на полу, где количество кислорода будет недостаточным для поддержания нормального процесса дыхания.

Получение в промышленности

Существует большое количество способов промышленного получения углекислоты. Наиболее рентабельными являются варианты добычи газа, основанные на получении СО2, который образовывается на химических производствах в виде отходов.

Газообразный оксид углерода (IV) получают из промышленного дыма способом адсорбции моноэтаноламина.  Частицы этого вещества подаются в трубу с отходами и вбирают в себя углекислоту. После прохождение через смесь CO2 моноэтаноламины направляются на очистку в специальные резервуары, в которых, при определённых показателях температуры и давления, происходит высвобождение углекислого газа.

Углекислый газ высокого качества получается в результате брожения сырья при изготовлении спиртных напитков. На таких производствах газообразный СО2 обрабатывают водородом, перманганатом калия и углем. В результате реакции получают жидкую форму углекислоты.

Твёрдое состояние СО2 или «сухой лёд» также получают из отходов пивоваренных заводов и ликероводочных производств. Это агрегатное состояние вещества в промышленных масштабах образуется в такой последовательности:

  • Из резервуара, где происходит брожение, газ подаётся в ёмкость для промывки.
  • Углекислота направляется в газгольдер, в котором подвергается воздействию повышенного давления.
  • В специальных холодильниках СО2 охлаждается до определённой температуры.
  • Образовавшаяся жидкость фильтруется через слой угля.
  • Углекислота снова направляется в холодильник, где производится дополнительное охлаждение вещества с последующим прессованием.

Таким образом получается высококачественный «сухой лёд», который может использоваться в пищевой промышленности, растениеводстве или в быту.

Применение углекислого газа

Благодаря наличию определённых физических и химических свойств углекислый газ может использоваться в различных сферах. В химической промышленности углекислота используется для:

  • Синтеза искусственных химических соединений.
  • Для очистки животной и растительной ткани.
  • Регулирования температуры реакций.
  • Нейтрализации щёлочи.

В металлургии CO2 применяется с целью:

  • Регулирования отвода воды в шахтах.
  • Создания лазерного луча для резки металлов.
  • Осаждения вредных газообразных веществ.

Кроме перечисленных областей углекислый газ активно используется при производстве бумаги. Оксид углерода применяется регулирования водородного показателя древесной массы, а также усиления мощности производственных машин.

Углекислый газ используется в пищевой промышленности в качестве добавки, которая оказывает консервирующее действие. При изготовлении выпечки СО2 применяется в качестве разрыхлителя. Газированные напитки также изготавливаются с применением углекислоты, а для хранения быстро портящихся продуктов используется «сухой лёд».

Незаменим углекислый газ и при выращивании овощей и фруктов в зимних теплицах. В таких помещения в воздухе недостаточное количество СО2, который необходим для «дыхания» растений, поэтому приходится искусственно насыщать атмосферу этим газом.

В медицине углекислота применяется во время проведения сложных операций на внутренних органах. Наиболее ценным качеством этого газа, является использование его для реанимационных мероприятий, ведь благодаря возможности повысить его концентрацию можно эффективно стимулировать процесс дыхания пациента.

При сварке металлов углекислота применяется в качестве инертного облака, которое служит защитой расплавленного участка от попадания в него активного кислорода. В результате такой обработки сварочный шов получается идеально ровным и не подверженным окислению.

Благодаря способности охлаждаться при испарении, СО2 используется для тушения пожаров. Заправленные этим веществом огнетушители являются эффективным средством борьбы с возгораниями на объектах, где применение порошковых или пенных средств тушения невозможно.

В быту углекислота используется в качестве напорного газа в пневматическом оружии, а также для отпугивания комаров и борьбы с грызунами.

Хранение и транспортировка

Хранение СО осуществляется в баллонах чёрного цвета, на корпусе которых обязательно должна быть надпись «Углекислота».

Кроме этого, на ёмкости наносится маркировка, по которой можно получить информацию о производителе баллона, весе пустой ёмкости, а также узнать дату последнего освидетельствования. Нельзя использовать углекислотные баллоны, у которых:

  • Истёк срок освидетельствования.
  • Имеются повреждения.
  • Неисправны вентили.

Транспортировка наполненных газом баллонов должна осуществляться по следующим правилам:

  • Транспортировать ёмкости только в горизонтальном положении. Вертикальное размещение допускается только в том случае, если имеются специальные ограждения, которые препятствуют падению баллона во время перевозки.
  • Для безопасного перемещения на баллонах должны быть резиновые кольца.
  • Не допускать механических воздействий, а также чрезмерного нагрева.
  • Запрещается перевозка углекислотных баллонов в торговых аппаратах.

Кроме этого, техникой безопасности запрещается переносить баллоны вручную или перекатывать их по земле.

Хранение баллонов с углекислотой может осуществляться как в специально оборудованных помещениях, так и под открытым небом. В зданиях ёмкости следует размещать на расстоянии не менее 1 метра от отопительных приборов. При хранении на улице необходимо оградить ёмкости от воздействия прямых солнечных лучей и осадков, поэтому размещать резервуары таким способом рекомендуется под навесом. Если хранение баллонов осуществляется в неотапливаемом помещении или под открытым небом, то в зимнее время необходимо следить за тем, чтобы ёмкости не охлаждались ниже минус 40 градусов Цельсия.

Основные области применения углекислого газа (диоксида углерода, CO2): карбонизация напитков, производство сельхозпродукции, охлаждение и заморозка продуктов, противопожарная защита объектов, сварка в среде защитных газов. Это те отрасли, где применение углекислого газа является важным фактором, влияющим на качество и свойства продукта или эффективность реализуемой технологии.

Карбонизация напитков

Для газирования напитков необходим газообразный диоксид углерода. При добавлении CO2 в воду происходит его химическая реакция с молекулами воды, в результате чего образуется некоторое количество угольной кислоты (H2CO3). Освежающий эффект безалкогольных напитков обусловлен наличием в их составе растворённого углекислого газа и органических кислот, например, лимонной. В зависимости от степени насыщения углекислым газом напитки могут быть негазированными, сильно, средне и слабогазированными.

Газирование напитков производят насыщением их углекислым газом в специальных установках — сатураторах. Насыщение воды CO2 делает напиток шипучим, придаёт ему искристость и приятный пикантный вкус.

Для карбонизации напитков большинство предприятий покупают жидкий диоксид углерода, хотя при производстве пива (брожении) выделяется достаточно много CO2, который можно собирать и после очистки использовать для газирования напитков.

Производство сельхозпродукции (Подкормка растений)

Потребителями углекислого газа являются производители сельскохозяйственной продукции.

Дефицит СО2 представляет собой более серьёзную проблему, чем дефицит элементов минерального питания. В среднем растение синтезирует из воды и углекислого газа 94 % массы сухого вещества, остальные 6 % обусловлены влиянием минеральных удобрений. В грунтовых теплицах дополнительным источником углекислого газа является грунт, в который добавляют торф, солому или опилки.

Овощеводы рассматривают подкормку углекислым газом в течение всего периода выращивания растений — от появления всходов до прекращения вегетации — как обязательный элемент современной интенсивной технологии выращивания томатов, огурцов и сладких перцев.

Прирост биомассы зелёных культур при подкормках СО2 существенно увеличивается. К примеру, урожайность салата повышается на 40 %, созревание ускоряется на 10 — 15 дней. Подкормка цветочных культур в теплицах также высоко эффективна, поскольку значительно повышает качество и выход продукции по некоторым данным до 20 — 30 %.

За счёт увеличения содержания углекислого газа в воздухе теплицы можно добиться снижения содержания нитратов в овощах, выращиваемых в зимнее время. Подкормки СО2 в условиях холодного климата России особенно выгодны, так как повышенная его концентрация частично компенсирует недостаток освещённости зимой.

Охлаждение и заморозка продуктов

Наряду с жидким азотом жидкий диоксид углерода наиболее подходит для прямого контактного замораживания различных видов продуктов. Как контактный хладагент он привлекателен дешевизной, химической инертностью и термической стабильностью, не вызывает коррозию, не горюч, не опасен для персонала.

Использование СО2 в контактных скороморозильных аппаратах даёт ряд принципиальных преимуществ по сравнению с традиционными технологиями заморозки: время заморозки сокращается до 5 — 30 мин.; быстро прекращается ферментативная активность в замораживаемом продукте; хорошо сохраняется структура тканей и клетки продукта, поскольку кристаллы льда формируются значительно меньших размеров и практически одновременно в клетках и в межклеточном пространстве тканей; при медленной заморозке в продукте появляются следы жизнедеятельности бактерий, в то время как при шоковой заморозке диоксидом углерода они просто не успевают развиться; потери массы продукта в результате усушки составляют всего 0,3 — 1 % против 3 — 6 %; легко улетучивающиеся ценные ароматические вещества сохраняются в больших количествах.

По сравнению с замораживанием жидким азотом при использовании диоксида углерода не наблюдается растрескивание продукта из-за слишком большого перепада температуры между поверхностью и сердцевиной замораживаемого продукта; в процессе замораживания СО2 проникает в продукт и поэтому во время размораживания защищает его от окисления и развития микроорганизмов.

Плоды и овощи, подвергнутые быстрой заморозке и фасовке на месте, наиболее полно сохраняют вкусовые качества и питательную ценность, все витамины и биологически активные вещества, что даёт возможность широко применять их в производствах продуктов для детского и диетического питания.

Часто диоксид углерода используется для быстрого охлаждения свежих пищевых продуктов в упакованном и неупакованном виде до 2 — 6 °С, что улучшает естественный цвет продукта вследствие небольшой диффузии СО2 внутрь продукта. Кроме этого, значительно увеличивается срок хранения продуктов, так как СО2 подавляет развитие как аэробных, так и анаэробных бактерий и плесневых грибков.

В холодильной промышленности СО2 применяется в качестве альтернативного хладагента. Диоксид углерода является эффективным хладагентом, поскольку имеет низкую критическую температуру (+31,1 °С), сравнительно высокую температуру тройной точки (-56 °С), большое давление в тройной точке (0,5 МПа) и высокое критическое давление (7,39 МПа). Как хладагент СО2 обладает следующими преимуществами: очень низкая стоимость по сравнению с другими хладагентами; нетоксичен, не горюч и невзрывоопасен; совместим со всеми электроизоляционными и конструкционными материалами; не разрушает озоновый слой; вносит (удельно) умеренный вклад в увеличение парникового эффекта по сравнению с современными галоидопроизводными хладагентами.

Противопожарная защита объектов

Углекислый газ широко применяется для заправки огнетушителей, противопожарных модулей и других средств пожаротушения.

Практически все здания банков имеют компьютерные залы, серверные помещения и хранилища ценностей, которые по нормам требуется защищать установками пожаротушения. Наиболее приемлемый вариант — установки газового пожаротушения (УГП) с использованием СО2. Причин тому несколько. Так, после ликвидации пожара или несанкционированного пуска установки пожаротушения газовое огнетушащее вещество (будь то чистый СО2 или смеси инертных газов) в отличие от воды, пены, порошка и газоаэрозоля практически не оказывает вредного воздействия на электронное оборудование и другие ценности. Порошок или газоаэрозоль, применяемые в системах пожаротушения, могут вывести из строя оборудование, так как в них входят соли щёлочноземельных металлов.

Применение хладагентов в установках газового пожаротушения сдерживает их высокая стоимость по сравнению с установками водяного, пенного, порошкового и газоаэрозольного пожаротушения. Хотя до настоящего времени именно хладагенты применялись в УГП для защиты радио- и электронного оборудования, так как считалось, что углекислый газ оказывает на эту технику отрицательное воздействие. Исследования показателей радио- и электронной аппаратуры, включающие многомесячное наблюдение за ней, позволили установить, что углекислый газ, используемый для ликвидации пожара в помещении из модулей пожаротушения, не влияет на её работоспособность.

Сварка в среде защитных газов

Сварка в среде защитных газов сегодня применяется практически для всех металлов, включая углеродистую и нержавеющую стали, алюминий, медь и титан. Теплотой дуги расплавляется основной металл и проволока или присадочный пруток, если сварку выполняют неплавящимся электродом. Расплавленный металл сварочной ванны, кристаллизуясь, образует шов. При сварке в зону дуги непрерывно подаётся защитный газ. В качестве защитных газов применяют углекислый газ (CO2) и инертные газы, такие как аргон (Ar), гелий (He) и их смеси: Ar+He, Ar+CO2, Ar+O2, CO2+O2, Ar+H2 и др.

Изначально наибольшее распространение получила сварка в среде CO2. Такой способ является самым дешёвым при сварке углеродистых и низколегированных сталей.

Дальнейшим этапом повышения эффективности сварки при изготовлении сварных металлоконструкций стало применение газовых смесей на основе углекислого газа (CO2) и аргона (Ar). Предлагаемые технологии сварки в смесях с использованием CO2 и аргона позволяют значительно улучшить, в сравнении со сваркой в CO2, технологические параметры процесса сварки.

Сварочные смеси на основе углекислого газа являются наиболее распространёнными среди смесей, применяемых для сварки углеродистых конструкционных сталей.

Углекислый газ, свойства, получение и применение.

Углекислый газ – бинарное химическое соединение углерода и кислорода, имеющее формулу CO2.

Углекислый газ, формула, молекула, строение, состав, вещество

Физические свойства углекислого газа.

Получение углекислого газа

Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа

Цена на выбросы CO2

Углекислый газ, формула, молекула, строение, состав, вещество

Углекислый газ (диоксид углерода, двуокись углерода, углекислота, оксид углерода (IV), угольный ангидрид) – бесцветный газ, почти без запаха (в больших концентрациях с кисловатым «содовым» запахом).

Химическая формула углекислого газа CO2.

Строение молекулы углекислого газа, структурная формула углекислого газа:

Как использовать углекислый газ в пищу

Углекислый газ тяжелее воздуха приблизительно в 1,5 раза. Его плотность при нормальных условиях составляет 1,98 кг/м3, по отношении к воздуху – 1,524. Поэтому скапливается в низких непроветриваемых местах.

Концентрация углекислого газа в (в Земли) составляет в среднем 0,046 % (по массе) и 0,0314 % (по объему).

Углекислый газ вырабатывается в органах и тканях человека образуется в качестве одного из конечных продуктов метаболизма. Он переносится от тканей по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, уменьшается в капиллярной сети лёгких, и содержание его мало в артериальной крови. В выдыхаемом человеком воздухе содержится около 4,5% диоксида углерода, что в 60-110 раз больше, чем во вдыхаемом. Организм человека выделяет приблизительно 1 кг углекислого газа в сутки.

Углекислый газ растворяется в воде. В 100 граммах воды растворяется 0,3803 грамма CO2 при 16 °C, 0,3369 грамма CO2 – при 20 °C, 0,2515 грамма CO2 – при 30 °C. Растворяясь в воде, образует угольную кислоту Н2CO3. Растворим также в ацетоне, бензоле, метаноле и этаноле.

Термически устойчив при температурах менее 1000 °C. При температуре 1000 °C восстанавливается до оксида углерода (II).

При нормальном атмосферном давлении диоксид углерода не существует в жидком состоянии, существует только в твердом или газообразном состоянии. Твердая двуокись углерода при повышении температуры не плавится, а переходит (возгоняется) непосредственно из твёрдого состояния в газообразное. Твёрдую двуокись углерода также называют сухим льдом. Внешний вид сухого льда напоминает обычный лед, снегоподобную массу. При сублимации поглощает около 590 кДж/кг (140 ккал/кг) теплоты.

Под давлением 35 000 атм. твердая углекислота становится проводником .

Жидкий углекислый газ можно получить при повышении давления. Так, при температуре 20 °С и давлении свыше 6 МПа (~60 атм.) газ сгущается в бесцветную жидкость. При нормальных условиях (20 °С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 509 л углекислого газа. Хранят и транспортируют углекислый газ, как правило, в жидком состоянии

Двуокись углерода негорюча, но в ее атмосфере может поддерживаться горение активных металлов, например, щелочных металлов и щелочноземельных – магния, кальция, бария.

Двуокись углерода нетоксична, невзрывоопасна.

Предельно допустимая концентрация двуокиси углерода в воздухе рабочей зоны не установлена, при оценке этой концентрации можно ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5% (об.) или 9,2 г/м (см. ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая. Технические условия»).

По степени воздействия на организм человека двуокись углерода относится к 4-му классу опасности по ГОСТ 12.1.007-76.

При концентрациях более 5% (92 г/м) двуокись углерода оказывает вредное влияние на здоровье человека, так как она тяжелее воздуха в полтора раза и может накапливаться в слабопроветриваемых помещениях у пола и в приямках, а также во внутренних объемах оборудования для получения, хранения и транспортирования газообразной, жидкой и твердой двуокиси углерода. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья.

Углекислый газ образуется при гниении и горении веществ, в результате вулканической деятельности. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и . Искусственными источниками образования углекислого газа являются промышленные выбросы и выхлопные газы автомобильного транспорта.

Углекислый газ легко пропускает излучение в ультрафиолетовой и видимой частях спектра, которое поступает на Землю от Солнца и обогревает её. В то же время он поглощает испускаемое Землёй инфракрасное излучение и является одним из парниковых газов, вследствие чего участвует в процессе глобального потепления.

Физические свойства углекислого газа

* при температуре выше критической температуры  невозможно сконденсировать ни при каком давлении.

Получение углекислого газа

В промышленности углекислый газ образуется в дымовых газах при сжигании различных органических и неорганических веществ или как побочный продукт химических процессов, например, при разложении природных карбонатов (доломита, известняка). Также углекислый газ как побочный продукт получают на установках разделения воздуха с целью получения чистого кислорода, азота и аргона.

В лабораторных условиях углекислый газ получают, например, в результате следующих химических реакций:

1. взаимодействия карбоната кальция и азотной кислоты:

2. в результате взаимодействия карбоната кальция с другими минеральными кислотами,

3. взаимодействия пищевой соды с лимонной кислотой или с кислым лимонным соком,

4. реакции горения углерода:

Химические свойства углекислого газа. Химические реакции (уравнения) углекислого газа

Диоксид углерода относится к кислотным оксидам, поэтому для него характерны следующие химические реакции:

1. реакция взаимодействия оксида углерода (IV) и водорода:

В результате реакции образуются метан и вода.

2. реакция взаимодействия оксида углерода (IV) и углерода:

CO2 + C ⇄ 2CO (t = 700-1000 °C).

В результате реакции образуется оксид углерода (II). Реакция протекает при взаимодействии углекислого газа с раскаленными углями.

3. реакция взаимодействия оксида углерода (IV) и магния:

В результате реакции образуются оксид магния и углерод.

4. реакция взаимодействия оксида углерода (IV) и гафния:

В результате реакции образуются карбид гафния и оксид гафния.

5. реакция взаимодействия оксида углерода (IV) и германия:

В результате реакции образуются оксид германия и оксид углерода (II).

6. реакция взаимодействия оксида углерода (IV) и цинка:

В результате реакции образуются оксид цинка и оксид углерода (II).

7. реакция взаимодействия оксида углерода (IV) и индия:

В результате реакции образуются оксид индия и оксид углерода (II).

8. реакция взаимодействия оксида углерода (IV) и циркония:

В результате реакции образуются карбид циркония и оксид циркония.

9. реакция взаимодействия оксида углерода (IV) и вольфрама:

В результате реакции образуются оксид вольфрама и оксид углерода (II).

10. реакция взаимодействия оксида углерода (IV) и оксида лития:

В результате реакции образуется карбонат лития.

11. реакция взаимодействия оксида углерода (IV) и оксида натрия:

В результате реакции образуется .

12. реакция взаимодействия оксида углерода (IV) и оксида калия:

В результате реакции образуется карбонат калия.

13. реакция взаимодействия оксида углерода (IV) и оксида бария:

В результате реакции образуется карбонат бария.

14. реакция взаимодействия оксида углерода (IV) и оксида кальция:

В результате реакции образуется карбонат кальция.

15. реакция взаимодействия карбоната кальция, оксида углерода (IV) и воды:

В результате реакции образуется гидрокарбонат кальция.

16. реакция взаимодействия оксида углерода (IV) и оксида магния:

17. реакция взаимодействия оксида углерода (IV) и оксида кремния (II):

В результате реакции образуются оксид кремния (IV) и оксид углерода (II).

18. реакция взаимодействия оксида углерода (IV) и воды:

CO2 + H2O ⇄ H2CO3.

В результате реакции образуется угольная кислота.

19. реакция взаимодействия оксида углерода (IV) и гидроксида лития:

В результате реакции образуются карбонат лития и вода. В ходе реакции используется концентрированный раствор гидроксида лития.

20. реакция взаимодействия оксида углерода (IV) и гидроксида калия:

В первом случае в результате реакции образуются гидрокарбонат калия, во втором случае – карбонат калия и вода. Реакция протекает в первом случае в этаноле и используется разбавленный раствор гидроксида калия, во втором используется концентрированный раствор гидроксида калия.

21. реакция взаимодействия оксида углерода (IV) и гидроксида натрия:

В первом случае в результате реакции образуются гидрокарбонат натрия, во втором – карбонат натрия и вода. В ходе первой реакции используется разбавленный раствор гидроксида натрия, в ходе второй – концентрированный раствор гидроксида натрия.

22. реакция взаимодействия оксида углерода (IV) и гидроксида кальция:

В результате реакции образуются карбонат кальция и вода.

23. реакция взаимодействия оксида углерода (IV) и гидроксида бария:

В результате реакции образуются карбонат бария и .

24. реакция взаимодействия оксида углерода (IV) и метана:

В результате реакции образуются оксид углерода (II) и .

25. реакция термического разложения оксида углерода (IV):

26. реакция фотосинтеза:

В результате реакции образуются и кислород.

Углекислый газ используется во многих отраслях промышленности и быту:

– как пищевая добавка Е290 в качестве разрыхлителя в пищевом производстве и консерванта в алкогольных и безалкогольных газированных напитках, а также для газирования лимонада, газированной воды и других напитков;

– в системах пожаротушения и в огнетушителях;

– для создания защитной среды при сварке ;

– для охлаждения, замораживания и хранения пищевых продуктов при прямом и косвенном контакте с сухим льдом;

– для сушки литейных форм;

– в качестве активной среды .

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле – углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений. Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки приточной вентиляции. Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность. Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ. Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Основными антропогенными источниками диоксида углерода являются:

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

Углекислый газ в организме человека

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед гипоксии – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых исследований, уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически снижается работоспособность, мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш эксперимент в школе показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от окислительного стресса, который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.

Несмотря на такое ничтожное процентное содержание диоксида углерода в атмосфере, он оказывает огромное влияние на климат планеты. Углекислый газ – один из парниковых газов. Он поглощает и удерживает инфракрасное излучение с поверхности Земли, что в конечном итоге способствует повышению температуры на планете. Этот процесс называется парниковым эффектом. Без парникового эффекта температура на земном шаре была бы примерно на 30°С ниже.

Атмосфера Венеры на 96,5% состоит из углекислого газа, и, по-видимому, тоже подвержена парниковому эффекту. Из-за него Венера является самой жаркой планетой Солнечной системы, она горячее даже ближайшего к Солнцу Меркурия. Температура на Венере около 464°С – этого хватит, чтобы расплавить свинец и олово.

Рост уровня СО2 в атмосфере Земли ведет к усилению парникового эффекта, а тот, в свою очередь – к необратимым изменениям климата. Уже сейчас можно наблюдать таяние ледников. Например, знаменитая снежная шапка Килиманджаро уменьшилась за последние 100 лет на 80%.

Заключение

Что и говорить, без углекислого газа наш мир был бы совершенно другим. Он участвует в важнейших химических, биологических, климатических и геологических процессах на Земле. И чем больше мы о них знаем, тем проще нам принимать важные решения: выбирать образ жизни и создавать свою среду – свой здоровый и комфортный микроклимат.

Как использовать углекислый газ в пищу

Во многих отраслях промышленности углекислый газ стал неотъемлемым элементом проведения различных технологических операций. Благодаря своим техническим характеристикам этот газ наиболее часто применяется на пищевых предприятиях, в химическом производстве, металлургии и т. д.

Получение и формы выпуска углекислого газа

Углекислый газ (он же диоксид углерода или углекислота) получается путем объединения двух химических компонентов: углерода и кислорода. Образованием углекислого газа сопровождаются операции, связанные со сжиганием углеродо- и водородосодержащих веществ, процессы распада органических жидкостей под воздействием ферментов, также двуокись углерода является конечным продуктом дыхания многих живых организмов. Малые количества углекислого газа содержатся в слоях атмосферы.

Диоксид углерода в жидком виде имеет две формы:

  • низкотемпературный;
  • высокого давления.

Также двуокись углерода имеет газообразную форму. Технический углекислый газ получают из отходящих газов ряда производств (например, аммиака и метанола), а также в процессе специализированного сжигания топлива.

Наиболее часто углекислота поставляется в специальных металлических емкостях – баллонах объемом 40 литров.

Особенности диоксида углерода

Диоксид углерода представляет собой бесцветное нетоксичное вещество, он невзрывоопасен, не обладает запахом. Относительно воздуха углекислый газ имеет больший вес, он способен скапливаться в нижних отделах мало вентилируемых помещений. При снижении концентрации кислорода в воздухе живые организмы подвержены гипоксии, в связи с чем допустимая доля диоксида углерода – не более 5 % от общего объема.

Углекислый газ способен замерзать при отметке ниже 79 °C. Застывание сопровождается образованием снега. В виде раствора с водой двуокись углерода образует угольную кислоту.

Как использовать углекислый газ в пищу

Области применения углекислоты

Основными отраслями, широко применяющими углекислый газ, являются:

  • химическое производство – диоксид углерода участвует в регуляции температурных показателей реакторных установок, используется для создания синтетических материалов, очистки волокон и полимеров;
  • медицина и фармацевтическая отрасль – углекислый газ участвует в формировании инертной среды, синтезировании химических веществ, также он необходим для создания определенных атмосферных параметров;
  • пищевое производство – 40 литровый баллон углекислоты задействуют для газирования жидкостей, производства напитков, упаковки и хранения продукции, создания сухого льда;
  • металлургия – защита окружающей среды, осаждение и нейтрализация дыма и продуктов горения;
  • научно-исследовательские лаборатории – хроматография, экстракция;
  • целлюлозно-бумажная промышленность – регуляция уровня кислотности сырья, нейтрализация таллового масла;
  • природоохранная область – регуляция кислотности и щелочности в сточных водах;
  • электроника – очистка элементов и удаление осадков, создание охладителя.
Оцените статью
Анемометры
Добавить комментарий