Как измерить ветер с помощью мобильных устройств: приложения и устройства

Как измерить ветер с помощью мобильных устройств: приложения и устройства Анемометр

Анемометр – прибор для определения скорости и направления движения потока

АНЕМОМЕТР – это прибор для измерения скорости потоков и направления движения воздуха, газов и жидкостей. Это касается как ограниченных потоков, например движения воздуха в воздуховодах, так и неограниченных потоков, например атмосферного ветра.

Анемометры прежде всего предназначены для метеорологии, ведь изменение таких параметров, как скорость и направление ветра, указывают нам на изменения погодных условий, предупреждают о приближении грозы, шторма, других опасных природных явлений, что очень важно для пилотов, моряков, инженеров, да и для всех нас.

Как правило, это легкие портативные приборы, удобные в использовании даже в сложных полевых условиях.

Принцип работы анемометра заключается в выявлении изменения некоторого физического свойства потока, или в действии этого потока на механическое устройство, помещенное в поток.

При этом анемометр может измерять полную величину скорости, величину скорости в плоскости, или компоненту скорости в определенном направлении.

Кроме того, современные анемометры в зависимости от модели могут измерять направление ветра, объемный расход воздуха, влажность, температуру, давление. Таким образом, анемометры превращаются в портативные метеостанции.

Типы анемометров

В зависимости от способа измерения и типа приемного устройства, анемометры разделяют на ряд типов: [5]:

Вращательные (крыльчатные, чашечные)  Тепловые  Вихревые  Динамометрические (с трубками Пито)  Ультразвуковые (акустические)  Оптические (лазерные допплеровские)

Наиболее распространенными являются вращательные анемометры, отличающиеся типом принимающего устройства (чашка или крыльчатка).

В чашечных анемометрах чувствительным элементом является крестовина с четырьмя металлическими чашками полусферической формы, закрепленными на оси.

Если это устройство попадает в поток, то давление воздуха на внутреннюю поверхность чашки превышает давление на ее внешнюю поверхность, вследствие чего возникает вращение лопасти. Ось лопасти присоединена к измерительному механизму, который подсчитывает количество оборотов за определенный промежуток времени.

Таким образом, чашечные анемометры проводят измерение скорости потока в плоскости, перпендикулярной к оси вращения чашек, мгновенную или усредненную в некотором промежутке времени.

Чашечные анемометры в основном используются в метеорологии для измерений на открытых участках, поскольку характеризуются определенной устойчивостью к турбулентным потокам. Диапазон измерения чашечных анемометров составляет от 1 до 50 м/с.

Крыльчатные анемометры используют для измерения скоростей потоков в трубах, вентиляционных шахтах и каналах, в системах кондиционирования, то есть в случаях, когда имеем дело с постоянным направлением движения потока. Эти анемометры более чувствительны и способны измерять скорости от 0,1 м/с.

Принимающее устройство сделано в виде крыльчатки, которая приводится в движение потоком газа. Крыльчатка прикреплена к трубчатой ​​оси, которая в свою очередь присоединена к механизму подсчета оборотов за определенный промежуток времени.

В простых моделях крыльчатка жестко присоединена к измерительному блоку, в более дорогих – с помощью гибкого соединения для измерений в труднодоступных местах.

Менее распространены, однако очень высокоточные тепловые анемометри. В основном, они используются для измерения скоростей медленных потоков, характеризуются низкой инерционностью, однако требуют постоянного калибровки.

Принцип работы теплового анемометра заключается в измерении температуры пластины или нити накаливания, на которую дует ветер. В зависимости от скорости ветра, необходима различная энергия для того, чтобы поддерживать температуру нити постоянной.

То есть по температуре пластины можно определить скорость ветра.

Измерение скорости потока воздуха можно проводить также путем определения давления воздуха внутри стеклянной Г-образной трубки, закрытой с одного конца. Она называется трубкой Пито, по имени ее изобретателя.

Скорость движения воздуха вычисляется путем сравнения избыточного давления воздуха внутри трубки и снаружи. Применяется для определения относительной скорости и объемного расхода в газоходах и вентиляционных системах.

Это так называемые динамометрические анемометры.

Принцип работы ультразвукового анемометра основывается на измерениискорости звука междупередатчиком и приемником в зависимости от скорости ветра. Это высокоточные современные анемометры, предназначены также для измерений направления ветра.

Различают двухмерные и трехмерные ультразвуковые анемометры. Двухмерный анемометр может измерять скорость и направление только горизонтальных потоков воздуха. Трехмерный анемометр способен проводить измерения трех компонент направления движения потока.

Кроме того, ультразвуковой анемометр может измерять еще и температуру воздуха ультразвуковым методом.

Инженеры Aerospace и физики часто используют лазерные доплеровские анемометры. Этот тип анемометров работает по принципу зависимости частоты света отраженного или рассеянного подвижным объектом (эффект Доплера), от скорости этого объекта.

Это метод бесконтактного измерения скорости потока газообразных, жидких и твердых сред, содержащих светорассеивающие неоднородности, т.е. скорость измеряется без возмущения потока.

Круг задач очень широкий, от измерений медленных направленных движений в капиллярах и живых клетках, до дистанционных измерений турбулентной скорости потоков газа в сверхзвуковых трубах и скорости ветра в атмосфере. Величины скоростей могут иметь значение от мкм/с до км/с.

Лазерные анемометры помогают рассчитать скорость ветра вокруг автомобилей, самолетов и космических аппаратов. Такие исследования дают возможность инженерам сделать транспортные средства более аэродинамическими.

Сравнительные характеристики анемометров

Простейшая модель анемометра TM-740 оснащена шестилопастной крыльчаткой диаметром 30 мм, которая жестко соединена с измерительным блоком. Предназначена для измерения скорости потока воздуха в диапазоне 0,4-25 м/с. (Другие единицы измерения: км/ч, миль/ч, узлы, фут/мин).

Разрешение на уровне 0,1 м/с и погрешность ±2 % позволяет проводить достаточно прецизионные измерения, а набор дополнительных функций, таких как удержание данных, расчет максимального, минимального и усредненного значения, автоматическое отключения, делают процесс использования прибора более комфортным.

Кроме того, есть возможность измерения температуры в диапазоне -20~50 ºC (-4~122 ºF.)

Анемометры ET-935 и TA-1100 можно отнести к среднему классу по параметрам цена-качество. Они оснащены крыльчаткой на гибком шнуре, что открывает более широкие возможности для измерений в труднодоступных местах, таких как вентиляционные шахты, воздуховоды и т.д.

Диапазон измерения скорости потока таких термоанемометров от десятых м/с до 30 м/с, что позволяет работать в различных условиях.

Присутствуют и дополнительные возможности, такие как удержание данных и расчет максимального значения в модели TA-1100, расчет среднего значения в модели ET-935, а также индикация низкого заряда батареи и автовыключение.

Другие единицы измерения км/ч, миль/ч, морские мили/ч, фут/мин. Эти модели термоанемометров оснащены датчиком с диапазоном измерения температуры от -10 до 60ºС (для ET-935 от -20 до 60ºС).

К высококлассным моделям отнесем термоанемометр HD 2303.0 от одного из ведущих производителей контрольно-измерительных приборов DELTA OHM, Италия.

Этот термоанемометр предназначен для измерения скорости воздушного потока, расхода и температуры воздуха внутри трубопроводов и вентиляционных отверстий и шахт.

Целый ряд крыльчаток разного диаметра, которые совместимы с измерительным блоком, обеспечат прецизионный результат в различных условиях и для различных сред. Температура измеряется зондами погружения, проникновения или контакта.

Температурный диапазон эксплуатации термоанемометра от -5 до 50 ºC, корпус имеет степень защиты от влаги и пыли IP-67.

Отдельно следует отметить мультифункциональные анемометры, которые вместе с собственно анемометром, сочетают в себе другие функциональные возможности.

Про анемометры:  S EVRR" "Свидетели и передатчик RR. Зажигайте сколько хотите!) используя эталонное излучение (см. выше)

Например, модель ET-965 представляет собой уникальный прибор (5 в 1), специально созданный для комплексного экологического контроля состояния среды в закрытых помещениях.

Позволяет измерять такие параметры как: освещенность (люксметр), температура (термометр), скорость воздуха (анемометр), относительная влажность воздуха (гигрометр), шум (шумомер).

Характеризуется высокой точностью и разрешением для всех измерительных параметров, имеет дополнительные функции расчета максимума/минимума, индикация о низком заряде и превышение измерительного диапазона. Предназначен для применения в учебных заведениях, офисных помещениях, складских помещениях, торговых залах и т.д.

Анемометры AZ-96792 и AZ-8919 (AZ Instrument, Тайвань) также являются мультифункциональными. Они просты и удобны в пользовании, обеспечивают высокоточные результаты измерений, имеют ряд дополнительных возможностей для удобства пользователя, все это в сочетании с умеренной ценой для приборов такого класса.

Модель AZ-96792 оснащена телескопическим зондом с крыльчаткой 18 мм для измерения скорости потока воздуха в труднодоступных местах, работает в ручном и автоматическом режиме, обеспечивает измерение / запись следующих параметров: скорость движения воздуха, объемный расход воздуха, влажность, температура, точка росы и температура мокрого термометра.

Анемометр-анализатор может контролировать уровень углекислого газа в воздухе, для чего дополнительно оборудован высокоточным недисперсионным инфракрасным датчиком (NDIR).

Зонд крыльчатого типа диаметром 10 см и конус для забора воздушного потока позволяют измерять скорость потока в пределах от 0,2 до 30 м/с. Измеряет также объемный расход воздуха, влажность, температуру, точку росы, температуру мокрого термометра.

Имеет функции максимального и минимального значения, неограниченное количество точек для расчета среднего значения, подсветку.

Как определить объемный расход потока воздуха, зная его линейную скорость

В процессе измерения часто возникает потребность рассчитать объемный расход воздуха, зная его линейную скорость. Сделать это на самом деле очень просто. Для этого необходимо лишь измерить поперечное сечение отверстия, через которое протекает поток (воздуха, любого другого газа или жидкости). Далее воспользуемся формулой:

Q = V * Sгде Q – объемный расход в м3/с,V –скорость потока в сечении в м/с (измеряем с помощью анемометра),S – площадь поперечного сечения отверстия в м2 (измеряем рулеткой).

Как выбрать анемометр

Для оптимального выбора измерительного прибора, прежде всего определитесь, в каком диапазоне скоростей Вам необходимо работать, проанализируйте технические требования к точности и разрешению. Это является определяющим при выборе типа анемометра (тепловой, крыльчатый, оптический и т.д.)

Подбирайте размер крыльчатки в зависимости от того, где именно Вам нужно проводить измерения. Например, для измерений непосредственно на вентиляционных решетках подойдут анемометры с большим диаметром крыльчатки (6-10 см).

В таком случае размеры лопастей соразмерны с диаметром вентиляционных каналов. Тогда как для измерений непосредственно в вентиляционном канале лучше использовать крыльчатки с меньшим диаметром (1,5-2,5 см).

Для измерений потоков газов высокой температуры нужно использовать термостойкие крыльчатки.

Обратите внимание на способ визуализации полученных результатов и форму их подачи. Современные анемометры как правило оснащены для этого ЖК экраном.

Измерение скорости потока для удобства может проводиться в различных единицах (миль/ч, км/ч, футы/мин, м/с, узлы и т.д.).

Более дорогие модели имеют возможности подключения к ПК с целью обработки результатов, построения графиков и последующего анализа.

Проанализируйте необходимость присутствия дополнительных возможностей и функций.

Например, гигро- и термоанемометры включают возможности термоанемометра и датчика влажности и обеспечивают пользователя полной метеорологической информацией.

Возможности расчета максимального, минимального и усредненного значений упрощают статистический анализ, автоматическое отключение экономит заряд батареи, подсветка позволяет работать в условиях ограниченной освещенности.

Если Вам все же трудно определиться с моделью, обратитесь за консультацией к специалистам Маркета измерительных приборов SIMVOLT.

Таким образом, анемометры и термоанемометры нашли широкое применение везде, где есть необходимость измерения скорости потоков.

Такие приборы устанавливаются в жилых и производственных помещениях, оборудованных системами вентиляции, отопления и кондиционирования для контроля работы этих систем, в вытяжных шкафах, в научно-исследовательских лабораториях, в горном деле для контроля воздушного режима шахты или карьера, на строительстве, при разработке противопожарных систем, и для других нужд.

Литература:

Гнатюк Елена, к.ф.-м. наук,

научный консультант SIMVOLT

Видео работы

Результаты работы за зиму

с-сть — часов за зиму 0 м/с — 511,0 1 м/с — 475,0 2 м/с — 386,5 3 м/с — 321,2 4 м/с — 219,0 5 м/с — 131,5 6 м/с — 63,3 7 м/с — 32,5 8 м/с — 15,4 9 м/с — 9,1 10 м/с — 5,0 11 м/с — 3,5 12 м/с — 2,2 13 м/с — 1,3 14 м/с — 0,8 15 м/с — 0,5 16 м/с — 0,5 17 м/с — 0,2 18 м/с — 0,0 19 м/с — 0,1

По результатам за две зимы я увидел что ветры у меня не сильные и ветряк будет не эффективен, поэтому сделал маленький с лопастями по 50см. мощностью в пику 150 Вт. Сделал просто, чтобы хотя бы одна экономная лампочка светила когда свет пропадет.

Теперь немного о Arduino.

Нашел в Интернете схему работы мышки, она наглядно иллюстрирует как работает моя система.

Отталкиваясь от схемы мышки я сделал следующую схемку.

Импульсы поступают с фототранзистора на Arduino, а он воспринимает их как нажатия кнопки.

Алгоритм работы программы таков: Считаем сколько нажатий кнопки произошло за одну секунду вот и имеем частоту вращения. Для того чтобы эту частоту перевести в м/с. еще когда я делал на Атмел я сделал алгоритм расчета частоты в м / с. Выглядел он так:

int ob_per_sec=0; // Переменная в которую попадает частота оборотов в секунду.

int speed_wind=0; // Сюда будет попадать значение после пересчета частоты в м/с.

int speed_wind_max=0; // Сюда попадает максимальное значение показаний ветра м/с.

int speed_wind_2=0; // К-во секунд с начала работы программы со скоростью ветра 2 м/с.

int speed_wind_3=0; // К-во секунд с начала работы программы со скоростью ветра 3 м/с.

int speed_wind_4=0; // К-во секунд с начала работы программы со скоростью ветра 4 м/с.

int speed_wind_5=0; // К-во секунд с начала работы программы со скоростью ветра 5 м/с.

…………………………………………………………..

int speed_wind_22=0; // К-во секунд с начала работы программы со скоростью ветра 22 м/с.

if (ob_per_sec >0 && ob_per_sec<4) { speed_wind=2; speed_wind_2 ;}

if (ob_per_sec >4 && ob_per_sec<7) { speed_wind=3; speed_wind_3 ; }

if (ob_per_sec >7 && ob_per_sec<11) { speed_wind=4; speed_wind_4 ; }

if (ob_per_sec >11 && ob_per_sec<15) { speed_wind=5; speed_wind_5 ; }

if (ob_per_sec >15 && ob_per_sec<18) { speed_wind=6; speed_wind_6 ; }

if (ob_per_sec >18 && ob_per_sec<23) { speed_wind=7; speed_wind_7 ; }

if (ob_per_sec >23 && ob_per_sec<27) { speed_wind=8; speed_wind_8 ; }

if (ob_per_sec >27 && ob_per_sec<30) { speed_wind=9; speed_wind_9 ; }

…………………………………………………………..

if (ob_per_sec >60 && ob_per_sec<67) { speed_wind=22; speed_wind_22 ; }

if (speed_wind> speed_wind_max){ speed_wind_max = speed_wind ;}// проверяем и перезаписываем, если максимальное значение больше чем предыдущее записанное.

И выводим на экран значение.

speed_wind

speed_wind_max

При необходимости можно затем просмотреть сколько минут дул ветер с определенной скоростью, для этого нужно на экран вывести переменную (с необходимым индексом скорости) speed_wind_№ (но разделить ее на 60, чтобы получились минуты.).

Про анемометры:  Термопара для газового котла: принцип работы, характеристики, устранение неисправностей. Как проверить термопару на газовом котле — принцип работы

Я у себя в программе сделал так: при нажатии определенной кнопки поочередно выводятся все переменные, от speed_wind_1 до speed_wind_22.

Как выбрать?

Выбирая прибор, необходимо четко понимать, для каких целей он нужен. Отталкиваясь от этого, следует уточнить ключевые технические характеристики разных вариантов, сравнить набор функций дорогостоящих и бюджетных моделей. Эту информацию можно найти в руководствах по эксплуатации.

В данном случае рекомендовано обратить внимание на такие основные параметры:

  • предельная погрешность – величина возможной ошибки при замерах;

  • измерительный диапазон – важный параметр, который выбирают с учетом условий запланированных измерений;

  • приборная разрешающая способность – для аналоговых моделей является ценой деления, для цифровых – максимальным количеством цифр после запятой.


Ознакомившись с этим параметрами, стоит изучить дополнительный функционал.

На странице каталога
компании “ЭКО-ИНТЕХ” вы найдете современные измерители расхода воздуха, скорости и направления ветра, потоков газа, отличающиеся высокой точностью и простотой применения.

Рекомендуем обратить внимание на следующие модели анемометров:

  • Testo 410-1 – удобный, компактный и простой в эксплуатации измеритель скорости воздушного потока, температуры немецкого производства. Идеальный выбор для контроля параметров на выходах воздуховодов.
  • Testo 410-2 – наряду со скоростью и температурой измеряет влажность воздуха благодаря запатентованному сенсору Testo.
  • Testo 440 – многофункциональное, компактных размеров оборудование с возможностью подключения до трех зондов (проводного, температурного, Bluetooth-зонда) для выполнения замеров с целью оценки качества воздуха помещения и работ по пусконаладке вентиляционных систем.
  • Testo 425 – термоанемометр с функцией получения усредненных значений скорости потока, расхода объема, степени нагрева. Имеет стационарно подсоединенный обогреваемый зонд и телескопическую рукоятку. Позволяет фиксировать текущие показания благодаря специальной функции HOLD.
  • Testo 480 – портативная многофункциональная модель для оценки микроклиматических параметров, которая сочетает в себе современный дизайн и инновационные технологии. Измеритель подсказывает пользователю, как провести необходимые измерительные процедуры, а также создать отчеты.
  • Балометр Testo 420 – новинка электронного оборудования. Такой измеритель поможет отладить объемный расход воздуха на приточных, а также вытяжных вентиляционных решетках. Отличается легкостью, точностью и удобством применения.

Как сделать анемометр на базе arduino

Прибором измерения силы ветра своими руками
Автор этой самоделки однажды столкнулся с вопросом, как можно определить, есть ли ветер в том месте, где он живет. Такой вопрос возник из-за того, что он хотел поставить ветряк для генерации электричества. С помощью этого хитроумного приспособления можно сделать замеры, как часто бывает ветер, с какой средней скоростью он дует и так далее. В качество основы для сбора и обработки информации лежит плата Arduino.

Материалы и инструменты для изготовления анемометра: — кусок квадратной трубы; — болгарка; — сварка; — подшипник; — развертка; — гвозди; — краска; — светодиодиодно-фототранзисторный датчик (можно вытащить из принтера); — схема Arduino; — минимальный набор инструмента.

Прибором измерения силы ветра своими руками
Процесс изготовления:

Шаг первый. Изготавливаем датчик анемометра

Для изготовления датчика нужно взять кусок квадратной трубы и затем в ней вырезать окошко, через него потом будет происходить установка начинки. Внутри этой трубы нужно приварить металлическую пластину, она будет выступать в качестве держателя подшипника. Потом приваривается еще одна пластина для фиксирования нижнего подшипника.

Верх автор решил сделать в виде скатной крыше. Для этого берется четыре треугольника, сперва прихватывается сваркой, а затем хорошо проваривается.

Прибором измерения силы ветра своими руками
Далее заготовка зажимается в тиски и диаметром сверла на 0.5 мм меньше, чем диаметр подшипника в нижней крышке и середине сверлится отверстие. Оба они нужны для подшипников. Чтобы подшипники встали на места с натяжкой, размер отверстий подгоняется разверткой. После того как подшипники были установлены, в них был вставлен гвоздь 100-ка. В середине окошка на него надевается пластмассовая шайба с четырьмя прорезями. Снизу гвоздя была нарезана резьба и затем на эту ось была накручена крыльчатка.

Шаг второй. Процесс изготовления крыльчатки

Чтобы изготовить крыльчатку нужно взять гайку и приварить к ней электродом на 2мм три гвоздя. Концы гвоздей обрезаются, и на них нарезается резьба. Затем на концы надеваются половинки от мячика.

В качестве держателя к корпусу был приварен шестигранный пруток из нержавеющей стали. А чтобы корпус не ржавел, он был покрыт белой эмалью.

Прибором измерения силы ветра своими руками
Чтобы датчик мог считывать информацию, нужна шайба с прорезями. Автор достал ее из старой шариковой компьютерной мышки. Когда прорезь проходит перед светодиодно-фототранзисторным датчиком, он посылает сигнал электронике.

Что касается лопастей крыльчатки, то они сперва были изготовлены из теннисных мячиков. При таком размере лопастей крыльчатка заводится при ветре от 5 м/с. Чтобы сделать крыльчатку чувствительнее, были приобретены мячики диметром 55 мм, в таком случае крыльчатка начинает крутится уже при м/с. При этом измерение ведется до 22 м/с.

Шаг третий. Электронная часть

В качестве электронной схемы автор сперва использовал самодельную ЛУТ схему с добавлением зеленой макси из Китая. Но система не могла показывать скорость ветра в метрах/секунду. Она лишь отображала количество оборотов.

На данный момент идет сборка схемы на Arduino. Принцип работы анемометра автора точно такой, как и компьютерной мышки. Нужно теперь лишь соединить две схемы.

Было решено передать импульсы с фототранзистора на Arduino, при этом схема стала воспринимать такие сигналы как нажатия на кнопку. Чтобы получить скорость ветра, нужно просто посчитать, сколько идет нажатий на кнопку в течение определенного времени, скажем, в секунду.

Как сделать анемометр на базе Arduino
Вот и все, теперь анемометр можно считать готовым. При необходимости в код можно добавить функцию, которая бы подсчитывала, сколько времени ветер дул с какой-то определенной скоростью. Такая самоделка будет отличным дополнением для тех, кто собирается установить ветряк или пристально следит за погодой.

anemometr.rar [9.54 Kb] (скачиваний: 1118)

Как сделать самодельный анемометр (измеритель скорости ветра)

Как сделать самодельный анемометр (измеритель скорости ветра)

Появилась задача собрать для одного проекта анемометр, чтобы снимать данные можно было на компьютере по интерфейсу USB. В статье речь пойдет больше о самом анемометре, чем о системе обработки данных с него:

1. Компоненты Итак, для изготовления изделия понадобились следующие компоненты: Шариковая мышь Mitsumi — 1 шт. Мячик для пинг-понга — 2 шт. Кусок оргстекла подходящего размера Медная проволока сечением 2,5 мм2 — 3 см Стержень от шариковой ручки — 1 шт. Палочка от конфеты чупа-чупс — 1 шт. Клипса для кабеля — 1 шт. Полый латунный бочонок 1 шт.

2. Изготовление крыльчатки

К латунному бочонку были припаяны 3 куска медной проволоки длиной 1 см каждый под углом 120 градусов. В отверстие бочонка я припаял стойку из китайского плеера с резьбой на конце. Трубочку от конфеты разрезал на 3 части длиной около 2 см. Разрезал пополам 2 шарика и с помощью мелких шурупов из того же плеера и полистирольного клея (клеевым пистолетом) прикрепил половинки шарика к трубочкам от чупа-чупса. Трубочки с половинками шарика надел на припаянные куски проволоки, сверху все закрепил клеем.

3. Изготовление основной части

Как сделать самодельный анемометр (измеритель скорости ветра)
Несущим элементом анемометра является металлический стержень от шариковой ручки. В нижнюю часть стержня (куда вставлялась пробка) я вставил диск от мышки (энкодер). В конструкции самой мышки нижняя часть энкодера упиралась в корпус мышки образуя точечный подшипник, там была смазка, поэтому энкодер легко крутился. Но нужно было зафиксировать верхнюю часть стержня, для этого я подобрал подходящий кусок пластика с отверстием точно по диаметру стержня (такой кусок был вырезан из системы выдвигания каретки CD-ROMa). Оставалось решить проблему с тем, чтобы стержень с энкодером не выпадал из точечного подшипника, поэтому на стержне непосредственно перед удерживающим элементом я напаял несколько капель припоя. Таким образом, стержень свободно крутился в удерживающей конструкции, но не выпадал из подшипника. Причина, по которой была выбрана схема с энкодером, следующая: все статьи о самодельных анемометрах в Интернете описывали их изготовление на базе двигателя постоянного тока от плеера, CD-ROMa или еще какого изделия. Проблема с такими устройствами во первых в их калибровке и малой точности при малой скорости ветра, а во вторых — в нелинейной характеристике скорости ветра по отношению к выходному напряжению, т.е. для передачи информации на компьютер есть определенные проблемы, нужно просчитывать закон изменения напряжения или тока от скорости ветра. При использовании энкодера такой проблемы нет, так как зависимость получается линейной. Точность высочайшая, так как энкодер дает около 50 импульсов на один оборот оси анемометра, но несколько усложняется схема преобразователя, в котором стоит микроконтроллер, считающий количество импульсов в секунду на одном из портов и выдающий это значение в порт USB.

Про анемометры:  Термомасляные котлы – Уральская энергетика - производство паровых котлов и парогенераторов на всех видах топлива

4. Испытания и калибровка Для калибровки был использован лабораторный анемометр:

Как сделать самодельный анемометр (измеритель скорости ветра)
Весь процесс наглядно виден на роликах:

Спасибо за внимание.

Румб (румбовая система)

Румбом называется любое направление на плоскости от центра видимого горизонта к точкам его окружности.

В морской терминологии 1/32 полной окружности (равной 11,25°), а также одно из делений картушки компаса (расчерченной на 32 части) и соответственно одно из направлений относительно севера.

За начало отсчета принимается направление на север, при этом отсчет ведется по часовой стрелке.

Плоскость истинного меридиана наблюдателя, пересекаясь с плоскостью истинного горизонта, образует на последней основное направление, называемое линией истинного меридиана или линией NS (норд-зюйд) наблюдателя.

Вертикальная плоскость, перпендикулярная плоскости истинного меридиана, пересекаясь с плоскостью истинного горизонта наблюдателя, образует на ней линию EW (ост-вест) наблюдателя.
В конце 1980-х годов обозначение востока O (нем. Ost, нидерл. oost) было заменено на E (англ. East).

Если стать лицом к северному полюсу, то направление на юг будет позади, направление к востоку – вправо, а к западу – влево.

Направления на N (север), E (восток), S (юг) и W (запад) называют главными румбами или сторонами света.

Также вместо “t” иногда встречается обозначения “b“, или, что встречает реже “z” и “p“. С чем это связно я выяснить не смог. Если кто-то знает – просьба об этом сообщить в комментариях.

Румбы как направления имеют собственные названия:

№ румбаОбозначениеНазвание“Сухопутное”
название
Угол (град.)
Четверть NE
0Nнордсевер0,00o
1NtEнорд-тень-остсевер-тень-восток11,25o
2NNEнорд-норд-остсеверо-северо-восток22,50o
3NEtNнорд-ост-тень-нордсевер-восток-тень-север33,75o
4NEнорд-остсеверо-восток45,00o
5NEtEнорд-ост-тень-остсеверо-восток-тень-восток56,25o
6ENEост-норд-оствостоко-северо-восток67,50o
7EtNост-тень-нордвосток-тень-север78,75o
8Eоствосток90,00o
Четверть SE
8Eоствосток90,00o
9EtSост-тень-зюйдвосток-тень-юг101,25o
10ESEост-зюйд-оствостоко-юго-восток112,50o
11SEtEзюйд-ост-тень-остюго-восток-тень-восток123,75o
12SEзюйд-остюго-восток135,00o
13SEtSзюйд-ост-тень-зюйдюго-восток-тень-юг146,25o
14SSEзюйд-зюйд-остюго-юго-восток157,50o
15StEзюйд-тень-остюг-тень-восток168,75o
16Sзюйдюг180,00o
Четверть SW
16Sзюйдюг180,00o
17StWзюйд-тень-вестюг-тень-запад191,25o
18SSWзюйд-зюйд-вестюго-юго-запад202,50o
19SWtSзюйд-вест-тень-зюйдюго-запад-тень-юг213,75o
20SWзюйд-вестюго-запад225,00o
21SWtWзюйд-вест-тень-вестюго-запад-тень-запад236,25o
22WSWвест-зюйд-вестзападо-юго-запад247,50o
23WtSвест-тень-зюйдзапад-тень-юг258,75o
24Wвестзапад270,00o
Четверть NW
24Wвестзапад270,00o
25WtNвест-тень-норд запад-тень-север281,25o
26WNWвест-норд-вестзападо-северо-запад292,50o
27NWtWнорд-вест-тень-вестсеверо-запад-тень-запад303,75o
28NWнорд-вестсеверо-запад315,00o
29NWtNнорд-вест-тень-нордсеверо-запад-тень-север326,25o
30NNWнорд-норд-вестсеверо-северо-запад337,50o
31NtWнорд-тень-вестсевер-тень-запад 348,75o
0Nнордсевер360,00o

Сила ветра: измерение и использование

Ветер как явление природы известен каждому еще с раннего детства. Он радует свежим дуновением в знойный день, гоняет корабли по морю, а может и гнуть деревья, и ломать крыши на домах. Основным характеристиками, которые определяют ветер, являются его скорость и направление.

сила ветра
Что такое ветер?
С научной точки зрения, ветром называется передвижение воздушных масс в горизонтальной плоскости. Такое движение возникает потому, что имеет место разность атмосферного давления и тепла между двумя точками. Воздух передвигается из областей высокого давления в те области, где уровень давления ниже. В результате и возникает ветер.

Характеристики ветра

Для того чтобы охарактеризовать ветер, используют два основных параметра: направление и скорость (силу). Направление определяется стороной горизонта, с которой он дует. Оно может указываться в румбах, в соответствии с 16-румбовой шкалой. Согласно ей, ветер может быть северным, юго-восточным, северо-северо-западным и так далее.

Направление ветра может также измеряться в градусах, относительно линии меридиана. По этой шкале север определяется как 0 или 360 градусов, восток – 90 градусов, запад – 270 градусов, а юг – 180 градусов. В свою очередь, скорость ветра измеряют в метрах в секунду или в узлах. Узел равен приблизительно 0,5 километра в час. Сила ветра измеряется также в баллах, в соответствии со шкалой Бофорта.

Шкала Бофорта, в соответствии с которой определяется сила ветраЭта шкала была введена в обращение в 1805 году. А в 1963 году Всемирная метеорологическая ассоциация приняла градацию, которая действует по сей день. В ее рамках 0 баллов соответствует штилю, при котором дым будет подниматься вертикально вверх, а листья на деревьях остаются неподвижными.

Сила ветра в 4 балла соответствует умеренному ветру, при котором на поверхности воды образуются небольшие волны, могут колыхаться тонкие ветви и листья на деревьях. 9 баллов соответствуют штормовому ветру, при котором могут гнуться даже большие деревья, срываться черепица с крыш, подниматься высокие волны на море.

Использование силы ветраСила ветра достаточно широко используется в энергетике как один из восполнимых природных источников. С незапамятных времен человечество использовало этот ресурс. Достаточно вспомнить ветряные мельницы или парусные суда.

Ветряки, с помощью которых сила давления ветра преобразуется для дальнейшего использования, широко применяются в тех местах, для которых характерны постоянные сильные ветры. Из различных областей применения такого явления как сила ветра, стоит упомянуть также аэродинамическую трубу.

Ветер – природное явление, которое может приносить удовольствие или разрушения, а также быть полезным для человечества. А конкретное действие его зависит от того, насколько большой окажется сила (или скорость) ветра.

Оцените статью
Анемометры
Добавить комментарий