- Специфика применения взрывозащищенного оборудования на объектах, опасных по возникновению горючих газовых и пылевых сред
- Определение понятий
- Методы обеспечения взрывобезопасности
- Маркировка взрывозащиты
- Классификация электрооборудования
- Материал корпуса электрооборудования
- Построение шлейфов пожарной сигнализации
- Нормативные документы для взрывоопасных зон
- Грамотный подбор оборудования
- Ввод кабеля в оболочку прибора
- Прокладка кабеля сквозь стены и перекрытия
- Стандарты взрывозащищенного оборудования
- Классификация взрывоопасных зон и маркировка взрывозащищенного оборудования в России
- Классификация взрывоопасных зон по газу
- Классификация взрывоопасных зон по пыли
- По области применения оборудование делится на группы
- Уровень взрывозащищенности оборудования
- Методы обеспечения взрывобезопасности оборудования
- Действует следующая российская классификация уровней взрывозащиты оборудования
- Категории взрывоопасности смеси
- Характеристики взрывоопасных смесей
- Классификация по температуре самовоспламенения
- Объединенные требования к аппаратуре по категориям взрывоопасности газовых смесей и температуре самовоспламенения смесей газов
- Дополнительная информация
- Температурный класс
- Требования к аппаратуре по категориям взрывоопасности и температуре самовоспламенения пыли в облаке и слое.
- Примеры температур воспламенения горючей пыли
- Маркировка FM по стандарту NEC, CEC
- АТЕХ – новый европейский стандарт взрывозащищенного оборудования
Специфика применения взрывозащищенного оборудования на объектах, опасных по возникновению горючих газовых и пылевых сред
06 Сентябрь 2019
Александр Любочкин
Ведущий инженер ОС ВСИ ВНИИФТРИ
Многочисленные технические регламенты большинства процессов направлены на недопущение образования взрывоопасных сред. Однако практика показывает, что все равно взрывоопасные газовые смеси в аппаратах, газовые и пылевые смеси в помещениях и зонах образуются довольно часто. Помимо этого, есть ряд зон, в которых взрывоопасная смесь в нормальных условиях эксплуатации присутствует продолжительное время. В силу данных причин невозможно полностью исключить образование взрывоопасных смесей в процессе производства. Поэтому на практике широко используются средства взрывозащиты технологического оборудования, позволяющие сделать его безопасным для взрывоопасной среды, в которой такое оборудование установлено.
Определение понятий
Кроме технологического оборудования, есть целый ряд систем безопасности зданий и сооружений – охранно-пожарная сигнализация, системы оповещения о пожаре, видеонаблюдения, контроля доступа и еще ряд других систем, к которым также предъявляются требования в отношении безопасной эксплуатации во взрывоопасной среде.
Грамотный подбор решений и качественно выполненный монтаж сводят к минимуму вероятность воспламенения взрывоопасной среды.
Прежде чем мы поговорим про эти системы, не лишне вспомнить, что же такое взрывозащищенное электрооборудование и взрывоопасная среда.
Взрывозащищенное электрооборудование – это электротехническое изделие (электротехническое устройство, электрооборудование) специального назначения, которое выполнено таким образом, что устранена или затруднена возможность воспламенения окружающей его взрывоопасной среды вследствие эксплуатации данного изделия.
Взрывоопасная среда – смесь с воздухом, при атмосферных условиях, горючих веществ в виде газа, пара, тумана или пыли, горение в которой после воспламенения распространяется на весь объем взрывоопасной смеси.
Методы обеспечения взрывобезопасности
Основные методы обеспечения взрывобезопасности оборудования регламентируются Техническим регламентом “О безопасности оборудования для работы во взрывоопасных средах” (ТР ТС 012/2011) и межгосударственными стандартами, перечень которых утверждается Решением Коллегии Евразийской экономической комиссии. Среди таких методов отметим следующие:
- локализация, сдерживание взрыва, когда принятые меры не дают взрыву распространиться за пределы оболочки оборудования;
- изоляция или герметизация – заливка компаундом, продувка оборудования, например, сжатым воздухом для поддержания внутри оболочки повышенного давления, заполнение оболочки кварцевым песком или маслом;
- применение искробезопасной электрической цепи в целях предотвращения или ограничения запасенной и выделяемой энергии в электрических цепях.
Каждому изделию, предназначенному для применения во взрывоопасной зоне, после проведения соответствующих испытаний с целью допуска его к эксплуатации в конкретной взрывоопасной среде присваивается маркировка взрывозащиты или Ех-маркировка (от англ. Explosion Proof – взрывобезопасность) и выдается сертификат соответствия требованиям ТР ТС 012/2011, в котором отражена информация о типе, модели, марке, исполнениях оборудования, указаны условия его применения, параметры электрических цепей и особые условия применения под знаком Х.
Маркировка взрывозащиты
Ех-маркировка по ГОСТ 31610.0–2014 (IEC 60079-0:2011) “Взрывобезопасные среды.
Часть 0. Общие требования” состоит из нескольких цифробуквенных символов, несущих определенную информацию, и имеет следующую структуру:
- первый знак – знак уровня взрывозащиты;
- Ех – знак принадлежности к взрывозащищенному оборудованию;
- третий знак – вид взрывозащиты;
- четвертый знак – группа по области применения;
- пятый знак – температурный класс;
- шестой знак – опять же знак уровня взрывозащиты, но у же на европейский манер – Ga, Gb и Gc.
В конце маркировки взрывозащиты может стоять знак Х или U: Х указывает на специальные условия безопасного применения электрооборудования, U служит для обозначения Ех-компонента.
Классификация электрооборудования
По уровню взрывозащиты электрооборудование подразделяется на:
- электрооборудование повышенной надежности против взрыва;
- взрывобезопасное электрооборудование;
- особо взрывобезопасное электрооборудование.
Критерии присвоения того или иного уровня взрывозащиты электрооборудованию изложены в ГОСТ 31610.0–2014 (IEC 60079-0:2011).
Вид взрывозащиты – специальные меры, предусмотренные в электрооборудовании с целью предотвращения воспламенения окружающей взрывоопасной среды, совокупность средств взрывозащиты электрооборудования, установленных ТР ТС 012/2011 “О безопасности оборудования для работы во взрывоопасных средах” и стандартами из перечня, утвержденного под ТР ТС 012/2011. Каждому виду взрывозащиты соответствует определенный символ:
- d, e, i, m, n, o, p, q, s – для электрооборудования, предназначенного для работы во взрывоопасных газовых средах;
- t, i, m, p, s – для электрооборудования, предназначенного для работы во взрывоопасных пылевых средах;
- fr, d, c, b, k, p – для неэлектрического оборудования.
По области применения оборудование делится на следующие группы:
- I – рудничное взрывозащищенное электрооборудование, предназначенное для применения в подземных выработках шахт, рудников и в их наземных строениях, опасных по рудничному газу и/или горючей пыли;
- II – взрывозащищенное электрооборудование для внутренней и наружной установки, предназначенное для потенциально взрывоопасных сред, кроме подземных выработок шахт и рудников и их наземных строений, опасных по рудничному газу и/или пыли;
- III – оборудование, предназначенное для применения во взрывоопасных пылевых средах (кроме подземных выработок шахт и их наземных строений).
Электрооборудование групп II и III может подразделяться на подгруппы (IIA, IIB или IIC, IIIA, IIIB, IIIC) в соответствии с категорией взрывоопасности взрывоопасной газовой среды и характеристикой конкретной взрывоопасной пылевой среды, для которой оно предназначено.
Температурный класс соответствует максимальной температуре поверхности электрооборудования. Различают шесть температурных классов (табл. 1).
Кроме того, на корпус оборудования или табличку наносится специальный знак взрывобезопасности (рис.2).
Материал корпуса электрооборудования
В зависимости от того, в какой зоне будет установлено электрооборудование, его корпус может быть выполнен из пластика, сплава алюминия, стали или нержавеющей стали.
Оборудование в металлических корпусах во взрывоопасной зоне в обязательном порядке заземляют, а в неметаллических корпусах – изготавливают из специального пластика с антистатическими добавками либо окрашивают корпус токопроводящей краской.
Как правило, электрооборудование в металлических корпусах применяют для защиты наружных установок, где высоки требования по защите корпуса от неблагоприятных факторов внешней среды и большая разница между нижней и верхней температурой эксплуатации. Требования по степеням защиты, обеспечиваемым оболочками (код IP), определены в ГОСТ 14254–2015 (IEC 60529:2013). Электрооборудование в пластиковых корпусах и с низким кодом IP, как правило, применяют в помещениях.
Построение шлейфов пожарной сигнализации
Существует ошибочное мнение, что, применив одно устройство с видом взрывозащиты “искробезопасная электрическая цепь i”, мы сразу же решим проблему взрывобезопасности в целом. На самом деле искробезопасная электрическая цепь – это совокупность устройств и кабельной линии связи, каждое из которых отвечает требованиям искробезопасности. Приведем простой пример – построение искробезопасного шлейфа пожарной сигнализации (рис. 3).
Мы видим, что для построения искробезопасного шлейфа применяются:
- прибор приемно-контрольный, образующий искробезопасные шлейфы сигнализации;
- извещатели с видом взрывозащиты i;
- кабельная линия связи, индуктивность Lк и емкость Cк которой имеют вполне конкретные значения, удовлетворяющие требованиям искробезопасности.
Замени любой из компонентов данного шлейфа сигнализации на устройство, имеющее вид взрывозащиты, отличный от i, и шлейф перестанет быть искробезопасным. При таком построении шлейфа не налагаются жесткие требования к защите самой кабельной линии. Кабель в этом случае применяется типовой для данного вида системы. Его жилы могут быть только медными.
Иная ситуация при использовании устройств с взрывозащитой вида d или m (рис. 4).
Здесь уже не требуется применять прибор с искробезопасными выходными цепями. Но на первый план выходит механическая защита кабельной линии связи – прокладка кабеля в трубе, металлическом коробе, металлорукаве или использование бронированного кабеля. При этом кабель для прокладки таких шлейфов должен быть также с медными жилами. Разрешено применение во взрывоопасных зонах кабеля с алюминиевыми жилами в силовых цепях с сечением жилы не менее 16 кв. мм.
Приведенные примеры построения шлейфов пожарной сигнализации в полной мере относятся и к иным системам, применяемым во взрывоопасных зонах.
Нормативные документы для взрывоопасных зон
Мы рассмотрели лишь один пример построения систем безопасности во взрывоопасных зонах. Наиболее полно вопросы подбора оборудования, проектирования, выполнения монтажных работ отражены в ряде федеральных и ведомственных документов. Приведу лишь часть из них. Прежде всего это:
- ГОСТ IEC 60079-14–2013 “Взрывоопасные среды. Часть 14. Проектирование, выбор и монтаж электроустановок”;
- Правила устройства электроустановок (ПУЭ), издание 6, глава 7.3. “Электроустановки во взрывоопасных зонах”;
- ВСН 332-74 ММСС СССР Инструкция по монтажу электрооборудования, силовых и осветительных сетей взрывоопасных зон;
- РД 78.145-93 “Системы и комплексы охранной, пожарной и охранно-пожарной сигнализации. Правила производства и приемки работ” и др.
Изучив их, можно в полной мере представить себе последовательность организации работ во взрывоопасных зонах. Я же хочу остановиться на некоторых моментах, которые вызывают особые затруднения.
Грамотный подбор оборудования
Для выполнения данного пункта необходимо перед началом проектирования получить от заказчика следующую информацию по объекту:
- класс взрывоопасной зоны;
- классификация газа, пара или пыли на защищаемом объекте;
- минимальная температура самовоспламенения горючего газа или горючей пыли;
- внешние источники воспламенения и температура окружающей среды;
- условия применения оборудования.
Выбор уровня взрывозащиты электрооборудования, когда известен только класс взрывоопасной зоны, приведен в табл. 2.
При этом нельзя применять электрооборудование, имеющее уровень взрывозащиты по газу (Ga, Gb или Gc) в пылевых средах и наоборот – имеющее уровень взрывозащиты по пыли (Da, Db или Dc) во взрывоопасных газовых средах.
Что касается подбора допустимой группы и подгруппы электрооборудования в зависимости от категории взрывоопасной смеси, то данный вопрос наглядно представлен в табл. 3.
Оборудование группы II и подгруппы IIC можно применять во всех категориях взрывоопасных смесей. При этом также следует разделять оборудование, сертифицированное для применения в газовой и пылевой средах.
Температурный класс электрооборудования выбирается, исходя из минимальной температуры самовоспламенения горючего газа или горючей пыли. И если оборудование имеет температурный класс Т6, то оно может применяться во всех температурных классах от Т6 до Т1.
Ввод кабеля в оболочку прибора
Еще один момент, на который хотелось бы обратить внимание, – это ввод кабеля в оболочку прибора. Во-первых, кабельный ввод не должен нарушать вид и уровень взрывозащиты оболочки. Во-вторых, кабельный ввод должен обеспечивать необходимый уровень защиты от проникновения твердых предметов и воды в корпус устройства (код IP). Это особенно актуально, когда оборудование поставляется без кабельных вводов, а заказчик самостоятельно эти кабельные вводы покупает и устанавливает. В таком случае они в обязательном порядке должны иметь сертификат соответствия требованиям ТР ТС 012/2011.
Прокладка кабеля сквозь стены и перекрытия
Еще одна немаловажная проблема – переход из зоны в зону через стены и перекрытия. Не всегда компании, выполняющие монтажные работы, подходят к этому вопросу с должным вниманием и ответственностью, они подчас “забывают” качественно уплотнить участки прохода кабеля через стены и перекрытия. В соответствии с требованиями ВСН 332-74 проходы одиночных кабелей сквозь внутренние стены и междуэтажные перекрытия следует выполнять в отрезках водогазопроводных труб, заделанных цементным раствором. Кабель должен быть уплотнен путем заполнения трубы составом УС-65 с набивкой кабельного джута или асбестового шнура. Для надежного уплотнения бронированного кабеля без наружного поливинилхлоридного покрова на участке прохода его сквозь стену следует снять броню, заземляющие проводники припаять к броне с двух сторон прохода и присоединить их к болтам на трубах для создания непрерывности цепи заземления брони.
Вариант прокладки кабеля сквозь стену представлен на рис. 5.
Другой, более современный способ прокладки кабеля сквозь стены и перегородки, – использование взрывозащищенных уплотнительных модулей, установленных в муфты или рамы. Достоинством данного метода является многоразовость конструкции, когда каждый из уплотнительных модулей можно в любой момент заменить на другой, более подходящий под тип используемого кабеля. Такой способ позволяет оперативно прокладывать новые кабели или заменять кабели, вышедшие из строя. Вариант использования таких модулей представлен на рис. 6.
Это лишь то немногое, на что хотелось бы обратить внимание при начале работ на взрывоопасных объектах. В рамках данной статьи невозможно охватить все проблемы и нюансы применения взрывозащищенного электрооборудования. Поэтому глубокое изучение даже тех немногих документов, которые были упомянуты, позволит избежать ошибок при проектировании, монтаже, эксплуатации взрывозащищенного оборудования на опасных объектах и, прежде всего, сохранит человеческие жизни.
Информация и фото с http://lib.secuteck.ru/articles2/firesec/spetsifika-primeneniya-vzryvozaschischennogo-oborudovaniyana-obektah–opasnyh-po-vozniknoveniyu-goryuchih-gazovyh-i-pylevyh-sred
Стандарты взрывозащищенного оборудования
Взрывоопасными производствами на данный момент являются не только предприятия и объекты химической, горнорудной, нефтегазодобывающей, атомной промышленностей. К взрыво- и пожароопасным относятся, например, предприятия по производству продуктов питания: мукомольные, кондитерские, винно-водочные; а также деревообрабатывающие и целлюлозно-бумажные комбинаты, цементные и железобетонные заводы и т. д. Кроме того, современное предприятие любой отрасли имеет в своей структуре взрывоопасные зоны, т. к. на любом современном производстве есть склады ГСМ и лакокрасочных изделий, участки гальванической и высокой температурной обработки, покрасочные цеха или камеры и т. п. Всё электротехническое оборудование, устанавливаемое в такой взрывоопасной зоне, должно быть выполнено в специальном взрывозащищенном исполнении, т. е. оборудование не должен являться источником воспламенения или взрыва.
Чтобы понять, как и с помощью какого оборудования защищать соответствующие взрывоопасные зоны, необходимо рассмотреть некоторые теоретические вопросы. В 2001 году были введены новые стандарты ГОСТ Р 51330 “Оборудование взрывозащищенное”, которые соответствуют требованиям международной электротехнической комиссии (МЭК) и европейским стандартам. Кроме того, не переиздавалась пока и глава 7 “Правил устройства электроустановок” (ПУЭ), которая также является основополагающей в теории взрывозащищенного электрооборудования. Опираясь на эти документы, можно дать несколько определений.
Взрывоопасная зона – помещение или ограниченное пространство в помещении или наружной установке, в котором имеются или могут образоваться взрывоопасные смеси. Взрывоопасные зоны подразделяются на следующие классы:
- Зона класса 0: зона, в которой взрывоопасная газовая смесь присутствует постоянно или в течение длительных периодов времени.
- Зона класса 1: зона, в которой существует вероятность присутствия взрывоопасной газовой смеси в нормальных условиях эксплуатации.
- Зона класса 2: зона, в которой маловероятно присутствие взрывоопасной газовой смеси в нормальных условиях эксплуатации, а если она возникает, то редко и существует очень непродолжительное время.
Взрывозащищенное оборудование – электрооборудование, в котором предусмотрены конструктивные меры по устранению или затруднению возможности воспламенения окружающей его взрывоопасной среды вследствие эксплуатации этого электрооборудования.
Вид взрывозащиты – специальные меры, предусмотренные в электрооборудовании с целью предотвращения воспламенения окружающей взрывоопасной газовой среды; совокупность средств взрывозащиты электрооборудования, установленная нормативными документами.
Средство взрывозащиты – конструктивное и (или) схемное решение для обеспечения взрывозащиты электрооборудования.
Уровень взрывозащиты – степень взрывозащиты электрооборудования при установленных нормативными документами условиях. Установлены следующие уровни взрывозащиты электрооборудования:
- “электрооборудование повышенной надежности против взрыва”
- “взрывобезопасное электрооборудование”
- “особовзрывобезопасное электрооборудование”
Электрооборудование повышенной надежности против взрыва – взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается только в признанном нормальным режиме его работы. Знак уровня – “2Ex”.
Взрывобезопасное электрооборудование – взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятных повреждениях, определяемых условиями эксплуатации, кроме повреждений средств взрывозащиты. Знак уровня – “1Ex” или “РВEx” для рудничного оборудования.
Особовзрывобезопасное электрооборудование – взрывозащищенное электрооборудование, в котором по отношению к взрывобезопасному электрооборудованию приняты дополнительные средства взрывозащиты, предусмотренные стандартами на виды взрывозащиты. Знак уровня – “0Ex” или “РОEx” для рудничного оборудования.
Взрывозащищенное электрооборудование может иметь следующие виды взрывозащиты:
- взрывонепроницаемая оболочка – d;
- заполнение или продувка оболочки под избыточным давлением – р;
- кварцевое заполнение оболочки – q;
- масляное заполнение оболочки – о;
- защита вида – е;
- искробезопасная электрическая цепь – i;
- герметизация компаундом – m;
- защита вида – n;
- специальный вид взрывозащиты – s.
Виды взрывозащиты, обеспечивающие различные уровни взрывозащиты, различаются средствами и мерами обеспечения взрывобезопасности, оговоренными в стандартах на соответствующие виды взрывозащиты.
Для взрывозащищенного оборудования пожарной сигнализации и автоматики характерно применение, в основном, следующих видов взрывозащиты:
- Вид взрывозащиты “искробезопасная электрическая цепь” (i) основывается на методе предотвращения взрыва или воспламенения за счет ограничения электрической и тепловой энергии.
- Вид взрывозащиты “взрывонепроницаемая оболочка” (d) основан на методе сдерживания взрыва, главный принцип которого – не дать взрыву распространиться за пределы оболочки прибора.
- В последнее время все большую практическую реализацию находят виды взрывозащиты с использованием метода изоляции, основанного на принципе физического разделения взрывоопасных частей и элементов прибора от взрывоопасной среды. Прежде всего, это вид взрывозащиты “герметизация компаундом” (m). В настоящее время именно с этим видом взрывозащиты выпускается все большее количество приборов. Связано это с тем, что практическая реализация этого вида взрывозащиты не требует больших затрат и снижает себестоимость оборудования.
Взрывозащищенное электрооборудование в зависимости от области применения подразделяется на две группы (таблица 1).
Таблица 1. Группы взрывозащищенного электрооборудования по области его применения
Электрооборудование группы II, имеющее виды взрывозащиты “взрывонепроницаемая оболочка” и (или) “искробезопасная электрическая цепь”, подразделяется также на три подгруппы, соответствующие категориям взрывоопасных смесей (таблица 2). Это подразделение базируется на безопасном экспериментальном максимальном зазоре (БЭМЗ) оболочек или минимальном токе воспламенения (МТВ) для электрооборудования с искробезопасными цепями.
Таблица 2. Подгруппы электрооборудования группы II
Электрооборудование, промаркированное как IIB, пригодно также для применения там, где требуется электрооборудование подгруппы IIА. Подобным образом электрооборудование, имеющее маркировку IIC, пригодно также для применения там, где требуется электрооборудование подгруппы IIА или IIB.Электрооборудование группы II в зависимости от значения предельной температуры подразделяется на шесть температурных классов, соответствующих группам взрывоопасных смесей, где предельная температура – наибольшая температура поверхностей взрывозащищенного электрооборудования, безопасная в отношении воспламенения окружающей взрывоопасной среды (таблица 3).
Таблица 3. Температурные классы электрооборудования группы II
Таким образом, мы подошли к расшифровке записи маркировки взрывозащиты, которая всегда присваивается конкретному виду взрывозащищенного электротехнического оборудования. В эту маркировку в указанной ниже последовательности входят:
- знак уровня взрывозащиты электрооборудования (2, 1, 0);
- знак Ех, указывающий на соответствие электрооборудования стандартам на взрывозащищенное электрооборудование. ( – от английского explosion – взрыв);
- знак вида взрывозащиты (d, p, q, o, e, I, m, n, s);
- знак группы или подгруппы электрооборудования (II, IIА, IIВ, IIС);
- знак температурного класса электрооборудования (Т1, Т2, Т3, Т4, Т5, Т6).
В маркировке по взрывозащите могут иметь место дополнительные знаки и надписи, например, буквы X и U – в соответствии со стандартами на электрооборудование с отдельными видами взрывозащиты.Примеры маркировки взрывозащищенного электрооборудования приведены в таблице 4.
Таблица 4. Примеры маркировки взрывозащищенного электрооборудования
Классификация взрывоопасных зон и маркировка взрывозащищенного оборудования в России
Современная унифицированная классификация взрывоопасных зон в соответствии с ГОСТ Р и ТР403 “О безопасности оборудования для работы во взрывоопасных средах”
Класс взрывоопасной зоны, в соответствии с которым производится выбор электрооборудования, определяется технологами совместно со специалистами проектной или эксплуатирующей организации. Нормативные документы содержат определение геометрических размеров каждого класса зон.
Классификация взрывоопасных зон по газу
Классификация взрывоопасных зон по пыли
Современная классификация зон для газов и паров включает зоны трех классов: 0, 1 и 2, но практика показала, что общая классификация зон одновременно для газа и пыли является неприемлемой. В отличие от зон для газа или пара, зоны, опасные по воспламенению горючей пыли, не могут быть классифицированы в зависимости от нормальных или аварийных условий и от времени. Усиленная вентиляция может привести к появлению облаков пыли и поэтому увеличить, а не уменьшить опасность.
Зоны класса В-1а и В-1б не могут определяться как Зона 2 так как сама возможность возникновения аварии с юридической стороны не определена как величина частоты возникновения и длительности присутствия взрывоопасной смеси (Федеральный закон от 22 июля 2008 г. N 123-ФЗ “Технический регламент о требованиях пожарной безопасности”).
Тем не менее, для Зон класса В-Iа и В-Iб необходимо применять оборудование, предназначенное для использования как минимум в Зоне 2 (уровень взрывозащищенности оборудования 2).
Для исключения ошибок при определении соответствия зон, оборудование для Зон класса В-Iг должно иметь класс взрывозащищенности соответствующий Зоне 1 (уровень взрывозащищенности оборудования 1), т.к. Зона В-Iг частично перекрывает Зону 1.
Для Зон класса В-I необходимо применять только оборудование, предназначенное для эксплуатации в Зоне 1 или Зоне 0 (уровень взрывозащищенности оборудования 1 или 0). Оборудование, предназначенное для эксплуатации в Зоне 2 применять в зоне класса В-I недопустимо.
В части Зоны В-I, в которой взрывоопасная газовая смесь присутствует постоянно или в течение длительных периодов времени допускается использовать только оборудование, предназначенное для эксплуатации в Зоне 0 (уровень взрывозащищенности оборудования 0).
Оборудование, предназначенное для работы в пределах зоны того или иного класса, должно иметь соответствующий уровень взрывозащищенности.
Согласно устаревшему но действующему российскому нормативному документу ПУЭ Главе 7.3 и федеральному закону от 22 июля 2008 г. N 123-ФЗ “Технический регламент о требованиях пожарной безопасности”, выделяют следующие классы взрывоопасных зон:
- зоны класса В-1 – расположены в помещениях, в которых выделяются горючие газы или пары ЛВЖ в таком количестве и с такими свойствами, что могут образовывать с воздухом взрывоопасные смеси при нормальных режимах работы;
- зоны класса В-1а – расположены в помещениях, в которых взрывоопасные смеси горючих газов (независимо от нижнего концентрационного предела воспламенения) или паров ЛВЖ с воздухом не образуются при нормальной эксплуатации, а только в результате аварий или неисправностей;
- зоны класса В-1б – аналогичны В-1а, но отличаются от них тем, что при авариях горючие газы обладают высоким нижним пределом воспламенения (15% и выше), а также при опасных концентрациях резким запахом. В этот класс входят зоны лабораторных и других помещений, в которых горючие газы и ЛВЖ имеются в малых концентрациях, недостаточных для создания взрывоопасной смеси и где работа производится без применения открытого пламени. Зоны не относятся к взрывоопасным, если работы с опасными веществами производятся в вытяжных шкафах или под вытяжными зонтиками;
- зоны класса В-1г – пространства у наружных установок: технологических установок, содержащих горючие газы или ЛВЖ, открытых нефтеловушек, надземных и подземных резервуаров с ЛВЖ или горючими газами (газгольдеров), эстакад для слива и налива ЛВЖ, прудов-отстойников с плавающей нефтяной пленкой и т. п.
- зоны класса В-2 – расположены в помещениях, где выделяются переходящие во взвешенное состояние горючие пыли или волокна в таком количестве и с такими свойствами, что могут создавать с воздухом взрывоопасные смеси при нормальных режимах работы;
- зоны класса В-2а – такие, где опасные условия при нормальной работе не возникают, но могут возникнуть в результате аварий или неисправностей.
По области применения оборудование делится на группы
I – оборудование, предназначенное для применения в подземных выработках шахт, рудников, опасных в отношении рудничного газа и (или) горючей пыли, а также в тех частях их наземных строений, в которых существует опасность присутствия рудничного газа и (или) горючей пыли (категория смеси – I );
II – оборудование, предназначенное для применения во взрывоопасных зонах помещений и наружных установок (категория смеси – II по газу);
III – оборудование, предназначенное для применения во взрывоопасных пылевых средах (категория смеси – II по пыли )
Пример маркировки ГОСТ Р для Категории смеси II по газу:
Пример маркировки ГОСТ Р для Категории смеси II по пыли:
DIP A21 TA200° (TAT3)
Маркировка оборудования для Категории смеси I:
Пример маркировки: РВ1В
Уровень взрывозащищенности оборудования
Уровни взрывозащищенности электрооборудования имеют в российской классификации обозначения 2, 1 и 0:
- Уровень 2 – электрооборудование повышенной надежности против взрыва: в нем взрывозащита обеспечивается только в нормальном режиме работы;
- Уровень 1 – взрывобезопасное электрооборудование: взрывозащищенность обеспечивается как при нормальных режимах работы, так и при вероятных повреждениях, зависящих от условий эксплуатации, кроме повреждений средств, обеспечивающих взрывозащищенность;
- Уровень 0 – особо взрывобезопасное оборудование, в котором применены специальные меры и средства защиты от взрыва.
Степень взрывозащищенности оборудования (2, 1, или 0) ставится в РФ как первая цифра перед европейской маркировкой взрывозащищенности оборудования.
Методы обеспечения взрывобезопасности оборудования
Все известные и применяемые на практике методы защиты направлены на уменьшение риска взрыва до приемлемого уровня. При этом если система сконструирована правильно, то единичная неисправность в любом ее компоненте не должна приводить к возникновению взрыва.
В общем случае все методы обеспечения взрывозащиты можно условно разделить на четыре основные группы:
1. Методы взрывозащиты, направленные на снижение вероятности возникновения электрической искры.
По данному методу реализуются следующее виды защиты:
- Взрывозащита вида “е” (повышенная безопасность)
- Взрывозащита вида “n”
- Взрывозащита вида “s” (специальный)
2. Методы взрывозащиты, направленные на изоляцию электрических цепей от взрывоопасных смесей.
Метод подразумевает заключение электрических цепей в специальные оболочки, заполненные газообразным, жидкостным или твердым диэлектриком так, чтобы взрывоопасная смесь не находилась в контакте с электрическими цепями.
По данному методу реализуются следующие виды взрывозащиты:
- Взрывозащита вида “m” – заливка специальным компаундом;
- Взрывозащита вида “о” – масляное заполнение оболочки;
- Взрывозащита вида “a” – заполнение оболочки кварцевым песком;
- Взрывозащита вида р” – заполнение или продувка оболочки взрывобезопасным газом под избыточным давлением.
3. Методы взрывозащиты, направленные на сдерживание взрыва.
По данному методу реализована взрывозащита вида “d” (взрывозащитная оболочка).
Данный метод подразумевает, что электрические цепи помещены в специальную прочную оболочку с малым зазором. При этом не исключается контакт электрических цепей с взрывоопасной смесью и возможность ее воспламенения, но при этом гарантируется, что оболочка сдерживает возникшее в результате взрыва избыточное давление, т.е. вспышка не выходит за пределы ограничений взрывонепроницаемой оболочки. Поскольку раскаленные газы имеют различную проникающую способность, то здесь принимаются во внимание подгруппы газов.
При проведении испытаний на соответствие взрывозащищённых оболочек стандарту ГОСТ Р 52350.1-2005 выставляются полуторакратные зазоры допустимых величин, указанных в сводной таблице ГОСТ Р 52350.1-2005 “Минимальная длина соединения и максимальный зазор для оболочек подгруппы IIС”. Зазор, согласно ГОСТ Р 52350.1-2005 для взрывонепроницаемых оболочек объемом более 2000 см3, эксплуатируемых в газовоздушной смеси с содержанием водорода, составляет 40 микрон.
4. Ограничение мощности искры
По данному методу реализована защита вида ‘i’ (искробезопасная цепь). Данный метод подразумевает, что в случае возникновения искры ее мощности будет недостаточно для воспламенения взрывоопасной смеси. Однако данный метод не исключает контакта взрывоопасной смеси с электрическими цепями.
В европейской классификации приводится детализация примененного в оборудовании типа взрывозащиты (она признается в РФ и встречается в сертификатах на взрывозащищенное оборудование):
Действует следующая российская классификация уровней взрывозащиты оборудования
Категории взрывоопасности смеси
В предыдущей классификации предусмотрены две категории: I и II.
Категория I определяет требования к оборудованию, предназначенному для применения в подземных выработках шахт, рудников, опасных в отношении рудничного газа и (или) горючей пыли, а также в тех частях их наземных строений, в которых существует опасность присутствия рудничного газа и (или) горючей пыли.
К категории II относится оборудование, применяемое для работы в условиях возможного образования промышленных взрывоопасных смесей газов и пыли.
Существуют три подкатегории категории II: IIA, IIB, IIC. Каждая последующая подкатегория включает (может заменить) предшествующую, то есть, подкатегория С является высшей и соответствует требованиям всех категорий – А, В и С. Она, таким образом, является самой «строгой».
Со вступлением в силу технического регламента ТР403 предусматривается три категориии (Категория II – для газов, категория III – для пыли)
В системе МЭКEx (IECEx) предусмотрено три категории: I, II и III.
Из категории II выделена пыль в III категорию. (Категория II – для газов, категория III – для пыли)
В системе NEC и CEC предусмотренна более расширенная классификация взрывоопасных смесей газов и пыли для обеспечения большей безопасности по классам и подгруппам (Class I Group A; Class I Group B; Class I Group C ;Class I Group D ;Class I Group E; Class II Group F; Class II Group G). Так например, для угольных шахт изготавливается с двойной маркировкой: Class I Group D (для метана); Class II Group F (для угольной пыли).
Характеристики взрывоопасных смесей
Для многих распространенных взрывоопасных смесей экспериментальным путем построены так называемые характеристики воспламенения. Для каждого топлива существует минимальная энергия поджигания (МЭП), которая соответствует идеальной пропорции топлива и воздуха, в которой смесь легче всего воспламеняется. Ниже МЭП поджигание невозможно при любой концентрации. Для концентрации ниже, чем величина, соответствующая МЭП, количество энергии, требующейся для воспламенения смеси, увеличивается до тех пор, пока значение концентрации не станет меньше значения, при котором смесь не может воспламениться из-за малого количества топлива. Эта величина называется нижней границей взрыва (НГВ). Аналогичным образом при увеличении концентрации количество необходимой для воспламенения энергии растет, пока концентрация не превысит значения, при котором воспламенение не может произойти из-за недостаточного количества окислителя. Это значение называется верхней границей взрыва (ВГВ).
С практической точки зрения, НГВ является более важной и существенной величиной, чем ВГВ, потому что она устанавливает в процентном отношении минимальное количество топлива, необходимого для образования взрывоопасной смеси. Эта информация важна при классификации опасных зон.
Категории взрывоопасности смеси детализируются в зависимости от температуры самовоспламенения взрывоопасных газов и смесей.
Классификация по температуре самовоспламенения
Объединенные требования к аппаратуре по категориям взрывоопасности газовых смесей и температуре самовоспламенения смесей газов
Категория IIC взрывоопасности смеси применяется к группам:
- Т1 – водород, водяной газ, светильный газ, водород 75% + азот 25%»;
- Т2 – ацетилен, метилдихлорсилан;
- Т3 – трихлорсилан;
- Т4 – не применяется;
- Т5 – сероуглерод;
- Т6 – не применяется.
Категориям А и В соответствуют взрывоопасные смеси
- Т1 – аммиак, …, ацетон, …, бензол, 1,2-дихлорпропан, дихлорэтан, диэтиламин, …, доменный газ, изобутан, …, метан (промышленный, с содержанием водорода в 75 раз большим, чем в рудничном метане), пропан, …, растворители, сольвент нефтяной, спирт диацетоновый,…, хлорбензол, …, этан;
- Т2 – алкилбензол, амилацетат, …, бензин Б95\130, бутан, …растворители…, спирты, …, этилбензол, циклогексанол;
- Т3 – бензины А-66, А-72, А-76, «галоша», Б-70, экстракционный. Бутилметакрилат, гексан, гептан, …, керосин, нефть, эфир петролейный, полиэфир, пентан, скипидар, спирты, топливо Т-1 и ТС-1, уайт-спирит, циклогексан, этилмеркаптан;
- Т4 – ацетальдегид, альдегид изомасляный, альдегид масляный, альдегид пропионовый, декан, тетраметилдиаминометан, 1,1,3 – триэтоксибутан;
- Т5 и Т6 – не применяются.
- IIB:
- Т1 – коксовый газ, синильная кислота;
- Т2 – дивинил, 4,4 – диметилдиоксан, диметилдихлорсилан, диоксан, …, нитроциклогексан, окись пропилена, окись этилена, …, этилен;
- Т3 – акролеин, винилтрихлорсилан, сероводород, тетрагидрофуран, тетраэтоксисилан, триэтоксисилан, топливо дизельное, формальгликоль, этилдихлорсилан, этилцеллозольв;
- Т4 – дибутиловый эфир, диэтиловый эфир, диэтиловый эфир этиленгликоля;
- Т5 и Т6 – не применяются.
Как видно из приведенных данных, категория IIC является избыточной для большинства случаев применения аппаратуры связи на реальных объектах.
Дополнительная информация
Категории IIA, IIB и IIC определяются следующими параметрами: безопасным экспериментальным максимальным зазором (БЭМЗ – максимальный зазор между фланцами оболочки, через который не происходит передача взрыва из оболочки в окружающую среду) и величиной МТВ (отношением минимального тока воспламенения смеси взрывоопасного газа и минимального тока воспламенения метана).
Температурный класс
Температурный класс электрооборудования определяется предельной температурой в градусах Цельсия, которую могут иметь при работе поверхности взрывозащищенного оборудования.
Температурный класс оборудования устанавливается исходя из минимальной температуры соответствующего температурного диапазона (его левой границы): оборудование, которое может применяться в среде газов с температурой самовоспламенения класса Т4, должно иметь максимальную температуру элементов поверхности ниже 135 градусов; Т5 – ниже 100, а Т6 – ниже 85.
Требования к аппаратуре по категориям взрывоопасности и температуре самовоспламенения пыли в облаке и слое.
Обеспечивая защиту от горючей пыли, необходимо учитывать температуру ее воспламенения. Температура поверхности оболочки, обозначенная на шильде, должна быть меньше исходной температуры самовоспламенения пыли.
Примеры температур воспламенения горючей пыли
Маркировка FM по стандарту NEC, CEC
Обозначения взрывозащищенности по американскому стандарту FM.
Factory Mutual (FM) по своей сути тождественны европейскому и российскому стандартам, но отличаются от них по форме записи. В американском стандарте также указываются условия применения аппаратуры: класс взрывоопасности среды (Class), условия эксплуатации (Division) и группы смеси по их температуре самовоспламенения (Group).
Class может иметь значения I, II, III: Class I – взрывоопасные смеси газов и паров, Class II – горючая пыль, Class III – горючие волокна.
Division может иметь значения 1 и 2: Division 1 – это полный аналог зоны В1(В2) – взрывоопасная смесь присутствует при нормальных условиях работы; Division 2 – аналог зоны В1А (В2А), в которой взрывоопасная смесь может появиться только в результате аварии или нарушений технологического процесса.
Для работы в зоне Div.1 требуется особо взрывобезопасное оборудование (в терминах стандарта – intrinsically safe), а для работы в зоне Div.2 – взрывобезопасное оборудование класса Non-Incendive.
Взрывоопасные воздушные смеси, газы, пары образуют 7 подгрупп, у которых есть прямые аналогии в российском и европейском стандартах:
- Group A – смеси, содержащие ацетилен (IIC T3, T2);
- Group B – смеси, содержащие бутадиен, акролеин, водород и окись этилена (IIС T2, T1);
- Group C – смеси, содержащие циклопропан, этилен или этиловый эфир (IIB T4, T3, T2);
- Group D – смеси, содержащие спирты, аммиак, бензол, бутан, бензин, гексан, лаки, пары растворителей, керосин, природный газ или пропан (IIA T1, T2, T3, T4);
- Group E – воздушные взвеси частиц горючей металлической пыли вне зависимости от ее электрической проводимости, либо пыль с подобными характеристиками опасности, имеющая удельную объемную проводимость менее 100 КОм – см.
- Group F – смеси, содержащие горючую пыль сажи, древесного угля или кокса с содержанием горючего вещества более 8% объема, или взвеси, имеющие проводимость от 100 до 100 000 ом-см;
- Group G – взвеси горючей пыли, имеющие сопротивление более 100 000 ом-см.
АТЕХ – новый европейский стандарт взрывозащищенного оборудования
Маркировка по стандарту CENELEC применялась в Европе до 1 июля 2003 года.
Ex – знак взрывозащищенного оборудования по стандарту CENELEC; d – тип взрывозащиты (взрывонепроницаемая оболочка); IIB – категория взрывоопасности газовой смеси II вариант В (см. выше); T4 – группа смеси по температуре воспламенения (температура не выше 135 С°)
В соответствии с директивой Евросоюза 94/9/EC с 01 июля 2003 года вводится новый стандарт АТЕХ. Новая классификация заменит старую CENELEC и вводится в действие на территории европейских стран.
АТЕХ – сокращение от ATmospheres Explosibles (взрывоопасные смеси газов). Требования АТЕХ распространяются на механическое, электрическое оборудование и защитные средства, которые предполагается использовать в потенциально взрывоопасной атмосфере, как под землей, так и на поверхности земли.
В стандарте АТЕХ ужесточены требования стандартов EN50020/EN50014 в части IS (Intrinsically Safe) оборудования. Эти ужесточения предусматривают:
- ограничение емкостных параметров схемы;
- использование других классов защиты;
- новые требования к электростатике;
- использование защитного кожаного чехла.
Классификационную маркировку взрывозащищенного оборудования по АТЕХ рассмотрим на следующем примере:
Четвертый элемент : G – для газов, D – для горючих пылей, волокон и взвесей.
Дальнейшие символы (после E Е х) были рассмотрены ранее.
1. Взрывозащищенное оборудование имеет сертификаты одной из испытательных лабораторий стран ЕС. Ex в шестиграннике – маркировка взрывозащищенного оборудования по АТЕХ.
2. Область применения:
- I — подземные выработки (шахтное)
- II — наземное применение (химиндустрия, НХЗ, НПЗ и т. п)
3. Категория зоны:
- 0 — постоянное присутствие взрывоопасных веществ (более 1000 часов в год). Используется при частом возникновении взрывоопасных или воспламеняющихся концентраций опасных газов или смесей (газов, взвесей).
- 1 — частое 10…1000 часов в год. Используется при возникновении взрывоопасных или воспламеняющихся концентраций опасных газов или смесей (газов, взвесей) лишь время от времени (например, при аварийных ситуациях)
- 2 — краткосрочные менее 10 часов в год. Используется при редких случаях возникновения этих ситуаций
4. Окружающая атмосфера:
- G — газ;
- D — пыль (для горючих пылей, волокон и взвесей)
5. Е — согласно евронормам (требования CENELEC); Ex — взрывозащищенное оборудование.
6. Классификация видов защиты:
- d — взрывонепроницаемая оболочка;
- e — защита вида “е” (повышенная);
- о — масляное заполнение;
- р — заполнение или продувка оболочки под Ризб;
- q — кварцевое заполнение;
- m — заполнение компаундом;
- i — искробезопасная электроцепь: (данный тип взрывозащиты гарантирует, что опасная ситуация не может возникнуть в результате искры (при коротком замыкании), либо в случае внезапного обрыва цепи питания (энергия внутренней индуктивности прибора), либо в результате нагрева токонесущих проводов);
- ia — опасная ситуация не может возникнуть при нормальной эксплуатации при помехах на линии и при любой комбинации двух возможных неисправностей;
- ib — опасная ситуация не может возникнуть при нормальной эксплуатации, при помехах на линии и одной неисправности. После главного вида защиты может указываться дополнительный.
7. Область применения:
- I — подземные работы;
- II — наземное применение;
Для видов защиты “d” и “i” в случае наземного применения вводятся подгруппы IIA, IIB и IIC (по величине БЭМЗ или МТВ).
8. Температура воспламенения:
- T1 > 450 °С;
- T2 = 300…450 °С;
- T3 = 200…300 °С;
- T4 = 135…200 °С;
- T5 = 100…135 °С;
- T6 = 85…100 °С.
«по материалам сайта http://cortem.ru»
Заказать консультацию инженера