Какого вещества больше всего в воздухе?

Какого вещества больше всего в воздухе? Анемометр

История открытия состава воздуха и ученые определившие его состав

До XVIII века воздух считался однокомпонентным газом, только в конце века учёные экспериментально определили его состав и доказали, что это смесь газов.

Открытие основных элементов воздуха принадлежит таким учёным, как:

  • Ломоносов
  • Блэк
  • Шееле
  • Пристли
  • Лавуазье
  • Рамзай
  • Релей, Резерфорд.

Михаил Васильевич Ломоносов

Русский учёный Ломоносов в 1750 году, на основании экспериментов установил, что воздух вступает в реакции с другими веществами и содержит газ способный окислять металлы.

В 1754 году шотландский химик и физик Джозеф Блэк, изучая состав газов и других материй, обнаружил, что воздух не простое вещество, а смесь разных элементов. При нагревании некоторых веществ он выделил «связанный воздух», который в последующем был назван углекислым газом.

В 1772 году шведский химик Карл Вильгельм Шееле изучал свойства огня и само горение. Во время опытов он пришёл к выводу, что воздух не однородное вещество, а состоит как минимум из двух газов и один из них способствует горению.

В это же время эксперименты по изучению состава воздуха проводились британским химиком Пристли. В процессе исследования фотосинтеза он открыл углекислый газ, который назвал «испорченный воздух», потому что в нем погибают живые организмы. На основании этих работ он доказал способность растений поглощать этот элемент и выделять другой, пригодный для дыхания.

В 1774 году ученый изучал состав различных веществ и виды воздуха выделяемые при их нагревании. При нагреве окиси ртути он получил ранее не изученный газ. Затем заметил, что им можно дышать и свеча в сосуде с ним горит ярче. Пристли исследовал свойства нового вещества и назвал его «огненный газ», но так и не смог научно объяснить открытие кислорода.

Про анемометры:  Уровень co2 в москве

На основании идей Карла Вильгельма Шееле и Джозефа Пристли, французский химик Антуан Лоран Лавуазье впервые опытным путём установил сложный состав воздуха. В 1777 году на основании исследований он сделал вывод, что воздух состоит из двух элементов:

  • «Жизненный газ» — необходимый элемент для горения и дыхания всего живого, который занимает 20 процентов от общего объёма. Потом Лавуазье переименовал его в oxygenium (кислород), что значит «производящий кислоту». Так как считал, что все вещества во время горения, при взаимодействии с кислородом окисляются и превращаются в кислоты, в состав которых он и входит.
  • «Неживой газ» — не участвует в горении, дыхании, не окисляет щёлочи и занимает 80 процентов в объёме воздуха. Впоследствии Лавуазье переименовал его в azote (азот), что обозначало безжизненный, ведь он явно не использовался для поддержания жизни.

В XIX веке исследование состава воздуха продолжал шотландский профессор Уильям Рамзай. В 1894 году вместе с британским физиком Джоном Уильямом Релеем, изучая плотность и массу газообразных веществ, они выявили третий элемент воздуха – аргон. Уильям Рамзай продолжал работу и в дальнейшем открыл гелий, неон и ксенон.

Таким образом, открытие веществ, составляющих воздух нельзя присвоить одному человеку, определением и изучением его элементов занимались разные учёные на протяжении XVIII – XIX века. Ими были открыты основные составляющие воздуха: углекислый газ, кислород, азот, аргон, гелий, неон, ксенон.

Какого вещества больше всего в воздухе?

ВОЗДУХ – СМЕСЬ ДЕВЯТИ ГАЗОВ. На температурной шкале показаны их температуры плавления и кипения при атмосферном давлении. Для диоксида углерода температуры кипения нет, так как он переходит из газообразной фазы сразу в твердую, минуя жидкую. Газы ожижаются при температуре кипения и затвердевают при температуре плавления.

РЕКТИФИКАЦИОННОЕ РАЗДЕЛЕНИЕ ВОЗДУХА

Какого вещества больше всего в воздухе?

СХЕМА ВОЗДУХОРАЗДЕЛИТЕЛЬНОЙ УСТАНОВКИ. Перед разделением (ректификацией) воздух осушается, очищается и отделяется от углекислого газа в секции очистки. (Порядок следования показан сплошной линией со стрелками.) В следующей секции осуществляется его ожижение. В газообразном виде воздух проходит через теплообменники, где дополнительно очищается от углекислого газа и паров воды. Одновременно остальные составляющие газы охлаждаются и ожижаются. Газы с самыми низкими температурами кипения дополнительно охлаждаются, расширяясь и отдавая свою энергию в детандере. В третьей секции воздух подвергается ректификации в колоннах, в результате чего большинство газов отделяется и замораживается. Дальнейшая обработка может состоять в разделении газов с близкими температурами кипения и очистке кислорода.

Удаление примесей. Прежде чем воздух поступит на вход ожижительной и ректификационной секций воздухоразделительной установки, из него удаляются все примеси, которые либо взвешены в атмосферном воздухе в виде твердых частиц, либо легко могут превратиться в твердые при понижении температуры. В противном случае неизбежна быстрая закупорка узких каналов оборудования. К таким посторонним примесям относятся водяной пар, пыль, дым и пары других веществ, а также углекислый газ. Основная часть этих примесей задерживается масло- и влагоуловителями, как правило, после компрессорного сжатия. Осушка воздуха после сжатия более предпочтительна, так как в этом случае меньше воды приходится удалять в виде пара, поскольку при сжатии он большей частью превращается в жидкость. Дальнейшая сушка воздуха производится пропусканием его через адсорберы с активированным оксидом алюминия или силикагелем (частично дегидратированным диоксидом кремния). Углекислый газ можно удалять химическим путем за счет реакции с гидроксидом калия (едким кали) или натрия (едким натром). Однако эти химикаты быстро расходуются и требуют частого пополнения. На крупных воздухоразделительных установках используются теплообменные аппараты, в которых удаляются одновременно углекислый газ и водяной пар, а также охлаждается воздух, поступающий на вход системы. Легкозамораживаемые газы оседают в твердом виде на металлических поверхностях теплообменников, которые поддерживаются при очень низких температурах потоком отделенных газов, проходящим по их внутренним каналам. Систему периодически очищают от накопившихся примесей, обращая поток газов в теплообменнике.Ожижение. Очищенный воздух поступает в секцию ожижения и охлаждается в системе механической рефрижерации, пока основная его часть не превратится в жидкость. В зависимости от давления, до которого воздух был сжат первоначально, его температура здесь снижается до примерно 100 К. Давления цикла находятся в пределах от 0,6 до 20 МПа. При охлаждении используется холод отделенных ранее газов, поступающих из ректификационной секции. В оптимально сконструированном теплообменнике холод отделенных газов практически полностью передается входящему воздуху. На некоторых установках, в частности таких, где часть отделенных газов отбирается в жидком виде, для предварительного охлаждения до примерно -40° С (230 К) предусматриваются теплообменники с фреоном или метилхлоридом. При более низких температурах, необходимых для ожижения воздуха, охлаждающей средой служит либо входящий воздух, либо отделенный азот. Этот газ, сжатый до определенного давления, приводит в движение расширительную машину, или детандер (обращенный компрессор). Расширяясь, газ перемещает поршень, который через коленчатый вал приводит во вращение электрогенератор, выполняющий функцию “тормоза”. Поскольку газ при расширении в детандере совершает работу, его теплосодержание и температура понижаются. При первом пуске установки необходимо сначала охладить ее до рабочей температуры, а для этого требуется больше холода, чем в установившемся рабочем режиме (захолаживание установки). Охлаждение можно также осуществлять за счет расширения сжатых газов в газообразной или жидкой фазе при истечении через дроссельный клапан. В этом случае понижение температуры обусловлено эффектом Джоуля – Томсона (дроссель-эффектом). Указанные методы охлаждения основаны на разных термодинамических эффектах, и если ввести их в цикл в правильной последовательности, то можно использовать преимущества каждого из них

(см. такжеТЕПЛОТА;ТЕРМОДИНАМИКА;ФИЗИКА НИЗКИХ ТЕМПЕРАТУР).
Секции ожижения и ректификации, работающие при криогенных температурах, требуют хорошей наружной теплоизоляции. Поэтому аппараты названных секций снабжаются кожухами, заполненными такими теплоизолирующими материалами, как минеральная вата, стекловата и пористый вулканический пепел. Конструкционные материалы теплообменников, ректификационных колонн и соединительных трубопроводов выбираются очень тщательно. Углеродистые стали при криогенных температурах становятся хрупкими. Поэтому предпочтение отдается таким материалам, как медь, бронза, латунь, нержавеющая сталь и алюминий, обнаруживающим в криогенных условиях превосходные прочностные характеристики.Ректификация. Разделение ожиженного воздуха на составляющие производится в вертикальных цилиндрических аппаратах, называемых ректификационными колоннами. Внутри такой колонны имеется вертикальный ряд горизонтальных “тарелок” с отверстиями, через которые вниз стекает жидкость, а из нижней части колонны поднимается газ, вступая в контакт с жидкостью на тарелках. В установках для выделения с высокой степенью чистоты всех компонентов воздуха предусматривается целый ряд таких колонн. В верхнюю часть каждой колонны вводится жидкость соответствующего состава, а в нижней создаются условия, необходимые для достаточно интенсивного парообразования, так что в колонне происходит постепенное разделение смеси. В условиях нормального атмосферного давления воздух ожижается при температуре около 80 К (-190° C); состав смеси изменяется по сравнению с первоначальным. Если исходный воздух содержит приблизительно 79% азота и 21% кислорода, то в результате естественного кинетического перераспределения в жидкости будет 65% азота и 35% кислорода, а в газе над жидкостью – 87% азота и 13% кислорода. Другие составляющие газы ведут себя точно так же, независимо от соотношения между кислородом и азотом. Как правило, пар над жидкостью обогащен компонентом с более низкой температурой кипения. Соотношение между фазами зависит, конечно, от давления. По мере того как жидкость опускается, а пары поднимаются по ректификационной колонне, концентрации выделяемых компонентов в них повышаются; в конце концов, в нижней части колонны отбирается кислород “товарной” чистоты, в ее верхней части – высококачественный азот, в других точках – аргон и смесь “более редких” газов. Поскольку на воздухоразделительных установках температура, как правило, не опускается ниже точки кипения азота, неон и гелий остаются неожиженными, и их можно несконденсированными выводить в виде смеси с азотом из основной ректификационной колонны. Смеси кислорода с аргоном разделять труднее, чем смеси газов с большой разницей в температурах кипения. На крупных воздухоразделительных установках конденсационно-испарительный процесс для увеличения выхода аргона высокой чистоты дополняется химическим процессом. К смеси кислорода, азота и аргона, отбираемой из криогенной секции системы, добавляется дозированное количество газообразного водорода. Кислород вступает в реакцию с водородом в присутствии палладиевого катализатора, и образуется вода, которая удаляется в осушителях. Остающаяся газообразная смесь аргона и азота вновь охлаждается и направляется на повторную ректификацию. Редкие газы (гелий, неон, криптон и ксенон) окончательно разделяются на комбинированных установках, где конденсационно-испарительный метод сочетается с методом селективной адсорбции. В качестве адсорбента часто применяется активированный уголь, охлажденный до температуры жидкого азота.Транспортировка и хранение. Кислород, азот и аргон транспортируются и хранятся как в жидком, так и в газообразном виде. Для криогенных жидкостей используются специальные теплоизолированные сосуды. Низкотемпературные газы хранятся под давлением до 17 МПа в стальных баллонах. Редкие газы отпускаются в стеклянных сосудах Дьюара вместимостью 1-2 л; применяются и стальные термосы.

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ РАЗДЕЛЕННЫХ ГАЗОВ

Какого вещества больше всего в воздухе?

ПНЕВМОДРЕЛЬ В РАЗРЕЗЕ. 1 – вход сжатого воздуха; 2 – регулятор числа оборотов; 3 – клапан-выключатель; 4 – автоматическая масленка; 5 – ротор; 6 – лопасть ротора; 7 – редуктор; 8 – патрон для сверла.

Поршневые пневмодвигатели. Поршневой пневмодвигатель сходен с паровой машиной. Сжатый воздух поступает в клапанную коробку, и клапан, срабатывая, впускает порцию воздуха в цилиндр. Под давлением воздуха поршень совершает полезную работу через кривошипный или другой механизм, после чего отработанный воздух выпускается в атмосферу. Пневмоцикл может быть без расширения и с расширением.Пластинчатые ротационные пневмодвигатели. Ротор такого двигателя смещен относительно осевой линии неподвижного корпуса. Прямоугольные пластины (или лопасти), установленные в радиальных пазах ротора, прижимаются к внутренней стенке корпуса. Сжатый воздух поступает в цилиндрический корпус через отверстие в стенке и заполняет “камеру”, образуемую стенкой ротора, стенкой корпуса и одной из пластин. Под давлением воздуха пластина вместе с ротором поворачивается, а следующая пластина, проходя мимо отверстия, прерывает поступление воздуха в данную камеру и открывает ему доступ в следующую. Захваченный воздух расширяется, отдавая часть своей энергии, пока не достигается полный объем камеры. После этого открывается выпускное отверстие, и порция отработанного воздуха выходит наружу.Турбинные пневмодвигатели. В воздушной турбине энергия давления сжатого воздуха преобразуется в кинетическую энергию его направленного движения при расширении воздуха в соплах. Высокоскоростная воздушная струя ударяется о лопатки ротора, действует на него с тангенциальной силой и заставляет вращаться (воздушные турбины сходны с паровыми).
Разделение воздуха методом глубокого охлаждения. М., 1973 Головко Г.А., Ручкин А.В. Разделение воздуха. Л., 1982 Вассерман А.А. и др. Теплофизические свойства воздуха и его компонентов. М., 1986

Энциклопедия Кольера. — Открытое общество.
.

Смотреть что такое “ВОЗДУХ” в других словарях

Атмосфера состоит из (5) слоёв, которые различаются по составу, плотности и температуре.

Какого вещества больше всего в воздухе?

Рис. (1). Слои атмосферы

Нижние слои атмосферы — тропосфера и стратосфера — содержат почти весь воздух Земли.

— самый нижний и наиболее плотный слой атмосферы. Тропосфера более всего пригодна для жизни. Здесь обитает большинство живых организмов Земли, включая людей. Атмосфера вращается вместе с планетой, поэтому она так же сплюснута у полюсов. Верхняя граница тропосферы проходит на высоте (16)–(18) км над экватором, (10)–(12) км в умеренных широтах и (8)–(9) км над полюсами. В тропосфере находится (80)  массы воздуха, почти весь водяной пар и примеси. Здесь происходят горизонтальные и вертикальные движения воздуха, формируются облака, выпадают атмосферные осадки (дождь, снег и другие). Тропосферу называют «фабрикой погоды». Воздух нижнего слоя атмосферы нагревается от поверхности Земли, но при подъёме вверх температура воздуха понижается и достигает у верхней границы тропосферы (-50).

— второй слой от поверхности Земли. Он простирается до высоты (50)–(55) км. Воздух здесь разрежён ((20)  массы атмосферы), им невозможно дышать. В стратосфере температура воздуха с подъёмом повышается и на верхней границе почти достигает (0) (°). На высоте (20)–(25) км располагается . Этот слой служит своеобразным экраном, который защищает всё живое на Земле от губительных ультрафиолетовых лучей. Но под действием продуктов сгорания топлива и фреонов озон разрушается, появляются озоновые дыры (например, над Антарктидой).

Выше (50)–(55) км располагаются верхние слои атмосферы — , и . Плотность воздуха в этих слоях ничтожно мала. Здесь происходят удивительные явления природы: (свечение разрежённых газов) и (вспышки при сгорании в атмосфере метеорных тел). В экзосфере происходит ускользание в космическое пространство водорода, кислорода и гелия.

Во́здух — естественная смесь газов, главным образом азота и кислорода, образующая земную атмосферу. Воздух необходим для нормального существования подавляющего числа наземных живых организмов: кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии (метаболизм, аэробы). В промышленности и в быту кислород воздуха используется для сжигания топлива с целью получения тепла и механической энергии в двигателях внутреннего сгорания. Из воздуха методом сжижения получают инертные газы. В соответствии с Федеральным Законом «Об охране атмосферного воздуха» под атмосферным воздухом понимается «жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений».

Химический состав

Воздух всегда содержит пары воды. Так, при температуре 0 °C 1 м³ воздуха может вмещать максимально 5 граммов воды, а при температуре +10 °C — уже 10 граммов.

Воздух в искусстве

  • Фантастический роман Продавец воздуха (1929 год, автор Беляев, Александр Романович) и одноимённая экранизация этого романа.
  • Одна из песен группы «Алиса» из альбома «Блок ада» (1987) называется «Воздух».
  • Одна из песен группы «Nautilus Pompilius» из альбома «Титаник на Фонтанке» (1993) называется «Воздух».

Какого вещества больше всего в воздухе?

Все от детей до взрослых знают, что без воздуха невозможно выжить, но далеко не все знают, что же собой представляет воздух, и из чего же он состоит. Состоит он из азота и кислорода, и лишь малая часть аргона, воды, водорода и углекислого газа.

Если рассмотреть состав воздуха в процентах, то азот составляет 78.08%, кислород 20.94%, аргон 0.93%, углекислый газ 0.04%, неон 1.82*10-3%, гелий 4.6*10-4%, метан 1.7*10-4%, криптон 1.14*10-4%, водород 5*10-5%, ксенон 8.7*10-6%, закись азота 5*10-5%.

Так откуда же в воздухе столько азота?

Атомы азота в молекуле N2 соединены тройной связью. Ее так трудно разорвать, что азот плохо вступает в химические реакции, а улетучиться в космос ему не дает земное притяжение.

Так что азоту просто некуда деться из атмосферы.

Как он туда попал, до конца неясно. В протопланетной туманности азот находился в основном в форме аммиака. Аммиак первичной атмосферы Земли, видимо, был разрушен кислородом, который выделяли первые растения. А аммиак, запасенный в мантии, выделяет азот, попадая в перегретую водную среду в местах пододвигания литосферных плит. В атмосферу газ выбрасывается вулканами.

Атмосфера Земли — это воздушная оболочка, включающая в себя смесь газов: азот (78%), кислород (21%), углекислый газ (0,03%), аргон (0,93%) и другие. Хотя кислорода в три раза меньше, чем азота, но он играет огромную роль в жизни человека, ведь без него привычная жизнь на планете Земля не существовала бы. Дыхание живых организмов, горение, окисление, гниение, разложение, фотосинтез — всё это происходит благодаря свободному кислороду. Но не стоит забывать, что кислород является активным окислителем и, не будь в воздухе такого количество азота, кислород бы нарушал многие жизненные процессы или мог бы привести к необратимым последствиям. Из этого следует вопрос: что бы было, если кислорода в атмосфере Земли было бы в два раза больше?

  • Около 300 000 000 лет назад атмосфера Земли состояла из кислорода на 30%, а многие животные и насекомые были очень крупных размеров. Если учитывать то, что кислорода было бы больше, чем в древности, то можно полагать, что многие обитатели планеты, благодаря большому количеству кислорода, выросли бы в два, а то и в три раза больше, особенно речь идёт о насекомых и различных членистоногих животных. Например, тараканы стали бы величиной с крыс, пауки размером с ворон, а мухи величиной с ястреба;
  • Не стоит забывать и о деревьях, ведь они бы тоже стали очень высокими и большими, в особенности тополя и ели;
  • На людей увеличение кислорода тоже подействовало бы. Благодаря 23 000 ежедневных вздохам, рост человека увеличился бы до 2 метров, а то и больше (если брать среднестатистический рост – 165 см). Люди бы смогли достигать невероятных успехов в спорте, стали бы умнее и внимательнее. А также обладали бы железным иммунитетом.
  • На человека увеличение кислорода повлияло бы намного хуже, чем на другие живые организмы. Повышенное содержание кислорода окислило бы среду и создало свободные радикалы, что привело бы к повреждению ДНК и вызвало предрасположенность к раку. Появилась бы вероятность отравления кислородом, которого будет больше, чем нужно. А также привело бы к болезням лёгких, потери зрения, утрате клетками способности размножаться;
  • Атмосфера планеты стала бы плотнее и начала бы рассеивать больше солнечного света, из-за чего выделялось бы меньше пара, и окружающая среда бы окислилась, погубив множество живых существ;
  • Пострадали бы и различные вещи. Например, изделия из металлов начали бы быстрее ржаветь, а органические материалы стареть;

Всё то, что не уничтожило бы окисление, начало бы просто гореть. Все вещи, которые не могут гореть в нормальной среде, при избытке кислорода вспыхнули бы, как факел. Горело бы всё, даже влажная растительность тропиков.

Учитывая все плюсы в возможности увеличения содержания кислорода в атмосфере, минусы всё же перевешивают в такой ситуации, так как из-за увеличения кислорода все живые организмы, дома, вещи бы сгорели, а океаны, моря и реки просто высохли. И жизнь на планете Земля просто бы исчезла.

Состав вдыхаемого воздуха

Вдыхаемый воздух – это смесь газов поступающая при вдохе в легкие. В норме в нем содержится 79,03 % азота и инертных газов, 20,94% кислорода, 0,03% углекислого газа.

На это процентное соотношение влияет:

  • Местонахождение. В лесу или в горах больше кислорода и меньше вредных примесей, чем в городе;
  • Пространство. Воздух на улице и в помещении отличается процентным содержанием углекислого газа;
  • Погода и время года влияют на концентрацию газов.

Состав выдыхаемого воздуха

Выдыхаемый воздух – это смесь газов выходящая при выдохе из органов дыхания.

В легких происходит процесс газообмена и вследствие этого пропорции  веществ в выдыхаем воздухе будут отличатся от вдыхаемого. Изменяется содержание кислорода и углекислого газа, а остальные газы не усваиваются и не выводятся, поэтому их содержание меняется не существенно.

Поскольку кислород участвует в окислительных процессах, то часть его остается в организме и его доля на выдохе меняется с 20,94% до 16,4%. При обмене веществ органы выделяют углекислый газ, который выходит при дыхании и изменяется с 0,03% до 4,1%.

На газовое соотношение оказывают влияние:

  • здоровье организма,
  • скорость обмена веществ,
  • состояние покоя или активности.

Состав альвеолярного воздуха.

Альвеолярный воздух – это газовая смесь, которая остается в легких после выдоха и участвует в газообмене.

Химический состав воздуха находящегося внутри организма изменяется. Потому что, из альвеол легких кислород постепенно поступает в кровь, а из крови обратно в альвеолы попадает углекислый газ.

На газообмен влияют:

  • химический состав крови,
  • эмоциональное состояние,
  • физическая нагрузка.

Содержание газов в процентах

https://youtube.com/watch?v=DEhBkfRMSkU%3Ffeature%3Doembed%26wmode%3Dopaque

Оцените статью
Анемометры
Добавить комментарий