Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982] Анемометр

Всем нам прекрасно известно, что без воздуха на земле ни проживет ни одно живое существо. Воздух являться для всех нас жизненно необходимым. Все от детей до взрослых знают, что без воздуха невозможно выжить, но далеко не все знают, что же собой представляет воздух, и из чего же он состоит. Итак, воздух это смесь газов которую нельзя не увидеть и не потрогать, но мы все прекрасно знаем, что он находиться вокруг нас, хотя мы его практически не замечаем. Чтобы провести исследования различное характера, включая экологические комплексы, можно в нашей лаборатории.

Воздух мы сможем чувствовать лишь когда чувствуем сильный ветер или же мы находимся возле вентилятора. Из чего же состоит воздух, а состоит он из азота и кислорода, и лишь малая часть аргона, воды, водорода и углекислого газа. Если рассмотреть состав воздуха в процентах, то азот составляет 78.08 процентов, кислород 20.94%, аргон 0.93 процента, углекислый газ 0.04 процента, неон 1.82*10-3 процентов, гелий 4.6*10-4 процентов, метан 1.7*10-4 процентов, криптон 1.14*10-4 процентов, водород 5*10-5 процентов, ксенон 8.7*10-6 процентов, закись азота 5*10-5 процентов.

Содержание кислорода в воздухе очень большое ведь именно кислород нужный для жизнедеятельности человеческого организма. Кислород, который наблюдается в воздухе при дыхании попадает в клетки организма человека, и участвует в процессе окисления, в следствии чего осуществляется выделение энергии, которая нужна для жизни. Также кислород, который находиться в воздухе обязателен и для сжигания топлива, которое выдает тепло, а также при получении механической энергии в двигателях внутреннего сгорания.

https://youtube.com/watch?v=PSLXXjenmac%3Frel%3D0

Также из воздуха при сжижении добывают инертные газы. Сколько кислорода в воздухе, если посмотреть в процентном соотношении, то кислорода и азота в воздухе 98 процентов. Зная ответ на этот вопрос возникает еще один, какие газообразные вещества входят в состав воздуха еще.

Итак, в 1754 году ученным по имени Джозеф Блек было подтверждено, что воздух состоит из смеси газов, а не однородное вещество как считалось до этого. В состав воздуха на земле входит метан, аргон, углекислый газ, гелий, криптон, водород, неон, ксенон. Стоит отметит, что процентное соотношение воздуха может незначительно меняться в зависимости от того, где проживают люди.

К сожалению, в крупных городах пропорция углекислого газа в процентном соотношении будет выше, чем к примеру, в селах или лесах. Возникает вопрос сколько процентов кислорода в воздухе в горах. Ответ прост, кислород намного тяжелее азота, поэтому его будет намного меньше в воздухе в горах, это потому, что плотность кислорода с высотой уменьшается.

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Норма кислорода в воздухе

Итак, что касается соотношения кислорода в воздухе существуют определенные нормы, к примеру, для рабочей зоны. Для того что бы человек мог полноценно работать то норма кислорода в воздухе составляет от 19 до 23 процентов. При эксплуатации оборудования на предприятиях необходимо обязательно следить за герметичностью аппаратов, а также различных машин. Если при тестировании воздуха в помещении где работают люди показатель кислорода будет ниже 19 процентов, то необходимо обязательно покинуть помещение и включить аварийную вентиляцию.  Контролировать уровень кислорода в воздухе на рабочем месте можно пригласив лабораторию “ЭкоТестЭкспресс” и исследовать химический анализ воздуха.

Давайте теперь определим, что же такое есть кислород

Кислород есть химическим элементом периодической таблице элементов Менделеева, кислород не имеет ни запаха, ни вкуса, ни цвета. Кислород в воздухе крайне необходим для дыхания человека, а также для горения ведь не для кого не секрет, что если не будет воздуха, то никакие материалы не будут гореть. В состав кислорода входит смесь из трех стабильных нуклидов, массовые числа которых 16. 17 и 18.

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Итак, кислород является самым распространенным элементом на земле, что касается процентного соотношения то кислорода наибольше процентов находиться в силикатах это около 47.4 процентов массы твердой земной коры. Также в морских и пресных водах всей земли содержится огромное количество кислорода, а именно 88.8 процентов, что касается количества кислорода в воздухе то это всего лишь 20.95 процентов. Необходимо отметить и то, что кислород входит в состав более 1500 соединений в земной коре.

Что касается получения кислорода то его получают при разделении воздуха при низких температурах. Этот процесс происходит так, в начале сжимают воздух при помощи компрессора при сжимании воздуха начинает нагреваться. Сжатому воздуху дают остыть до комнатной температуры, а после охлаждения обеспечивают его свободное расширение.

Когда происходит расширение температура газа резко начинает понижаться, после того как воздух охладился его температура может быть на несколько десятков градусов ниже комнатной температуры, такой воздух опять подвергают сжатию и отбирают выделившуюся теплоту. После нескольких этапов сжатия и охлаждения воздуха проделывается еще ряд процедур в следствии которых отделяется чистый кислород безо всяких примесей.

И здесь возникает еще один вопрос что тяжелее кислород или же углекислый газ. Ответ просто конечно же углекислый газ будет тяжелее чем кислород. Плотность углекислого газа составляет 1,97кг/м3, а вот плотность кислорода в свою очередь составляет 1,43кг/м3. Что касается углекислого газа то он, как оказывается играет одну из главных ролей в жизнедеятельности всего живого на земле, а также имеет влияние на круговорот углерода в природе. Доказано, что углекислый газ участвует в регуляции дыхания, а также кровообращения.

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Закажите бесплатно консультацию эколога

Что такое углекислый газ?

Теперь детальней определить, что же такое углекислый газ, а также обозначим состав углекислого газа. Итак, углекислый газ другими словами – это диоксид углерода, он представляет собой бесцветный газ со слегка кисловатым запахом, а также вкусом. Что касается воздуха то концентрация углекислого газа в нем составляет 0.038 процентов. Физическими свойствами углекислого газа есть то, что он не существует в жидком состоянии при нормальном атмосферном давлении, а переходит сразу из твердого состояния в газообразное.

Углекислый газ в твердом состоянии еще называют сухим льдом. На сегодняшний день углекислый газ есть участником глобального потепления. Получают углекислый газ при помощи горения различных веществ. Стоит отметить, что при промышленном производстве углекислого газа его закачивают в баллоны. Углекислый газ закачанный в баллоны применяют как огнетушители, а также при производстве газированной воды, а еще применяется в пневматическом оружии. А также в пищевой промышленности как консервант.

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Состав вдыхаемого и выдыхаемого воздуха

Теперь разберём состав вдыхаемого и выдыхаемого воздуха. Для начали определим, что же такое дыхание. Дыханием называют сложный непрерывный процесс, с помощью которого постоянно обновляется газовый состав крови. Состав вдыхаемого воздуха 20.94 процента кислорода, 0.03 процента углекислого газа и 79.03 процента азота. А вот состав выдыхаемого воздуха это уже всего 16.3 процента кислорода, также аж 4 процента углекислого газа и 79.7 процентов азота.

Можно заметить, что вдыхаемый воздух отличается от выдыхаемого содержанием кислорода, а также количеством углекислого газа. Вот какие вещества входят в состав воздуха, которым мы дышим и который выдыхаем. Таким образом наш организм насыщается кислородом и отдаёт весь ненужный углекислый газ наружу.

Сухой кислород улучшает электрические, а также защитные свойства плёнок за счет отсутствия воды, а также их уплотнения и снижения объёмного заряда. Также сухой кислород при обычных условиях не может реагировать с золотом медью или же серебром. Чтобы провести химический анализ воздуха или другое лабораторное исследование, включая комплексное исследование качества воды, можно в нашей лаборатории “ЭкоТестЭкспресс”.

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Воздух есть атмосферой планеты, на которой мы живем. И у нас всегда возникая вопрос что входит в состав воздуха, ответ просто набор газов, как выше было уже описано какие газы и в какой пропорции находиться в воздухе. Что касается содержания газов в воздухе то здесь все легко и просто, соотношение процентов почти для всех местностей нашей планеты есть сталым.

Состав и свойства воздуха

Воздух состоит не только из смеси газов, но еще и различных аэрозолей, и паров. Процентный состав воздуха – это соотношение азота кислорода и других газов в воздухе. Итак, сколько кислорода содержится в воздухе, ответ прост всего лишь 20 процентов. Компонентный состав газа, что касается азота то он содержит львиную долю всего воздуха, и стоит отметить что при повышенном давлении азот начинает обладать наркотическими свойствами.

Это имеет не малое значение, ведь при работе водолазов им зачастую приходиться работать на глубины под огромным давлением. Уже не мало было сказано и об кислороде ведь он имеет огромное значение для жизни человека на нашей планете. Стоит отметить, что вдыхание человеком воздуха с повышенным кислородом в не длительный период не сказывается пагубно на самого человека.

https://youtube.com/watch?v=k1gPish0sEI%3Frel%3D0

А вот если человек будет вдыхать воздух с повышенным уровнем кислорода долгое время, то это приведет к возникновению патологических изменений в организме. Еще одним основным составляющим воздуха, о котором уже было много сказано есть углекислый газ, как оказываться человек без него не может также прожить, как и без кислорода.

Если бы на земле не было воздуха, то не один живой организм не смог бы жить на нашей планете, а тем более как-то функционировать. К сожалению, в современном мире огромное количество промышленных объектов, которые загрязняют наш воздух, в последнее время все чаще призывают к тому что нужно беречь окружающую среду, а также следить за чистотой воздуха. Поэтому и следует проводить частые замеры воздуха и определить насколько он чист. Если вам кажется, что воздух в вашем помещении недостаточно чист и этому виной есть внешние факторы вы всегда можете обратиться в лабораторию “ЭкоТестЭкспресс”, которая проведет все необходимые анализы (микробиологический анализ воздуха, исследование микроклимата) и даст заключение о чистоте воздуха, вдыхаемого вами.

Состав вдыхаемого и выдыхаемого воздуха. Газообмен в легких

Атмосферный воздух, поступающий в легкие во время вдоха, называется вдыхаемым воздухом; воздух, выделяемый наружу через дыхательные пути во время выдоха, – выдыхаемым. Выдыхаемый воздух – это смесь воздуха, заполнявшего альвеолы, – альвеолярного воздуха – с воздухом, находящимся в воздухоносных путях (в полости носа, гортани, трахеи и бронхов). Состав вдыхаемого, выдыхаемого и альвеолярного воздуха в нормальных условиях у здорового человека довольно постоянен и определяется следующими цифрами (табл. 3).

Данные цифры могут несколько колебаться в зависимости от различных условий (состояние покоя или работы и др.). Но при всех условиях альвеолярный воздух отличается от вдыхаемого значительно меньшим содержанием кислорода и большим содержанием углекислого газа. Это происходит в результате того, что в легочных альвеолах из воздуха поступает в кровь кислород, а обратно выделяется углекислый газ.

Газообмен в легких обусловлен тем, что в легочных альвеолах и венозной крови, притекающей к легким, давление кислорода и углекислоты различно: давление кислорода в альвеолах выше, чем в крови, а давление углекислого газа, наоборот, в крови выше, чем в альвеолах. Поэтому в легких и осуществляется переход кислорода из воздуха в кровь, а углекислоты – из крови в воздух. Такой переход газов объясняется определенными физическими законами: если давление какого-нибудь газа, находящегося в жидкости и в окружающем ее воздухе, различно, то газ переходит из жидкости в воздух и наоборот, пока давление не уравновесится.

Про анемометры:  Дешево и смертельно: почему взрываются многоэтажки | Статьи | Известия

Содержание газов (в процентах)

В смеси газов, какой является воздух, давление каждого газа определяется процентным содержанием данного газа и называется парциальным давлением (от латинского слова pars – часть). Например, атмосферный воздух оказывает давление, равное 760 мм ртутного столба. Содержание кислорода в воздухе равно 20,94%. Парциальное давление кислорода атмосферного воздуха будет составлять 20,94% от общего давления воздуха, т. е. 760 мм, и равно 159 мм ртутного столба. Установлено, что парциальное давление кислорода в альвеолярном воздухе составляет 100 – 110 мм, а в венозной крови и капиллярах легких – 40 мм. Парциальное давление углекислого газа равняется в альвеолах 40 мм, а в крови – 47 мм. Разницей в парциальном давлении между газами крови и воздуха и объясняется газообмен в легких. В этом процессе активную роль играют клетки стенок легочных альвеол и кровеносных капилляров легких, через которые происходит переход газов.

Поможем с курсовой, контрольной, дипломной

Сущность и значение дыхания для организма

Дыхание – это неотъемлемый признак жизни. Мы дышим постоянно с момента рождения и до самой смерти, дышим днем и ночью во время глубокого сна, в состоянии здоровья и болезни.

В организме человека и животных запасы кислорода ограничены, поэтому организм нуждается в непрерывном поступлении кислорода из окружающей среды. Также постоянно, и непрерывно из организма должен удаляться углекислый газ, который всегда образуется в процессе обмена веществ и в больших количествах является токсичным соединением.

Дыхание – сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови и происходит биологическое окисление в тканях. В этом заключается его сущность.

Нормальное функционирование организма человека возможно только при условии пополнения энергией, которая непрерывно расходуется. Организм получает энергию за счет окисления органических веществ – белков, жиров, углеводов. При этом освобождается скрытая химическая энергия, которая является источником жизнедеятельности, развития и роста организма. Таким образом, значение дыхания состоит в поддержании в организме оптимального уровня окислительно-восстановительных процессов.

В процессе дыхания принято различать три звена: внешнее, или легочное, дыхание, транспорт газов кровью и внутреннее, или тканевое, дыхание.

Внешнее дыхание – это газообмен между организмом и окружающим его атмосферным воздухом.

Внешнее дыхание может быть разделено на два этапа – обмен газов между атмосферным и альвеолярным воздухом и газообмен между кровью легочных капилляров и альвеолярным воздухом.

Внешнее дыхание осуществляется за счет активности аппарата внешнего дыхания.

Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной “клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа.

О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. д.

Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

Внутреннее, или тканевое, дыхание также может быть разделено на два этапа. Первый этап – это обмен газов между кровью и тканями, второй связан с потреблением кислорода клетками и выделением ими углекислого газа (клеточное дыхание).

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Человек дышит атмосферным воздухом, который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.

Состав выдыхаемого воздуха весьма непостоянен и зависит от интенсивности обмена веществ, а также от частоты и глубины дыхания. Стоит задержать дыхание или сделать несколько глубоких дыхательных движений, как состав выдыхаемого воздуха изменится.

Сравнение состава вдыхаемого и выдыхаемого воздуха служит доказательством существования внешнего дыхания.

Альвеолярный воздух по составу во многом отличается от атмосферного, что вполне закономерно. Именно в альвеолах происходит обмен газов между воздухом и кровью, при этом в кровь диффундирует кислород, а из крови – углекислый газ. В результате в альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа. Процентное содержание отдельных газов в альвеолярном воздухе следующее: 14,2-14,6% кислорода, 5,2-5,7% углекислого газа, 79,7-80% азота. Альвеолярный воздух отличается по составу и от выдыхаемого воздуха. Это объясняется тем, что выдыхаемый воздух содержит смесь газов из альвеол и вредного пространства.

Строение легких

Легкие – парные образования сложного строения, расположенные в герметически замкнутой грудной полости. Их воздухоносные пути представлены носоглоткой, гортанью, трахеей. Трахея в грудной полости делится на два бронха – правый и левый, каждый из которых, многократно разветвляясь, образует так называемое бронхиальное дерево. Мельчайшие бронхи – бронхиолы – на концах расширяются в слепые пузырьки – легочные альвеолы. Совокупность альвеол и образует ткань легких (рис. 21).

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Рис. 21. Схема воздухоносных путей. 1 – гортань; 2 – трахея (дыхательное горло); 3 – бронхи; 4 – бронхиальное дерево; 5 – легкое

Слизистая оболочка трахеи и бронхов покрыта многослойным мерцательным эпителием, реснички которого колеблются по направлению к ротовой, полости. Кроме того, слизистая оболочка содержит многочисленные железы, выделяющие слизь. Слизь увлажняет вдыхаемый воздух. Благодаря наличию носовых раковин и густой сети капилляров в слизистой оболочке, а также мерцательному эпителию воздух, поступая в дыхательные пути, прежде чем достигнуть альвеол, согревается, увлажняется и в значительной степени очищается от механических примесей (частичек пыли).

В дыхательных путях воздух близко не соприкасается с кровью, поэтому газообмен здесь не происходит и состав воздуха не меняется. Пространство, заключенное в этих дыхательных путях, называется мертвым, или вредным. При спокойном дыхании объем воздуха в мертвом пространстве составляет 1,4·10-4-1,5·10-4 м3 (140-150 мл).

Строение легких обеспечивает выполнение ими дыхательной функции. Тонкая стенка альвеол состоит из однослойного эпителия, легко проходимого для газов. Наличие эластических элементов и гладких мышечных волокон обеспечивает быстрое и легкое растяжение альвеол, благодаря чему они могут вмещать большие количества воздуха. Каждая альвеола оплетена густой сетью капилляров, на которые разветвляется легочная артерия (рис. 22). Оба легких содержат 300-400 млн. микроскопических альвеол, диаметр которых у взрослого человека составляет 0,2·10-3 м (0,2 мм). Благодаря большому количеству альвеол образуется громадная дыхательная поверхность легких. У человека массой 70 кг в состоянии вдоха дыхательная поверхность легких равна 80-100 м2, при выдохе – 40-50 м2.

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Рис. 22. Схема доли легкого. Левая доля оплетена сетью капилляров

Каждое легкое покрыто снаружи серозной оболочкой – плеврой, состоящей из двух листков – пристеночного и висцерального. Между листками плевры имеется узкая капиллярная щель, содержащая небольшое количество серозной жидкости. Неправильно эту щель называть полостью. В норме полости нет, она потенциальна, т. е. может возникнуть, если листки плевры будут раздвинуты экссудатом, образующимся в условиях патологии, или же воздухом, например при травме грудной клетки.

Расправление и спадение легочных альвеол, а также движение воздуха по воздухоносным путям сопровождается возникновением дыхательных шумов, которые можно исследовать методом выслушивания – аускультации.

Отрицательное давление в плевральной щели

Давление в плевральной щели и в средостении в норме всегда отрицательное. Убедиться в этом можно, измерив давление в плевральной щели. Для этого полую иглу, соединенную с манометром, вводят между двумя листками плевры. Во время спокойного вдоха давление в плевральной щели на 1,197 кПа (9 мм. рт. ст.) ниже атмосферного, во время спокойного выдоха на 0,798 кПа (6 мм рт. ст.).

Отрицательное внутригрудное давление и увеличение его во время вдоха имеет большое физиологическое значение. За счет отрицательного внутриплеврального давления альвеолы всегда находятся в растянутом состоянии, что значительно увеличивает дыхательную поверхность легких, особенно во время вдоха. Отрицательное внутригрудное давление играет значительную роль в гемодинамике, обеспечивая венозный возврат крови к сердцу и улучшая кровообращение в легочном круге, особенно в фазу вдоха. Присасывающее действие грудной клетки способствует также и лимфообращению. Наконец, отрицательное внутригрудное давление является фактором, способствующим продвижению пищевого комка по пищеводу, в нижнем отделе которого давление на 0,46 кПа (3,5 мм рт. ст.) ниже атмосферного.

Дыхательный цикл

Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Обычно вдох короче выдоха. Длительность вдоха у взрослого человека 0,9-4,7 с, длительность выдоха 1,2-6 с. Продолжительность вдоха и выдоха зависит в основном от рефлекторных воздействий, идущих от рецепторов легочной ткани. Дыхательная пауза – это непостоянная составная часть дыхательного цикла. Она различна по продолжительности и даже может отсутствовать.

Дыхательные движения совершаются с определенным ритмом и частотой, которые устанавливают по количеству экскурсий грудной клетки в 60 с (1 мин). У взрослого человека частота дыхательных движений составляет 12-18 в 60 с (1 мин). У детей дыхание поверхностное и поэтому более частое, чем у взрослых. Так, новорожденный дышит около 60 раз в 60с (1 мин), ребенок 5-летнего возраста – 25 раз в 60 с (1 мин). В любом возрасте частота дыхательных движений меньше количества сердечных сокращений в 4-5 раз.

Глубину дыхательных движений определяют по амплитуде экскурсий грудной клетки и с помощью специальных методов, позволяющих исследовать величины легочных объемов.

На частоту и глубину дыхания влияют многие факторы, в частности эмоциональное состояние, умственная нагрузка, изменение химического состава крови, степень тренированности организма, уровень и интенсивность обмена веществ. Чем чаще и глубже дыхательные движения, тем больше кислорода поступает в легкие и соответственно большее количество углекислого газа выводится. Редкое и поверхностное дыхание может привести к недостатку снабжения клеток и тканей организма кислородом. Это в свою очередь сопровождается снижением их функциональной активности. В значительной степени изменяется частота и глубина дыхательных движений при патологических состояниях организма, особенно при заболеваниях органов дыхания.

Механизм вдоха. Акт вдоха (инспирация) совершается вследствие увеличения объема грудной клетки в трех направлениях – вертикальном, сагиттальном (переднезаднем, грудинно-позвоночном) и фронтальном (реберном). Изменение размеров грудной полости происходит за счет сокращения дыхательных мышц – наружных межреберных, межхрящевых и диафрагмы (рис. 23). При сокращении наружных межреберных и межхрящевых мышц ребра принимают более горизонтальное положение, поднимаясь кверху, при этом нижний конец грудины отходит вперед. Благодаря движению ребер при вдохе размеры грудной клетки увеличиваются в поперечном и продольном направлении. В результате сокращения мышечных волокон диафрагмы купол ее уплощается и опускается: органы брюшной полости оттесняются вниз, в стороны и вперед, в итоге объем грудной клетки увеличивается в вертикальном направлении.

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Рис. 23. Схема положения грудной клетки и диафрагмы при выдохе (слева) и вдохе (справа). 1 – наружные межреберные мышцы; 2 – внутренние межреберные мышцы; 3 – диафрагма

В зависимости от преимущественного участия в акте вдоха мышц грудной клетки и диафрагмы различают грудной, или реберный, и брюшной, или диафрагмальный, тип дыхания. У мужчин преобладает брюшной тип дыхания, у женщин – грудной.

Про анемометры:  Обзор газовых котлов Иммергаз

В некоторых случаях, например при физической работе, при одышке, в акте вдоха могут участвовать так называемые вспомогательные мышцы – мышцы плечевого пояса и шеи (грудные и передние зубчатые мышцы, грудино-ключично-сосцевидные).

При вдохе легкие пассивно следуют за увеличивающейся в размерах грудной клеткой. Дыхательная поверхность легких увеличивается, давление же в них понижается и становится на 0,26 кПа (2 мм рт. ст.) ниже атмосферного. Это способствует поступлению воздуха через воздухоносные пути в легкие. Однако только на высоте вдоха происходит заполнение воздухом расширенных альвеол. Быстрому выравниванию давления в легких препятствует голосовая щель, так как в этом месте воздухоносные пути сужены.

Механизм выдоха. Акт выдоха (экспирация) осуществляется в результате расслабления наружных межреберных мышц и поднятия купола диафрагмы. При этом грудная клетка возвращается в исходное положение и дыхательная поверхность легких уменьшается. Сужение воздухоносных путей в области голосовой щели обусловливает медленный выход воздуха из легких. В начале фазы выдоха давление в легких становится на 0,40-0,53 кПа (3-4 мм рт. ст.) выше атмосферного, что облегчает выход воздуха из них в окружающую среду.

Механизм изменений объема легких при дыхании может быть продемонстрирован с помощью модели Дондерса (рис. 24). Нижнюю часть лишенной дна широкой стеклянной бутыли затягивают резиновой пленкой, которая имитирует работу диафрагмы. Горлышко бутыли закрывают пробкой, через которую пропускают стеклянную трубку, к концу которой привязывают трахею с легкими мелкого лабораторного животного (крыса, кошка, кролик).

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Рис. 24. Модель Дондерса, демонстрирующая механику дыхательного акта. Объяснение в тексте

Таким образом, сосуд герметически закрыт и не сообщается с атмосферным воздухом, так как стеклянная трубка соединена с легкими. Если оттянуть резиновое дно бутыли книзу, то объем ее увеличится и давление в ней станет ниже атмосферного. Это вызывает растяжение легочной ткани, и атмосферный воздух начнет поступать в легкие. Однако давление воздуха внутри бутыли между ее стенками и наружной поверхностью легких все же остается ниже атмосферного, так как упругие свойства легочной ткани препятствуют ее растяжению. Если отпустить резиновое дно бутыли объем ее уменьшится, прекратится действие силы, растягивающей легкие. Благодаря своей эластичности легочная ткань сжимается, давление в легких повышается и воздух из них выходит наружу.

Модель Дондерса доказывает, что непосредственной причиной изменения объема легких при вдохе и выдохе являются изменения размеров грудной клетки и давления в плевральной щели. Воздух же поступает в легкие и выходит из них вследствие колебаний внутрилегочного давления.

Легочные объемы. Легочная вентиляция

Для исследования функционального состояния аппарата внешнего дыхания как в клинической практике, так и в физиологических лабораториях широко используют определение легочных объемов.

Различают четыре основных положения грудной клетки, которым соответствуют четыре основных объема легких: дыхательный, дополнительный, резервный и остаточный.

Дыхательный объем – это количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Его объем составляет 3·10-4-7·10-4 м3 (300-700 мл). Дыхательный объем обеспечивает поддержание определенного уровня парциального давления кислорода и углекислого газа в альвеолярном воздухе, способствуя тем самым нормальному напряжению газов в артериальной крови.

Дополнительный воздух, или резервный объем воздуха, – это количество воздуха которое может быть введено в легкие, если вслед за спокойным вдохом произвести максимальный вдох. Резервный объем вдоха равняется 1,5·10-3-2·10-3 м3 (1500-2000 мл). Он определяет способность легких к добавочному расширению, необходимость в котором имеется при увеличении потребности организма в газообмене.

Резервный воздух, или резервный объем воздуха, – это тот объем воздуха, который удаляется из легких, если вслед за спокойным вдохом и выдохом произвести максимальный выдох. Резервный объем выдоха составляет 1,5·10-3-2·10-3 м3 (1500-2000 мл). Он определяет степень постоянного растяжения легких.

Остаточный объем – это объем воздуха, который остается в легких после максимально глубокого выдоха. Остаточный объем равняется 1·10-3-1,5·10-3 м3 (1000-1500 мл).

Дыхательный объем, резервные объемы вдоха и выдоха составляют так называемую жизненную емкость легких.

Жизненная емкость легких – это самое глубокое дыхание, на которое способен данный человек. Она определяется тем количеством воздуха, которое может быть удалено из легких, если после максимального вдоха сделать максимальный выдох.

Жизненная емкость легких у мужчин молодого возраста составляет 3,5·10-3-4,8·10-3 м3 (3,5-4,8 л), у женщин – 3·10-3-3,5·10-3 м3 (3-3,5 л). Показатели жизненной емкости легких весьма изменчивы. Они зависят от пола, роста, возраста, массы, положения тела, состояния дыхательных мышц, уровня возбудимости дыхательного центра и других факторов. По величине жизненной емкости легких в известной степени можно судить о функциональных возможностях аппарата внешнего дыхания.

Общая емкость легких состоит из жизненной емкости легких и остаточного объема воздуха.

Коллапсный воздух – это минимальное количество воздуха, которое остается в легких после двустороннего открытого пневмоторакса. Наличие коллапсного воздуха в легких доказывается простым опытом. Установлено, что кусочек ткани легкого после пневмоторакса плавает в воде, а легкое мертворожденного, не дышавшего плода тонет.

Частота и глубина дыхания может оказать значительное влияние на циркуляцию воздуха в легких во время дыхания, или на легочную вентиляцию.

Легочная вентиляция – количество воздуха, обмениваемое в 1 мин. За счет легочной вентиляции обновляется альвеолярный воздух и в нем поддерживается парциальное давление кислорода и углекислого газа на таком уровне, который обеспечивает нормальный газообмен. Легочную вентиляцию определяют путем умножения дыхательного объема на количество дыханий в 1 мин (минутный объем дыхания). У взрослого человека в состоянии относительного физиологического покоя легочная вентиляция составляет 6·10-3-8·10-3 м (6-8 л) в 1 мин. Определение минутного объема дыхания имеет диагностическое значение при легочной патологии.

Легочные объемы могут быть определены с помощью специальных приборов спирометра и спирографа. Спирографический метод позволяет регистрировать величины легочных объемов.

Транспорт газов кровью

Мы рассмотрели только одну сторону дыхательного процесса – внешнее дыхание, т. е. обмен газов между организмом и окружающей его средой.

Местом же потребления кислорода и образования углекислого газа являются все клетки организма, где осуществляется тканевое, или внутреннее, дыхание. Вследствие этого, когда речь идет о дыхании в целом, необходимо учитывать пути и условия переноса газов: кислорода от легких к тканям, углекислого газа от тканей к легким. Посредником между клетками и внешней средой является кровь. Она доставляет тканям кислород и уносит от них углекислый газ.

Переход газов из окружающей среды в жидкость и из жидкости в окружающую среду подчиняется определенным физическим закономерностям. Каждый газ переходит в жидкость в зависимости от величины его парциального давления.

Под парциальным давлением понимают ту часть давления, которая приходится на данный газ в смеси газов. При расчете парциального давления газов в альвеолярном воздухе учитывают его насыщенность водяными парами, парциальное давление которых составляет 6,27 кПа (47 мм рт. ст.). В результате на долю остальных газов альвеолярного воздуха приходится 101,3-6,27=95,03 кПа (760-47=713 мм рт. ст.). Зная процентное содержание газов в альвеолярном воздухе, можно рассчитать их парциальное давление. Для кислорода оно будет составлять 13,6 кПа (102 мм рт. ст.), для углекислого газа – 5,33 кПа (40 мм рт. ст.).

Для обозначения давления газов в газовой смеси может быть использован термин “напряжение”. Напряжение выражается в миллиметрах ртутного (мм рт. ст.) или водяного (мм вод. ст.) столба.

Движение газов из окружающей среды в жидкость и из жидкости в окружающую среду осуществляется из-за разности их парциального давления. Газ всегда диффундирует из среды, где имеется высокое давление, в среду с меньшим давлением. Это происходит до тех пор, пока не установится динамическое равновесие газов.

Газообмен во всех звеньях дыхательного процесса подчиняется рассмотренным физическим закономерностям.

Проследим движение кислорода из окружающей среды в альвеолярный воздух, затем в капиллярах малого и большого круга кровообращения и к клеткам организма.

Самое высокое парциальное давление кислорода в атмосферном воздухе 21,1 кПа (158 мм рт. ст.), в альвеолярном воздухе 14,4-14,7 кПа (108-110 мм рт. ст.) и в венозной крови, притекающей к легким, 5,33 кПа (40 мм рт. ст.). В артериальной крови капилляров большого круга кровообращения напряжение кислорода составляет 13,6-13,9 кПа (102-104 мм рт. ст.), в межтканевой жидкости – 5,33 кПа (40 мм рт. ст.), в тканях – 2,67 кПа (20 мм рт. ст.) и меньше, в зависимости от функциональной активности клеток.

Таким образом, на всех этапах движения кислорода имеется разность его парциального давления, что способствует диффузии газа.

Движение углекислого газа происходит в противоположном направлении. Самое большое напряжение углекислого газа имеется в тканях, в местах его образования, – 8,00 кПа и более (60 мм рт. ст. и более), в венозной крови 6,13 кПа (46 мм рт. ст.), а альвеолярном воздухе 5,33 кПа (40 мм рт. ст.) и в атмосферном воздухе 0,04 кПа (0,3 мм рт. ст.). Следовательно, разность парциального давления углекислого газа по пути его следования является причиной диффузии газа от тканей в окружающую среду. Схема диффузии газов через стенку альвеол представлена на рис. 25. Однако одними физическими закономерностями объяснить движение газов нельзя. В живом организме равенства парциального давления кислорода и углекислого газа на этапах их движения никогда не наступает. В легких постоянно происходит обмен газов вследствие дыхательных движений грудной клетки, в тканях же разность парциального давления газов поддерживается непрерывным процессом окисления.

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Рис. 25. Схема диффузии газов через мембрану альвеолы

Транспорт кислорода кровью. Кислород в крови находится в двух состояниях: физическом растворении и в химической связи с гемоглобином. Из 19 об.% кислорода, извлекаемого из артериальной крови, только 0,3 об.% находятся в растворенном состоянии в плазме, остальная же часть кислорода химически связана с гемоглобином эритроцитов.

Гемоглобин образует с кислородом непрочное, легко диссоциирующее соединение – оксигемоглобин; 1·10-3 кг (1 г) гемоглобина связывает 1,34·10-3 л (1,34 мл) кислорода. Содержание гемоглобина в крови составляет в среднем 140 г/л (14 г%). Отсюда 1·10-1 л (100 мл) крови может связать 1,4·10-2 кг (14 г) × 1,34·10-3 л (1,34 мл) = 1,9·10-2 л (19 мл) кислорода (или 19 об.%), что составляет так называемую кислородную емкость крови. Следовательно, кислородная емкость крови представляет собой максимальное количество кислорода, которое может быть связано 1·10-1 л (100 мл) крови.

Насыщение гемоглобина кислородом колеблется от 96 до 98%. Степень насыщения гемоглобина кислородом и диссоциация оксигемоглобина (образование восстановленного гемоглобина) не находятся в прямой пропорциональной зависимости от напряжения кислорода. Эти два процесса не являются линейными, а совершаются по кривой, которая получила название кривой связывания, или диссоциации, оксигемоглобина.

При нулевом напряжении кислорода оксигемоглобина в крови нет. При низких значениях парциального давления кислорода скорость образования оксигемоглобина невелика. Максимальное количество гемоглобина (45-80%) связывается с кислородом при его напряжении 3,47-6,13 кПа (26-46 мм рт. ст.). Дальнейшее повышение напряжения кислорода приводит к снижению скорости образования оксигемоглобина (рис. 26).

Кислород и углекислый газ в выдыхаемом воздухе имеют разную концентрацию. Цузмер А.М., Петришина О. Л. [1982]

Рис. 26. Кривые диссоциации оксигемоглобина в водном растворе (I) и в крови (II) при напряжении углекислого газа 5,33 кПа (40 мм рт. ст.) (по Баркрофту)

Про анемометры:  Коды ошибок котла "Мастер Газ": расшифровка и инструкции по устранению

Сродство гемоглобина к кислороду значительно понижается при сдвиге реакции крови в кислую сторону, что наблюдается в тканях и клетках организма вследствие образования углекислого газа. Это свойство гемоглобина имеет важное значение для организма. В капиллярах тканей, где концентрация углекислого газа в крови увеличена, способность гемоглобина удерживать кислород уменьшается, что облегчает его отдачу клеткам. В альвеолах легких, где часть углекислого газа переходит в альвеолярный воздух, способность гемоглобина связывать кислород вновь возрастает.

Переход гемоглобина в оксигемоглобин и из него в восстановленный гемоглобин зависит от температуры. При одном и том же парциальном давлении кислорода в окружающей среде при температуре тела 37-38°С в восстановленную форму переходит наибольшее количество оксигемоглобина.

Таким образом, транспорт кислорода обеспечивается в основном за счет химической связи его с гемоглобином эритроцитов. Насыщение гемоглобина кислородом зависит в первую очередь от парциального давления газа в атмосферном и альвеолярном воздухе. Одной из основных причин, способствующих отдаче кислорода гемоглобином, является сдвиг активной реакции среды в тканях в кислую сторону.

Кровь, проходя по капиллярам большого круга кровообращения, отдает не весь свой кислород. Артериальная кровь содержит около 20 об.% кислорода, венозная – 12 об.%. Следовательно, из 20 об.% ткани получают всего 8 об.%, или 40%, кислорода, содержащегося в крови. Разница в количестве кислорода в артериальной и венозной крови называется артериовенозной разницей. Эта величина характеризует то количество кислорода, которое переходит в ткани из 1·10-1 л (100 мл) крови.

Транспорт углекислого газа кровью. Растворимость углекислого газа в крови гораздо выше, чем растворимость кислорода. Однако только 2,5-3 об.% углекислого газа из общего его количества (55-58 об.%) находится в растворенном состоянии. Большая часть углекислого газа содержится в крови и в эритроцитах в виде солей угольной кислоты (48-51 об.%), около 4-5 об.% – в соединении с гемоглобином, в виде карбгемоглобина, около 2/3 всех соединений углекислого газа находится в плазме и около 1/3 – в эритроцитах.

Угольная кислота образуется в эритроцитах из углекислого газа и воды. И. М. Сеченов впервые высказал мысль о том, что в эритроцитах должен содержаться какой-то фактор типа катализатора, который ускоряет процесс синтеза угольной кислоты. Однако лишь в 1935 г. предположение, высказанное И. М. Сеченовым, было подтверждено. В настоящее время твердо установлено, что в эритроцитах содержится угольная ангидраза (карбоангидраза) – биологический катализатор, фермент, который значительно в (в 300 раз) ускоряет расщепление угольной кислоты в капиллярах легких. В тканевых же капиллярах при участии карбоангидразы происходит синтез угольной кислоты в эритроцитах. Активность карбоангидразы в эритроцитах настолько велика, что синтез угольной кислоты ускоряется в десятки тысяч раз.

Образовавшаяся угольная кислота отнимает основания от восстановленного гемоглобина, в результате чего получаются соли угольной кислоты – бикарбонаты натрия в плазме и бикарбонаты калия в эритроцитах. Кроме того, гемоглобин образует химическое соединение с углекислым газом – карбгемоглобин. Впервые это соединение обнаружено И. М. Сеченовым. Роль карбгемоглобина в транспорте углекислого газа достаточно велика. Около 25-30% углекислого газа, поглащаемого кровью в капиллярах большого круга кровообращения, транспортируется в виде карбгемоглобина. В легких гемоглобин присоединяет кислород и переходит в оксигемоглобин. Оксигемоглобин является более сильной кислотой, чем угольная. Вследствие этого гемоглобин вступает в реакцию с бикарбонатами и вытесняет из них угольную кислоту. Свободная угольная кислота расщепляется карбоангидразой на углекислый газ и воду. Углекислый газ диффундирует через мембрану легочных капилляров и переходит в альвеолярный воздух. Уменьшение напряжения углекислого газа в капиллярах легких способствует расщеплению карбгемоглобина с освобождением углекислого газа.

Таким образом, углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбгемоглобин). Важная роль в сложнейших механизмах транспорта углекислого газа принадлежит карбоангидразе эритроцитов.

Конечной целью дыхания является снабжение всех клеток, органов и тканей кислородом, необходимым для их жизнедеятельности, и удаление из организма углекислого газа. Для осуществления этой цели дыхания необходим ряд условий: 1) нормальная деятельность аппарата внешнего дыхания и достаточная вентиляция легких; 2) нормальный транспорт газов кровью; 3) обеспечение системой кровообращения достаточного кровотока; 4) способность тканей “забирать” из протекающей крови кислород, утилизировать его и отдавать в кровь углекислый газ.

Таким образом, нормальное тканевое дыхание обеспечивается функциональными взаимосвязями между системами дыхания, крови и кровообращения.

Изменение состава воздуха в легких. Содержание газов во вдыхаемом и выдыхаемом воздухе неодинаково (рис.83).

В атмосферном воздухе, проникающем в легкие, содержится почти 21 % кислорода, около 79 % азота, примерно 0,03 % углекислого газа. В нем находится также небольшое количество водяных паров и инертных газов.

Процентный состав выдыхаемого воздуха иной. Кислорода в нем остается всего около 16%, а количество углекислого газа возрастает до 4%. Увеличивается и содержание водяных паров. Только азот и инертные газы в выдыхаемом воздухе остаются в том же количестве, что и во вдыхаемом.

Обмен газов в легких. Насыщение крови кислородом и отдача ею углекислого газа происходят в легочных пузырьках (рис. 84). По их капиллярам течет венозная кровь. Она отделена от воздуха, наполняющего легкие, тончайшими, проницаемыми для газов стенками капилляров и легочных пузырьков.

Концентрация углекислого газа в венозной крови гораздо выше, чем в воздухе, поступающем в пузырьки. Вследствие диффузии этот газ проникает из крови в легочный воздух. Таким образом кровь все время отдает углекислый газ в воздух, постоянно сменяющийся в легких.

Кислород проникает в кровь тоже путем диффузии. Во вдыхаемом воздухе его концентрация гораздо выше, чем в венозной крови, движущейся по капиллярам легких. Поэтому кислород все время проникает в нее. Но тут же он вступает в химическое соединение с гемоглобином, вследствие чего содержание свободного кислорода в крови понижается. Тогда в кровь сразу проникает новая порция кислорода, которая также связывается гемоглобином. Этот процесс продолжается в течение всего времени, пока кровь медленно течет по капиллярам легких. Поглотив много кислорода, она становится артериальной. Пройдя через сердце, такая кровь попадает в большой круг кровообращения.

Обмен газов в тканях. Продвигаясь по капиллярам большого круга кровообращения, кровь отдает клеткам тканей кислород и насыщается углекислым газом. Как же это происходит?

Попадающий в клетки свободный кислород используется на окисление органических соединений. Поэтому в клетках его гораздо меньше, чем в омывающей их артериальной крови. Непрочная связь кислорода с гемоглобином разрывается. Кислород диффундирует в клетки и сразу же используется на окислительные процессы, происходящие в них. Медленно протекая по капиллярам, пронизывающим ткани, кровь вследствие диффузии отдает клеткам кислород. Так происходит превращение артериальной крови в венозную (рис. 84 ).

При окислении органических соединений в клетках образуется углекислый газ. Он диффундирует в кровь. Небольшое количество углекислого газа вступает в непрочное соединение с гемоглобином. Но большая его часть соединяется с некоторыми солями, растворенными в крови. Углекислый газ уносится кровью в правую часть сердца, а оттуда – к легким.

Поддержание постоянного состава воздуха. Постоянный состав воздуха в окружающей среде – важное условие, необходимое для жизни организма. Если в воздухе не хватает кислорода, то понижается его содержание и в крови. Это влечет за собой серьезные нарушения жизнедеятельности организма, а иногда и смерть.

Из курса ботаники вы знаете, что зеленые растения на свету поглощают углекислый газ. Этот газ постоянно попадает в воздух в результате дыхания различных организмов, а также процессов горения и гниения. В растениях образуются органические соединения и освобождается кислород, который удаляется в окружающую среду. Вот почему в нижних слоях атмосферы воздух сохраняет постоянный состав. В нормальных условиях воздух всегда содержит необходимое для дыхания количество кислорода. Но на больших высотах, где воздух разрежен, кислорода не хватает. Поэтому в современных самолетах, а также в космических кораблях, летящих в пространство, совсем лишенное кислорода, люди находятся в герметически закрытых кабинах, где поддерживаются нормальный состав и давление воздуха.

В настоящее время советские ученые и конструкторы успешно решают проблему поддержания постоянного состава, а также давления воздуха и в герметически закрытых скафандрах, в которых космонавты выходят из кораблей в безвоздушное мировое пространство.

В воздухе, которым мы дышим, содержание углекислого газа и водяных паров колеблется в значительно большей степени, чем содержание кислорода. Так, когда мы находимся в помещении с плохой вентиляцией, где собралось много людей, в воздухе скапливается столько водяных паров, что наше самочувствие ухудшается.

В жилых и общественных помещениях, в цехах фабрик и заводов необходимо поддерживать нормальный состав воздуха. Это имеет большое значение для сохранения здоровья людей. Комнаты, где вы живете, независимо от погоды, необходимо постоянно проветривать. В классах, где вы занимаетесь, форточки или фрамуги в теплую погоду должны быть постоянно открыты, а зимой классные комнаты необходимо проветривать во время каждой перемены.

В наши дни в жилых домах, на предприятиях, в учреждениях, клубах, театрах и других общественных зданиях воздух постоянно сменяется благодаря искусственной вентиляции – подаче свежего воздуха в помещения по системе труб.

Зеленые растения, которые мы выращиваем в комнатах, служат не только украшением нашего быта. Они способствуют освобождению воздуха от избытка углекислого газа и обогащению его кислородом.

Углекислый газ образуется не только в результате дыхания людей. Этот газ постоянно выходит из труб жилых домов, фабрик, заводов, электростанций. Зеленые растения способствуют поддержанию постоянного состава воздуха не только в помещениях, но и в населенных пунктах. Поэтому в нашей стране озеленяют города, поселки, территории промышленных предприятий, дворы жилых домов.

Вредные газообразные примеси к воздуху. В воздух закрытых помещений иногда могут попасть вредные газы, например угарный газ (окись углерода СО). Если во время топки печи закрыть трубу слишком рано, то из-за неполного сгорания топлива образуется угарный газ. Он содержится также в природном газе. Угарный газ вступает в стойкое соединение с гемоглобином, который после этого уже не может присоединять кислород. Поэтому, находясь в комнате, где в воздухе есть угарный газ, можно умереть от недостатка кислорода в организме. Вот почему при топке печи, прежде чем закрыть трубу, нужно обязательно проверить, сгорело ли все топливо, а в квартирах, где пользуются природным газом, не допускать его утечки.

Вредные газы, в том числе и окись углерода, образуются иногда на фабриках и заводах при некоторых производственных процессах. Чтобы эти газы не вредили здоровью людей, такие процессы проводят в специально сконструированных герметически закрытых камерах.

■ Обмен газов в легких. Обмен газов в тканях.

? 1. Каков нормальный состав воздуха? 2. Чем отличается по составу вдыхаемый воздух от выдыхаемого? 3. Как происходит насыщение крови кислородом и удаление из нее углекислого газа? 4. Как происходит отдача кислорода тканям кровью и проникновение в нее углекислого газа? 5. Почему надо регулярно проветривать помещения? 6. Чем полезны зеленые насаждения? 7. Какой вред приносит организму угарный газ и что надо делать, чтобы предупреждать отравление им?

! 1. Содержится ли в нашей крови свободный азот, происходит ли его обмен между кровью и воздухом? 2. Освобождается ли наша кровь в легких от углекислого газа полностью?

Оцените статью
Анемометры
Добавить комментарий