Концентрация co2 в атмосфере

Концентрация co2 в атмосфере Анемометр

Команда метеорологов из Всемирной метеорологической организации опубликовала доклад, данные из которого показывают беспрецедентный рост концентрации диоксида углерода в атмосфере Земли.

Диоксид углерода (углекислый газ) — один из главных парниковых газов, из-за которых сегодня на Земле наблюдается глобальное потепление. Основные источники поступления газа в атмосферу — сжигание ископаемого топлива — угля, газа и нефтепродуктов, а также животные (в т.ч. и человек), выделяющие этот газ при дыхании, и микроорганизмы, участвующие в процессах брожения и гниения. Известно, что на уровень углекислоты в атмосфере влияют деревья, поглощающие этот газ. И потому вырубка лесов также приводит к увеличению его концентраций.

Без вмешательства человека и природных катаклизмов (вроде массовых извержений вулканов) уровни углекислого газа регулировались естественным образом. Часть его поглощалась океанами, часть — растениями. Как говорят климатологи, хрупкое природное равновесие было нарушено с началом т.н. индустриального периода развития человечества, который начался, по оценкам ученых, в 1750 году. И рост концентрации CO2 в атмосфере составил, начиная с 1750 года, 145%. И в прошлом, 2016 году показал рекордное значение в 403,3 ppm (частей на миллион). До начала активной индустриализации концентрации углекислого газа в течение последних 800 000 лет не превышали в атмосфере значений в 280 ppm.

Анализ образцов льда, взятых при глубоком бурении ледников и позволяющих установить хронологию концентрации CO2, показал, что подобные уровни углекислого газа были на нашей планете в середине плиоцена, три-пять миллионов лет назад. Тогда, по словам экспертов, средняя годовая температура была на 2−3 °C выше, чем сегодня, а Гренландия с большой частью Антарктики были полностью свободны от льдов, из-за чего уровень моря был на 10—20 метров выше, чем сейчас.

Про анемометры:  Газоаналитика.РФ - ГИАМ-315: цена. ГИАМ-315: характеристики газоанализатора и цена. Описание прибора

Как говорят ученые, такие стремительные повышения уровней одного из главных парниковых газов нельзя недооценивать. Потому что быстрое повышение уровня CO2 и других парниковых газов может привести к непредсказуемым изменениям в климатических системах, что в свою очередь грозит человечеству серьезными экологическими и экономическими проблемами.

«Накопившись в атмосфере, углекислый газ останется в ней в течение сотен лет, а в океанах еще дольше. Законы физики подсказывают нам, что в будущем мы столкнемся с гораздо более жарким и экстремальным климатом. И в настоящее время у нас нет волшебной палочки для удаления этого CO2 из атмосферы», — говорит Генеральный секретарь Всемирной метеорологической организации П. Таалас.

Поэтому жизненно важной задачей для человечества остается сокращение сжигания ископаемого топлива и использование альтернативных, более экологически безопасных источников энергии.

Доклад опубликован в Бюллетене по парниковым газам Всемирной метеорологической организации.

О главном международном соглашении, направленном на борьбу с изменением климата, читайте на «Чердаке».

Время на прочтение

Концентрация co2 в атмосфере

Геохимический цикл показывает количество углерода в атмосфере, гидросфере и геосфере Земли, а также годовой перенос углерода между ними (все указанные величины — в гигатоннах)

Несколько лет назад Россия присоединилась к Парижскому соглашению по изменению климата. И хотя цель документа благая, изложенная там методика расчета эмиссии и поглощения парниковых газов на бумаге превратила нашу страну в один из основных источников загрязнения. И это несмотря на огромные лесные территории, которые участвуют в поглощении, но в расчет не принимаются.

В основе этого поста — лекция кандидата биологических наук Ольги Нестеровой «Морские экосистемы и глобальные изменения климата», которая прошла в Точке кипения Дальневосточного федерального университета.

Исходные данные

Глобальные изменения климата во многом происходят из-за парниковых газов в атмосфере — их присутствие создает парниковый эффект. Основные парниковые газы для нашей планеты: CO2, метан, водяной пар и озон. Особый интерес представляет геохимический цикл углерода. Естественные экосистемы как на суше, так и в океане спроектированы таким образом, чтобы углерод находился в равновесии. Но это равновесие может смещаться.

Из-за смещения возникает парниковый эффект, который через несколько десятков лет приведет к тому, что изменится климат планеты, уровень вод океана поднимется на 5–8 метров и затопит части суши, где сейчас проживает чуть ли не 30% населения планеты.

В целом мировое сообщество пристально следит за бюджетом углерода. Этим занимается огромное количество международных организаций. Например, вот отчет про общепланетарный углеродный бюджет американской ассоциации U.S. Carbon Cycle Science Program, которая объединяет как государственные, так и частные организации и лаборатории.

Концентрация co2 в атмосфере

Фрагмент отчета U.S. Carbon Cycle Science Program по обороту диоксида углерода за 2020 год

Как проблему начали решать в мире и что не так с Россией

В 1992 году в Рио-де-Жанейро приняли соглашение — Рамочную конвенцию ООН об изменении климата, в которой развитые страны условились действовать совместно в условиях изменения климата. Дальнейшие конференции определяли и уточняли эти действия.

В 1997 году приняли Киотский протокол, который содержал обязательства для стран по сокращению выбросов.

Наследие Киотского протокола — Парижское соглашение от 12 декабря 2015 года. Оно регулирует меры по снижению содержания углекислого газа в атмосфере с 2020 года. 175 стран-участниц, в том числе Россия, подписали документ 22 апреля 2016 года. Сегодня 197 стран — участники Парижского соглашения, из них 185 его ратифицировали.

Парижское соглашение не предусматривает механизма квот и в нем отсутствуют санкции для стран, не справляющихся с выполнением национальных вкладов. Но обязательства стран — участниц Парижского соглашения планируют обновлять каждые пять лет, начиная с 2022 года. Не исключен сценарий появления штрафов за эмиссию.

К сожалению, при подготовке Парижского соглашения Россия не занимала активную позицию в формировании методик расчета экологического налога и выработке доктрины, связанной с низкоуглеродными технологиями. На тот момент было не очевидно, что обсуждались стратегически важные вопросы. Но теперь они могут повлиять на мировую экономику и экологическую политику в целом.

Принятые документы декларируют, что методики прямого измерения выбросов парниковых газов не целесообразны. Вместо этого документы рекомендуют применять коэффициенты в зависимости от состава топливно-энергетического комплекса в каждой стране.

Такой подход приводит к тому, что Россия в принципе всем должна, поскольку у нас есть нефть и газ, которые мы продаем другим странам. А нефте- и газодобыча приводит к огромным выбросам метана из-за утечек и двуокиси углерода при сжигании попутного газа.

И никакие стратегии компенсации этих выбросов в Парижском соглашении и связанных с ним стандартах не предусмотрены.

Естественно, научное сообщество на такое положение вещей отреагировало довольно бурно. Владимир Павленко, доктор политических наук, автор монографий и публикаций по теме глобальной мировой политики, анализируя Киотский протокол, упоминал, что документ не очень выгоден для России.

По его мнению, положение «загрязнителя» может иметь последствия не только для страны в целом, но и для частного бизнеса. Многие зарубежные компании пишут на упаковке товаров, сколько углерода было выброшено в атмосферу во время производства. Уже разработаны стандартные методики расчета такого персонального углеродного следа.

Надо быть готовым к тому, что товары российского производства могут просто не взять на европейский или азиатский рынок, потому что они не маркированы как низкоуглеродные согласно общепринятой методике.

В идеале мы тоже должны перестраивать свою экономику на низкоуглеродную. Но при нынешнем технологическом укладе выбросы пропорциональны развитию. Страны используют нефть и газ для своих производственных мощностей. Чтобы развиваться, нужно выбрасывать — просто нельзя этого не делать. А если мы отказываемся от этого вида энергии, встает вопрос, в какой стране будет размещаться очередное энергоемкое производство? Скорее всего там, где по какой-то методике насчитали положительный углеродный баланс. При этом общая ситуация с выбросами для планеты не изменится.

Леса в расчет не принимают

По оценкам ряда авторитетных экспертов (например, из Института физики атмосферы), Россия — первая в ряду доноров с показателем превышения поглощения над выбросами в 4–5 раз. К донорам также относятся: Канада, Бразилия, Австралия, Новая Зеландия и Швеция. В то время как выбросы превышают поглощение у остальной Европы, США, Китая и Индии.

Как выглядит ситуация согласно Парижскому соглашению?

Парижское соглашение запрещает национальные методики подсчета и использует методику МГЭИК — межправительственной группы экспертов по изменению климата.

Климатическая доктрина предусматривает компенсацию выбросов только за счет поглощения управляемыми лесами. Это такие территории, где ведется полный учет рубок, не бывает пожаров, и идут постоянные мониторинговые исследования. Как оказалось, на территории России таких лесов почти нет.

В наших масштабах управлять огромными лесными территориями крайне сложно и затратно. А один из немногих участков — заповедный бассейн реки Бикин на Дальнем Востоке — сдан в аренду на 49 лет немецким компаниям вместе с поглотительным ресурсом. В отчетах о своей хозяйственной деятельности этот ресурс засчитывается Германии.

По методике МГЭИК реальный поглотительный ресурс в секторе лесного хозяйства — 600 млн тонн, а по оценке наших экспертов, например профессора Владимира Лукьяненко, — свыше 12 млрд тонн в год. Следуя методике, МГЭИК занижает этот ресурс в 20 раз!

Чтобы привести данные МГЭИК в соответствие с реальностью, нам необходимо вести мониторинг всех земель лесного фонда.

На правительственном уровне уже звучат предложения сделать все леса управляемыми. Это технически сложно, поскольку необходимо устанавливать вышки с газоанализаторами для учета состава атмосферы и потоков воздуха, а это не всегда возможно сделать на сложном рельефе. Плюс необходимо будет проводить наземную инвентаризацию запасов углерода и их динамику в фитомассе, аэрофотосъемку гиперспектральной камерой с помощью дронов и дистанционное зондирование земли с искусственных спутников.

В чем смысл и проблема подсчетов

Мы понимаем, что если правильно все посчитаем, сможем заработать на поглощении. Но сначала нужно доказать мировому сообществу, что мы поглощаем.

К сожалению, мы отстаем по этому направлению. В России темой эмиссии парниковых газов в первую очередь заинтересовались энергетики, поскольку им платить экологические налоги. Сейчас подтягивается научное сообщество. Но климатические исследования до́роги. Необходимо ставить оборудование, обрабатывать терабайты записанных данных.

Газоанализатор, подходящий для этой задачи, годами мониторит 26 климатических параметров одновременно, делая 800 измерений в минуту. Для решения таких задач у нас не хватает ни оборудования, ни вычислительных мощностей.

В итоге пока Россия с точки зрения понимания климатических моделей — белое пятно для мирового сообщества.

8 февраля этого года президент подписал указ о необходимости создать собственную климатическую доктрину (Указ о мерах по реализации государственной научно-технической политики в области экологии и климата). Первое, что следует сделать в рамках этой стратегии, — изучать климат и механизмы адаптации к его изменениям. Второе — научиться прогнозировать последствия изменения климата. В результате на базе научных образовательных учреждений и организаций должны появиться новые подразделения, которые будут заниматься этой темой.

Предстоит исследовать много новых междисциплинарных областей. Мы должны показать, что у нас есть планы по снижению выбросов парниковых газов. Необходимо увязать выбросы с поглощением и доказать свое донорство. Иначе как страна рано или поздно мы будем платить огромный экологический налог.

Например, если ставка за одну тонну CO2 будет на уровне 15 долларов, о чем сейчас говорят на международном уровне, то с России попросят 42 млрд долларов, что соответствует ~3% ВВП! А с 2035 года ставка может подняться до 35 долларов за тонну.

Углерод в океане

Сегодня речь в Парижском соглашении идет только о суше. Но океан обеспечивает общемировой сток углерода, его тоже надо учитывать при расчете экологических квот.

Океаны занимают бо́льшую часть поверхности нашей планеты и количество углерода в них намного больше, чем на поверхности суши.

Глобальные циклы углерода в мировом океане очень сложны. Углекислый газ производится живыми организмами, а также попадает в океан из атмосферы. Часть его возвращается в атмосферу, а другая вместе с останками организмов оседает на морском дне: депонируется в донные осадки.

Есть два основных процесса в глобальном круговороте углерода в океане — биологический и физико-химический насосы. Вместе они обеспечивают поглощение CO2 океаном из атмосферы в объеме около 9,7 Гт в год (2,6 Гт углерода в год).

Последние 50 лет этот углеродный поток увеличивался вслед за антропогенным повышением уровня CO2 в атмосфере.

Концентрация co2 в атмосфере

Процессы, обеспечивающие сток углерода в океан

Биологический насос — терра инкогнита. Мы более или менее представляем, что происходит около поверхности океана. Но про океанские глубины известно гораздо меньше.

Лишь малая часть углерода, связанного в верхнем слое океана в результате жизнедеятельности фитопланктона, достигает глубин, где больше не участвует в обмене с атмосферой.

Концентрация co2 в атмосфере

Биологический насос — основные процессы

CO2, полученный в ходе обмена с атмосферой (на схеме выше под цифрой 1), потребляется при росте фитопланктона (2). Зоопланктон питается фитопланктоном и дышит, снова выделяя углекислый газ (3). Фрагменты распада фитопланктона и фекальные пеллеты, формируемые зоопланктоном (4), содержат углерод, частицы которого оседают по отдельности или в скоплениях (5). Но лишь 5–50% общего углерода достигает глубины 100 метров (6). От 2 до 25% оседает между 100 и 500 метрами. Микробы разлагают оседающие частицы, часть из них потребляется зоопланктоном (7), поэтому предполагается, что только 1–15% исходного углерода из поверхностных вод опускается ниже 500 метров. При этом CO2, образовавшийся при окислении органического вещества (дыхании), рециркулирует обратно в поверхностные слои.

Что именно происходит в океанских глубинах, для нас загадка, которая может привлечь будущих исследователей. При этом объемы поглощения CO2 сушей и морем сопоставимы между собой даже с учетом неопределенности расчетов.

В рассчитанных бюджетах углерода мировой океан в первую очередь выполняет роль стока — в отличие от суши, которая является источником парниковых газов.

Важный факт — растворимость CO2 в морской воде возрастает с понижением температуры. В полярных областях CO2 интенсивно поглощается океаном, а в теплой экваториальной зоне он может выделяться в атмосферу. Поэтому холодные воды Арктики и высоких широт в целом содержат больше углекислого газа, чем воды низких широт. В этом смысле другим странам просто невыгодно учитывать эти углеродные циклы.

Концентрация co2 в атмосфере

Концентрация CO2 в воде в зависимости от температуры на разных этапах развития производства

Значительное содержание CO2 есть и в придонных холодных водах на глубине ниже 4–4,5 тысяч метров, где происходит растворение известковых раковин.

В данный момент концентрация CO2 в атмосфере повысилась с доиндустриального уровня примерно на 40% (по данным на 2016 год). Около трети CO2, поступившего в атмосферу с начала промышленной революции при сжигании ископаемого топлива и древесины, а также при производстве цемента, уже поглощено океаном.

Таким образом, океан — общемировой сток, и его никак нельзя сбрасывать со счетов при оценке углеродного баланса.

Карбоновые полигоны

Как узнать количество и концентрацию парниковых газов в океане и на суше? Проще всего взять готовые климатические модели, ввести туда данные и получить некие бюджеты — расчеты парниковых газов для определенной территории. Но этого недостаточно. Необходимы реальные исследования.

В марте этого года министр науки и высшего образования Валерий Фальков объявил о запуске нового большого научно-образовательного проекта по созданию карбоновых полигонов.

Карбоновые полигоны — специальные территории, где разместят оборудование для сбора данных, на основе которых планируют разработать методики измерения потоков и баланса основных парниковых газов.

Сейчас выделено семь пилотных геостратегических регионов — Калининградская, Свердловская, Новосибирская, Тюменская и Сахалинская области, Чеченская Республика и Краснодарский край. Конкретные территории еще обсуждают, но в Свердловской области уже подобрали две площадки — около Коуровской обсерватории и учебно-опытного лесхоза Уральского лесотехнического университета недалеко от поселка Северка — и выделили на них 40 млн рублей. Там сейчас закупают оборудование и готовятся к исследованиям.

Кстати, один карбоновый полигон в России уже есть — в Калужской области в границах нацпарка «Угра».

Пока речь идет о создании только лесных полигонов, причем на территории управляемых лесов. Но необходимы и морские полигоны, чтобы собрать доказательные данные для учета вклада океана. Такая площадка должна включать в себя сеть наземных стационарных площадок по непрерывному измерению концентрации и потоков парниковых газов в комплексе с гидрометеорологическими и почвенными данными, а также судовые экспедиционные измерения тех же параметров.

Только так мы сможем доказать, что территория Дальнего Востока и арктических морей действительно поглощает огромное количество углекислого газа и метана.

Я надеюсь, что нам удастся получить документальные подтверждения и потом вынести это на обсуждение мирового сообщества для одобрения новых методик. К тому же мы тут не одиноки — буквально на днях пришли новости из Китая, который также взялся за океан и активное озеленение на суше. Но надо понимать, что все это долго и дорого.

Концентрация co2 в атмосфере

Экспедиция ДВФУ вместе с Тихоокеанским океанологическим институтом, где установили оборудование, способное измерять эмиссию паров воды и метана, рассчитывая их концентрацию по ходу судна

За последние 30 лет глобальные выбросы парниковых газов увеличились на 40%

Концентрация CO2 в атмосфере Земли достигла самого высокого уровня за всю историю наблюдений — 418 частей на миллион (ppm). Человечество находится в чрезвычайной климатической ситуации, заявили представители международной группы ученых.

Они выпустили новый доклад под названием «Мировые ученые предупреждают о климатической чрезвычайной ситуации 2022 года». Авторами доклада являются 10 ученых со всего мира во главе с Университетом штата Орегон (США). В нем исследователи проанализировали 35 планетарных показателей жизнедеятельности, которые используются для отслеживания изменения климата. По словам профессора Уильяма Риппла, соавтора исследования, признаками климатического кризиса являются волны жары, пожары, наводнения и мощные штормы.

Ученые заявили, что последнее время рекорды ставит экстремальная жара, глобальная потеря леса из-за пожаров и широкая распространенность вируса денге, переносимого комарами. «Как мы можем видеть по ежегодным всплескам климатических катастроф, сейчас мы находимся в эпицентре серьезного кризиса. И если мы продолжим делать все так, как делали раньше, нас ждет гораздо худшее будущее», — заявил Кристофер Вулф, соавтор исследования.

В 1992 году более 1700 ученых подписали первоначальную версию доклада, озаглавленную «Предупреждение мировых ученых человечеству». Согласно новому докладу, за прошедшие с тех пор 30 лет глобальные выбросы парниковых газов увеличились на 40%. «По мере того, как температура на Земле ползет вверх, частота или масштабы некоторых типов климатических катастроф могут на самом деле увеличиваться. Мы призываем наших коллег-ученых по всему миру высказаться по поводу изменения климата», — сообщил Томас Ньюсом из Сиднейского университета, соавтор доклада.

Отчет следует за новым исследованием, опубликованным на этой неделе изданием The Lancet Countdown, международной исследовательской организацией, специализирующейся на климате. В нем было установлено, что общественное здравоохранение находится во власти ископаемого топлива и что сжигание углеводородов ухудшает общественное здоровье.

Экстремальные погодные условия, вызванные изменением климата, привели к голоду почти 100 млн человек и увеличили смертность от жары на 68% среди уязвимых групп населения. Во всем мире сжигание угля, нефти, природного газа и биомассы приводит к загрязнению воздуха, от которого ежегодно погибает 1,2 млн человек, передает The Daily Mail.

В апреле 2021 года атмосферная обсерватория на склоне вулкана Мауна-Лоа на Гавайских островах зафиксировала концентрацию углекислого газа в атмосфере Земли в 421 часть на миллион —впервые за историю наблюдений. Однако то было пиковым значением.

Данные Океанографического института имени Скриппса показывают, что в субботу, 11 мая, средняя концентрация углекислого газа в земной атмосфере впервые превысила показатель в 415 частей на миллион. В предыдущий раз такая же концентрация CO2 на Земле была 4,5 миллиона лет назад, когда планета была теплее, а уровень океана — гораздо выше.

В атмосферу Земли углекислый газ попадает из естественных и искусственных источников. К первым относятся извержения вулканов, дыхание аэробных организмов, то есть таких, которым для выработки энергии нужен кислород, а также брожение или гниение органических останков. Основной вклад среди искусственных источников вносит сжигание энергоносителей, таких как уголь, газ или нефтепродукты. Начиная с XIX века этот вклад стал кардинально расти, в результате чего природный цикл углекислого газа нарушился и его концентрация в атмосфере начала увеличиваться.

Концентрация co2 в атмосфере

Данные по концентрации углекислого газа в атмосфере Земли. С 1958 года это прямые наблюдения Океанографического института имени Скриппса, более ранние показатели основаны на исследовании пузырьков газа в древнем льду. Scripps Institution of Oceanography

За концентрацией CO2 в атмосфере Земли ежедневно, начиная с конца 1950-х, следит Национальное управление океанических и атмосферных исследований (NOAA) США. Атмосферная станция у подножия гавайского вулкана Мауна Лоа отслеживает этот показатель, и на основе ее данных ученые Океанографического института имени Скриппса составляют так называемый график Килинга. За последние 800 тысяч лет и до начала индустриализации уровень углекислого газа не превышал 280 частей на миллион (parts per million, ppm). В 2016 году он достиг рекордного значения в 403,3 ppm, а 11 мая 2019 год точка на этом графике впервые в истории Земли оказалась выше отметки в 415 ppm — 415,26.

415.26 parts per million (ppm) CO2 in air 11-May-2019 https://t.co/MGD5CTru41 First daily baseline over 415ppm

По словам руководителя программы измерений Ральфа Килинга, концентрация углекислого газа растет все быстрее из года в год: по сравнению с прошлым годом показатель увеличился на 3 ppm, в то время как раньше он рос в среднем на 2,5. По мнению Килинга, кроме сжигания топлива на рост показателя влияет и Эль-Ниньо — атмосферное явление в Тихом океане, в результате которого температура приповерхностных вод то повышается, как сейчас, то понижается.

В последний раз концентрация углекислого газа достигала 415 частей на миллион в плиоцене, около 4,5 миллиона лет назад. Глобальная температура тогда была выше нынешней на 3-4 градуса Цельсия, а температура на полюсах — на 10 градусов. Выше был и уровень моря — на 5­—40 метров. Окаменелости и климатические модели того периода также подтверждают, что Эль-Ниньо уже тогда существовал и влиял на земную погоду.

Ученые считают, что ситуация с климатом плиоцена вполне может повториться и в XXI веке. Отличаться будет разве что уровень моря: он будет увеличиваться гораздо более медленными темпами, так как разогрев воды и таяние льдов требуют много времени.

Оценка уровня углекислого газа в помещении с кондиционером

Концентрация co2 в атмосфере

Есть прописные истины, знакомые любому человеку практически с рождения. Зимой холодно, а летом тепло. При дыхании потребляется кислород и выделяется углекислый газ. Когда в помещении скапливается много углекислого газа, то становится душно, а чтобы в помещении стало находиться комфортнее — его нужно проветрить. Но при этом большинство людей склонно недооценивать влияние повышенной концентрации CO2 на здоровье и качество жизни. Об этом я и хочу поговорить в данной статье, а также показать, как влияет кондиционер на процесс очистки воздуха. И заодно представить обзор детектора уровня CO2, который помогает держать качество воздуха в помещении под контролем.

• 1 Что нужно знать о CO2
• 2 Техническая информация
• 3 Внешний вид и принцип действия
• 4 Измерения
• 5 Домашняя автоматизация
• 6 Выводы

1. Что нужно знать о CO2

CO2 или углекислый газ — неотъемлемая часть любой воздушной смеси, содержание которого измеряется в миллионных долях (ppm — parts per million). Условно нормальный уровень CO2 в свежем уличном воздухе принято считать за 400ppm. Эта цифра непостоянна и зависит от конкретной локации — так, в экологически чистом районе с отсутствием промышленности и малой плотностью заселенности содержание углекислого газа в атмосфере может быть ниже среднего значения, а в густонаселенном мегаполисе, да еще с промышленными предприятиями практически наверняка будет выше среднего.

Воздух в помещении считается качественным, если содержание CO2 в нем колеблется в пределах 800ppm. При достижении концентрации углекислого газа 1000ppm у многих людей уже появляется ощущение духоты и вялости, а 1400ppm — предел нормы по рекомендациям Сан-Пина.

Опасным уровнем является 30000ppm — при достижении такой концентрации CO2 у человека учащается пульс, возникает ощущение тошноты и прочие симптомы кислородного голодания. Хорошая новость заключается в том, что «надышать» такую концентрацию углекислого газа практически невозможно в офисных и жилых помещениях даже очень низкого качества. Тем не менее, даже небольшие превышения допустимой концентрации CO2 способны существенно влиять на качество жизни. Уже при 1000ppm снижается концентрация внимания, появляется ощущение вялости, мозг начинает хуже обрабатывать информацию. При концентрации CO2 выше 1400ppm в офисе становится трудно концентрироваться на работе, а дома появятся проблемы со сном. Содержание СО2 зависит, в большей степени, от количества людей, находящихся в закрытом помещении.

«Управлять можно только тем, что можно измерить», писал основоположник современной теории управления Питер Друкер. И первый шаг к управлению микроклиматом помещения заключается в начале отслеживания его объективных показателей.

В этом-то нам и поможет детектор углекислого газа от компании Даджет.

2. Техническая информация

Название модели: Детектор СО2 (Mini Monitor СО2)
Диапазон измерения CO2: 0 — 3000 ppm
Диапазон измерения температуры: 0 — 50
Точность измерений: ±10% ppm, ±1,5°C
Вывод информации: ЖК-дисплей, светодиодные индикаторы
Потребление тока: до 200мА
Дополнительные функции: звуковой сигнал превышения концентрации CO2

3. Внешний вид и принцип действия

Концентрация co2 в атмосфере

Детектор CO2 поставляется в картонной коробке, содержащей сведения о производителе и краткую памятку по влиянию повышенных концентраций углекислого газа на самочувствие человека.

Концентрация co2 в атмосфере

Внутри находится сам прибор, инструкция на русском языке и USB-кабель. У детектора нет встроенного аккумулятора, поэтому работать он может только от внешнего источника питания: USB-порта компьютера или обычного зарядного устройства для смартфона.

Концентрация co2 в атмосфере

Само устройство крупным планом. На передней панели находится экран и три индикационных светодиода, отображающих усреднённо результаты измерений: при концентрации CO2 ниже 800ppm светится зеленый светодиод, при 800-1200ppm — желтый, выше 1200ppm — красный. Значения интервалов действия индикаторов можно изменить в настройках.

Вообще, светодиодная индикация оказалась очень информативной вещью. Не нужно подходить к прибору и всматриваться в текущие значения показателей. Издалека видно, что если индикатор переключился с зеленого на желтый, то помещение можно уже и проветрить, а если он покраснел — проветривание желательно начать уже прямо сейчас.

Концентрация co2 в атмосфере

На правом боку находится microUSB-порт и отверстие, через которое происходит забор воздуха для анализа.

Концентрация co2 в атмосфере

Сзади отверстия для вентиляции, наклейка с технической информацией и две кнопки, которыми осуществляется настройка.

Концентрация co2 в атмосфере

Сердцем устройства является датчик углекислого газа ZGm053UK, работающий по технологии NDIR (non-dispersive infrared radiation, недисперсионное инфракрасное излучение): в световодную трубку заходит поток воздуха и попадает под излучение инфракрасной лампы, а на другом конце трубки стоит инфракрасный детектор с соответствующим фильтром. Чем больше в воздушной смеси содержится CO2 — тем сильнее ослабевает инфракрасное свечение, что и позволяет датчику определить текущую концентрацию CO2.

Себестоимость NDIR-сенсоров выше, чем у аналогов с другим принципом работы (электрохимическим или электроакустическим), но при этом они имеют длительный срок службы и обеспечивают более точные результаты.

Теперь испытаем детектор в работе. Место проведения измерений — Челябинск, двухкомнатная квартира в относительно тихом районе, окна выходят во двор.

Опыт №1. Знакомство с прибором

Концентрация co2 в атмосфере

Первым делом я измерил концентрацию углекислого газа на улице, разместив детектор у открытого окна на 4 этаже.

Измерения показали 440ppm. Нормальный уровень содержания CO2 в атмосфере, напоминаю, составляет 400ppm. Ну что же, с поправкой на безветренную погоду и проживание в промышленном мегаполисе с традиционно проблемной экологией, 440ppm можно считать нормальным результатом.

Концентрация co2 в атмосфере

Теперь измерим уровень CO2 в самой квартире, предварительно хорошо ее проветрив все комнаты.

Получилось 550ppm. Это отличный результат, воздух почти как на улице.

Но, забегая наперед, скажу: поддерживать такое качество воздуха на постоянной основе в квартире, не оснащенной продвинутыми системами вентиляции, практически невозможно.

Опыт №2. Длительные измерения

По ходу обзора я еще не упоминал, что детектор не только отображает моментальные значения концентрации CO2, но и способен работать в связке с компьютером.

Если установить специальную программу, то устройство будет фиксировать уровень концентрации CO2 и температуры в помещении с привязкой ко времени и строить график на основании этих показателей.

Дальнейшие измерения будем проводить при помощи этой программы.

Концентрация co2 в атмосфере

Ночь с закрытыми окном и дверью. К утру концентрация CO2 в комнате подскакивает практически до 2000ppm.

Открываем створку окна на проветривание и смотрим на график. Примерно за 40 минут концентрация углекислого газа снижается с 2000ppm до здорового уровня 700ppm.

Концентрация co2 в атмосфере

Вечер. Затихает естественный шум и становятся особенно слышны голоса отдыхающих во дворе компаний. Они мешают, поэтому закрываю окно.

За час концентрация CO2 повышается почти что вдвое, с 700ppm до 1300ppm.

Опыт №3. Суточный мониторинг

Теперь посмотрим, как меняется концентрация CO2 в помещении в течение одного полного дня.
Исходные данные: все та же двухкомнатная квартира, в которой одновременно находятся от одного до трех человек. Окно на кухне практически всегда открыто, окна и балконная дверь в комнатах открываются и закрываются в течение дня, межкомнатные двери закрываются на ночь.

Концентрация co2 в атмосфере

Хорошо проветриваю комнату перед сном, закрываю окно и ложусь спать.

К полуночи концентрация CO2 уже превышена, но до пяти часов утра сохраняется на уровне, который с натяжкой можно назвать удовлетворительным. На временном промежутке с пяти до девяти утра концентрация CO2 повышается до 2000ppm. Кстати, это вполне коррелирует с личными ощущениями при сне с закрытым окном. Где-то в 5 утра я просыпаюсь в достаточно бодром состоянии, но поскольку еще слишком рано — остаюсь в кровати досыпать до звонка будильника. По звонку будильника в 7 утра просыпаюсь с тяжелой головой и в подавленном настроении, как будто и не спал всю ночь — к этому времени организм уже успевает надышаться «плохим» воздухом, что сказывается на самочувствии.

С 9 до 10 часов — проветривание. Открыты окна во всех комнатах, концентрация CO2 спадает с 2000ppm до 600ppm.

С 10 до 15 часов — окна в комнатах закрыты, на кухне открыта форточка. В квартире 1 человек. Концентрация CO2 в норме.

С 15 до 18 часов — открыты форточки во всех комнатах. В квартире 2 человека. Концентрация CO2 всё еще в норме.

С 18 до 21 часа — открыты форточки во всех комнатах. В квартире 3 человека. Концентрация CO2 начинает нарастать, форточки уже не спасают.

С 21 до 22-30 часов — проветривание с открытыми окнами. В квартире 3 человека. Концентрация CO2 приходит в норму, но начинает повышаться сразу же, стоит закрыть окна и оставить одни форточки для проветривания.

А теперь рассмотрим другой день с другим распорядком.

Концентрация co2 в атмосфере

Ночью в комнате открыта форточка, концентрация CO2 немного превышена, но все же не растет до совсем диких величин.

С 8 до 14 часов — в квартире никого нет, межкомнатные двери открыты, во всех комнатах открыты окна. Концентрация CO2 спадает до уровня уличного воздуха.

С 14 до 18 часов — в квартире 2 человека, межкомнатные двери открыты, во всех комнатах открыты форточки. Концентрация CO2 уже не как на улице, но в пределах нормы.

С 18 часов и до утра — в квартире 3 человека, межкомнатные двери закрыты, форточки открыты. Концентрация CO2 немного превышена, но стабильна.

Вывод: если жить одному в двухкомнатной квартире, то о качестве воздуха можно практически не беспокоиться. Достаточно лишь иногда проветривать помещение. А вот при двух-трех обитателях на том же количестве квадратных метров для поддержания концентрации углекислого газа в нормальных пределах придется осуществлять проветривание практически круглосуточно.

Опыт №4. CO2 и кондиционер

Теперь посмотрим, что происходит в комнате при использовании кондиционера.
Исходные данные: проветренное помещение, но на улице жарко, а соответственно и в помещении тоже.

Закрываю окна чтобы воздух не уходил, включаю кондиционер.

Концентрация co2 в атмосфере

В результате, за час работы кондиционера температура в комнате упала на несколько градусов, а концентрация CO2 возросла.

Подвох в том, что если не выходить из помещения на свежий воздух, то субъективно воздух в нем воспринимается как свежий и качественный просто за счет своей прохлады. И только цифры на приборе показывают реальную картину.

Кондиционирование не заменяет проветривания, поэтому сидя целый день в уютной и прохладной комнате можно незаметно для себя «надышать» концентрацию CO2 в 2000ppm, а то и больше. Особенно это актуально для офисов, где в одном небольшом помещении находятся сразу несколько человек. Широко распространено заблуждение, что раз для кондиционера монтируется отдельный воздуховод прямо на улицу, то кондиционер забирает уличный воздух, охлаждает его внутри себя и выпускает в помещение. На самом же деле воздуховод служит для выброса горячего воздуха из помещения на улицу, то есть работает как вытяжка. Причём такие кондиционеры встречаются далеко не везде. Обычная сплит система «гоняет» воздух в помещении по кругу, а по трубкам поступает охлаждённых хладагент.

Пользуясь кондиционером следует помнить о необходимости насыщать помещение свежим воздухом.

5. Домашняя автоматизация

В завершение обзора хочу отметить, что сфера применения детектора CO2 не ограничивается одним лишь проведением измерений и построением графиком на компьютере.

Это устройство можно использовать в проектах домашней автоматизации, причём сделать это можно двумя различными способами.

Концентрация co2 в атмосфере

Первый способ — подключение силового реле к одному из индикационных светодиодов.

Принцип действия очевиден: при повышении концентрации CO2 в воздухе зеленый индикатор сменяется на желтый, при этом автоматически замыкается электронный ключ в реле, что в свою очередь включает подключенное к реле устройство (например, вентилятор приточной системы).

Концентрация co2 в атмосфере

Второй способ — программный.

Поскольку детектор поддерживает передачу данных с датчика на компьютер по USB-протоколу, его можно внедрить в любую самодельную систему «умного дома», считывая показатели с датчика на головное устройство. А уже с головного устройства, на основании получаемых показателей, управлять другой подключенной к системе электроникой.

Было интересно увидеть реальное состояние воздуха в своей квартире. С использованием детектора CO2 стало наглядно видно, что имеющаяся пассивная вентиляция малоэффективна, и если в теплое время еще можно держать окна открытыми практически круглосуточно (хотя и летом это не всегда удобно из-за уличного шума), то зимой это неосуществимо по причине быстрого остывания помещений. Появился повод задуматься о модернизации домашней вентиляции, да и о поддержании здорового микроклимата в помещении в целом. Кроме того, в ассортименте магазина имеется продвинутый монитор качества воздуха, обладающий более крупным дисплеем и позволяющий измерять помимо концентрации CO2 и температуры еще и относительную влажность воздуха. Скидка 10% предоставляется по промокоду GT-CO2 в течение 14 дней.

В одной из следующих статей будет описано, как подружить детектор СО2 с микрокомпьютером Raspberry Pi.

Блогерам и авторам

Компания «Даджет» заинтересована в публикации независимых объективных обзоров наших даджетов. Мы с радостью предоставим даджеты авторам, желающим протестировать их, написать и опубликовать обзор в нашем блоге. Даджет после написания обзора остается у автора. Подробнее.

Оцените статью
Анемометры
Добавить комментарий