Магнитное поле в физике — формулы и определения с примерами решения задач

Магнитное поле в физике - формулы и определения с примерами решения задач Анемометр

Магнитный гистерезис

Говоря о магнитной проницаемости железных уел, мы могли создать ложное впечатление, что магнитные свойства ферромагнетиков отличаются от магнитных свойств парамагнитных тел только величиной магнитной проницаемости. Это совсем не так. Принципиальное отличие ферромагнетиков от других тел заключается в отсутствии линейной и, более того, однозначной зависимости магнитного состояния тела от напряженности магнитного поля. Поэтому понятие магнитной проницаемости для ферромагнетиков носит весьма условный характер. Правильное представление о магнитных свойствах железа можно получить, рассматривая кривую зависимости намагничения от напряженности или магнитной индукции от напряженности поля. Обе эти кривые довольно близки друг К другу.
Магнитное поле

Будем измерять намагничение железного тела в функции напряженности. Сначала намагничение будет расти медленно, затем быстро и, наконец, наступит магнитное насыщение. Такого типа кривые намагничения, впервые построенные А. Г. Столетовым, типичны для всех ферромагнитных тел (рис. 121).

Повторяем, что кривые намагничения и магнитной индукции весьма похожи. Ход кривой намагничения дает магнитную восприимчивость, ход кривой индукции дает магнитную проницаемость. Из приведенной кривой видно, что магнитная проницаемость (восприимчивость) изменяется по кривой с максимумом.

При малых полях магнитная проницаемость  мала, затем она возрастает до максимума, потом падает и по достижении насыщения остается неизменной. Большей частью, когда приводят значения магнитной проницаемости, не оговаривая внешних условий, имеют в виду максимальную магнитную проницаемость.

Однако описанным не исчерпывается своеобразие поведения ферромагнетиков. Положим, что железо доведено до состояния магнитного насыщения, и начнем уменьшать напряженность магнитного поля. Оказывается, что индукция будет убывать теперь по другой кривой, лежащей выше кривой начального намагничения. Напряженность поля может быть доведена до нуля, но намагничение не будет снято. Соответствующие значения намагничения и индукции называют остаточными. Чтобы снять остаточное намагничение, необходимо переменить направление поля. Если иметь в виду опыт, о котором говорилось на стр. 255, то это значит, что нужно изменить
Магнитное полеМагнитное полекоэрцитивной (задерживающей) силой. При дальнейшем увеличении тока тело начнет намагничиваться в обратном направлении, т. е. там, где был южный полюс, возникнет северный. Магнитный поток будет расти до той же степени насыщения, что и в начальном процессе. Достигнув отрицательного максимума индукции, можно повести процесс в обратную сторону и получить изображенную на рис. 122 петлю гистерезиса.Из этого рисунка следует, что напряженность поля, в которое помещено железо, не определяет еще ни магнитной индукции, ни, следовательно, магнитной проницаемости. Для абсциссы Магнитное полеМагнитное поле

Про анемометры:  Магнитный поток и электромагнитная индукция: физические формулы

Отсюда следует способ приведения ферромагнитного тела в состояние, при котором одновременно равны нулю и индукция, и напряженность. Такое приведение магнитного тела в «нулевую точку» осуществляют серией последовательных перемагничиваний, начиная каждый следующий цикл при меньшем значении напряженности, чем предыдущий.

Магнитное состояние железа нельзя характеризовать только значением проницаемости или только величиной напряженности или индукции. Нужно знать две величины, скажем, индукцию и напряженность, которые определят магнитное состояние железа точкой внутри основной гистерезисной петли.

Характер петли гистерезиса сильно зависит от материала. Магнитно-мягкими называют гела, у которых коэрцитивная сила мала (а значит, мала и площадь петли). К мягким материалам относятся чистое железо, кремнистая сталь, сплав железа с никелем (среди них выделяется пермаллой — 78% никеля). Углеродистые и иные стали принадлежат к магнитно-твердым материалам; их используют для изготовления постоянных магнитов.

Опыт показывает, что при перемагничивании ферромагнетик нагревается. Это очень существенно для электротехники, так как при помещении железа в переменное магнитное поле точка графика Магнитное полеМагнитное полеМагнитное полеМагнитное полеМагнитное поле

Услуги по физике:

  1. Заказать физику
  2. Заказать контрольную работу по физике
  3. Помощь по физике

Лекции по физике:

  1. Физические величины и их измерение
  2. Основные законы механики
  3. Прямолинейное равномерное движение
  4. Прямолинейное равнопеременное движение
  5. Сила
  6. Масса
  7. Взаимодействия тел
  8. Механическая энергия
  9. Импульс
  10. Вращение твердого тела
  11. Криволинейное движение тел
  12. Колебания
  13. Колебания и волны
  14. Механические колебания и волны
  15. Бегущая волна
  16. Стоячие волны
  17. Акустика
  18. Звук
  19. Звук и ультразвук
  20. Движение жидкости и газа
  21. Молекулярно-кинетическая теория
  22. Молекулярно-кинетическая теория строения вещества
  23. Молекулярно — кинетическая теория газообразного состояния вещества
  24. Теплота и работа
  25. Температура и теплота
  26. Термодинамические процессы
  27. Идеальный газ
  28. Уравнение состояния идеального газа
  29. Изменение внутренней энергии
  30. Переход вещества из жидкого состояния в газообразное и обратно
  31. Кипение, свойства паров, критическое состояние вещества
  32. Водяной пар в атмосфере
  33. Плавление и кристаллизация
  34. Тепловое расширение тел
  35. Энтропия
  36. Процессы перехода из одного агрегатного состояния в другое
  37. Тепловое расширение твердых и жидких тел
  38. Свойства газов
  39. Свойства жидкостей
  40. Свойства твёрдых тел
  41. Изменение агрегатного состояния вещества
  42. Тепловые двигатели
  43. Электрическое поле
  44. Постоянный ток
  45. Переменный ток
  46. Электромагнитное поле
  47. Электромагнитное излучение
  48. Электрический заряд (Закон Кулона)
  49. Электрический ток в металлах
  50. Электрический ток в электролитах
  51. Электрический ток в газах и в вакууме
  52. Электрический ток в полупроводниках
  53. Электромагнитная индукция
  54. Работа, мощность и тепловое действие электрического тока
  55. Термоэлектрические явления
  56. Распространение электромагнитных волн
  57. Интерференционные явления
  58. Рассеяние
  59. Дифракция рентгеновских лучей на кристалле
  60. Двойное лучепреломление
  61. Магнитное поле и электромагнитная индукция
  62. Электромагнитные колебания и волны
  63. Природа света
  64. Распространение света
  65. Отражение и преломление света
  66. Оптические приборы и зрение
  67. Волновые свойства света
  68. Действия света
  69. Линзы и получение изображений с помощью линз
  70. Оптические приборы и глаз
  71. Фотометрия
  72. Излучение и спектры
  73. Квантовые свойства излучения
  74. Специальная теория относительности в физике
  75. Теория относительности
  76. Квантовая теория и природа поля
  77. Строение и свойства вещества
  78. Физика атомного ядра
  79. Строение атома
Оцените статью
Анемометры
Добавить комментарий