Рекомендуемые материалы
Хотя эффект Холла известен уже более ста лет, практическое применение его началось лишь в итоге развития технологии получения полупроводников. Именно в чистых полупроводниках обеспечивается высокая подвижность носителей тока, поэтому постоянная Холла для чистых полупроводников во много раз больше, чем для металлов.
Эффект магнитосопротивления — это другое физическое явление, заключающееся в изменении сопротивления проводящих тел в магнитном поле. Объясняется это тем, что в присутствии магнитного поля на носители тока действует сила Лоренца, изменяющая траекторию их движения. Если бы не было магнитного поля, то под действием приложенного к проводящему телу напряжения носители тока перемещались бы по кратчайшему направлению. Изменение траектории под действием магнитного поля всегда удлиняет путь носителей тока, что проявляется как увеличение сопротивления. В сильных поперечных магнитных полях некоторые вещества могут иметь относительное увеличение сопротивления а=Д/?//? в десятки раз. Чаще всего величина а связана с напряженностью магнитного поля Я квадратичной зависимостью
где kR — коэффициент, зависящий от материала и размеров.
Эффекты Холла и магнитосопротивления используются в датчиках, с помощью которых могут быть измерены различные электрические и магнитные величины. Кроме того, они могут использоваться для математической обработки электрических сигналов: сложения, умножения, деления, возведения в квадрат и извлечения корня; для различных преобразований электрических сигналов.
§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления
Использование датчиков Холла для целей автоматического измерения будет рациональным в том случае, если они имеют достаточно высокую чувствительность и мало подвержены влиянию температуры. Чувствительность датчика зависит от выходной ЭДС, т. е. от постоянной Холла, которая, в свою очередь, определяется подвижностью носителей тока. В проводящих телах носителями тока являются электроны. При обычных температурах электроны находятся в хаотическом тепловом движении с самыми различными скоростями. Однако если вдоль тела создать электрическое поле Е, приложив напряжение U, то все электроны начнут передвигаться в направлении поля с некоторой средней скоростью v (при этом отдельные электроны могут иметь как большую, так и меньшую скорости). Подвижность носителей тока (р) определяется как отношение скорости v к напряженности электрического поля Е:
Подвижность зависит от того, как часто электрон при своем движении сталкивается с решеткой твердого тела. Следует особо отметить, что большое значение ЭДС Холла еще не означает, что в этом веществе велик эффект Холла и оно годится для технических применений. Большое значение ЭДС может быть полученj за сче* большого напряжения U, т. е. больших затрат электрической энергии. В то же время в другом материале такая же ЭДС Холла и те же скорости носителей тока могут быть получены при меньшем напряжении только за счет большей подвижности. Такой материал выгоднее для применения в датчике Холла.
Короче говоря, основным требованием, предъявляемым к материалам для датчиков, является сочетание большой подвижности носителей тока с минимальными температурными зависимостями.
В зависимости от технологии изготовления различают кристаллические (в форме пластинки) и пленочные датчики.
В качестве материала кристаллических датчиков используются различные соединения индия: мышьяковистый индий IriAs, фосфид индия 1nР, сурьмянистый индий InSb, а также германий Ge и кремний Si.
Наибольшее значение постоянной Холла у материала InSb, но оно сильно зависит от температуры. На рис. 14.2 показаны зависимости постоянной Холла от температуры для разных материалов (1 — InSb, 2 — InAs, 3 —твердый раствор InAs и 1пР). Для германия постоянная Холла в десятки раз меньше, но он обладает значительно большим удельным сопротивлением. Из германия можно делать датчики с сопротивлением в несколько килоом. Еще ббльшим удельным сопротивлением обладает кремний, но его труднее очистить от примесей. Высокую степень очистки полупроводниковых материалов получают при плавке в космических лабораториях.
Для размещения в узких зазорах очень удобны пленочные датчики Холла. Для их изготовления используется метод испарения в вакууме исходного вещества с последующим осаждением на подложку из слюды. Толщина пленочных датчиков составляет 10— 30 мкм, что в сотни раз меньше, чем у кристаллических датчиков. Материалом для пленочных датчиков служат соединения ртути: селенид ртути HgSe и теллурид ртути HgTe. Чем тоньше пленка, тем меньше постоянная Холла. По своим возможностям применения в системах автоматики пленочные датчики примерно равноценны с германиевыми и даже лучше по температурной стабильности. Но они очень дорогие. В настоящее время проводятся исследования новых материалов, пригодных для использования в датчиках Холла и магнитосопротивления.
§ 14.3. Применение датчиков Холла и датчиков магнитосопротивления
В средних и слабых магнитных • полях датчики Холла очень чувствительны к колебаниям температуры и нуждаются в стабиль-ном питании и сложных измерительных схемах. Например, тер-моЭДС между материалом датчика и его выводами соизмерима с выходным сигналом. Да и при измерениях в сильных магнитных полях используют схемы термокомпенсации погрешности с помощью терморезисторов, а порой даже и термостатироваиие, т. е. измерения проводят в камере, где автоматически поддерживается постоянная температура.
По существу, датчик Холла является элементарным умножающим устройством, поскольку его выходной сигнал пропорционален произведению напряженности на ток. На этом, в сущности, и основаны все возможные применения датчика Холла. При постоянном токе через датчик выходной сигнал пропорционален напряженности магнитного поля. А поместив датчик в постоянное магнитное поле, можно измерять ток, проходящий через него, по значению ЭДС Холла. Это единственный способ определения распределения токов в электролитических ваннах.
5.1. Краткая характеристика источников воды – лекция, которая пользуется популярностью у тех, кто читал эту лекцию.
Датчики магнитосопротивления также вначале использовались для измерения магнитных полей, но затем были вытеснены более совершенными датчиками Холла на новых полупроводниковых материалах. Однако датчики магнитосопротивления по устройству проще датчиков Холла. Наилучшей формой для датчика магнитосопротивления является диск с одним выводом в центре и другим — на окружности. Зависимости относительного изменения сопротивления датчиков магнитосопротивления разной формы от магнитной индукции показаны на рис. 14.3.
Основным достоинством датчика магнитосопротивления является возможность бесконтактного изменения активного сопротивления.
Одним из возможных применений датчиков магнитосопротивления является создание бесконтактных клавишных выключателей. При нажатии на кнопку такого выключателя перемещается магнити изменяется магнитный поток, воздействующий на датчик магни-тосопротивления.
Известны также применения датчиков Холла и магнитосопро-тивления в системах автоматики в качестве измерителей тока в токоведущих шинах, бесконтактных потенциометров для преобразования механического перемещения (линейного или углового) в пропорциональный электрический сигнал. Удобно применять датчики Холла в автоматических устройствах, контролирующих состояние стальных канатов.
Пока еще датчики Холла и датчики магнитосопротивления сравнительно мало применяются в системах промышленной автоматики. Но бурное развитие полупроводниковой технологии ведет к расширению их применения.
Следует отметить, что в последнее время к таким датчикам прибавились еще и близкие по принципу действия магнитодиодные и гальваномагнитно-рекомбинационные преобразователи.
Датчики Холла часто используются в качестве магнитометров, то есть для измерения магнитных полей или проверки материалов (например, труб или трубопроводов) с использованием принципов рассеяния магнитного потока.
Устройства использующие эффект Холла производят очень низкий уровень сигнала и, следовательно, требуют усиления. Хотя ламповые усилители первой половины 20-го века подходили для лабораторных приборов, они были слишком дорогими, энергоёмкими и ненадёжными для повседневного использования. Только с разработкой недорогой интегральной схемы датчик на эффекте Холла стал пригодным для массового применения. Многие устройства, которые сейчас продаются как датчики на эффекте Холла, фактически содержат как датчик, как описано выше, так и усилитель на интегральной схеме (IC) с высоким коэффициентом усиления в одном корпусе. Последние достижения позволили добавить в один пакет аналого-цифровой преобразователь и I²C (протокол связи между интегральными схемами) для прямого подключения к порту ввода-вывода микроконтроллера.
Преимущества перед другими методами
Устройства на эффекте Холла (при надлежащей упаковке) невосприимчивы к пыли, грязи и воде. Эти характеристики делают устройства на эффекте Холла лучше для определения положения, чем альтернативные средства, такие как оптические и электромеханические измерения.
Датчик тока на эффекте Холла с внутренним усилителем на интегральной схеме. Отверстие 8 мм. Выходное напряжение при нулевом токе находится посередине между напряжениями питания, которые поддерживают дифференциал от 4 до 8 вольт. Отклик на ненулевой ток пропорционален подаваемому напряжению и линеен до 60 ампер для данного конкретного устройства (25 А).
Когда электроны проходят через проводник, создаётся магнитное поле. Таким образом, можно создать бесконтактный датчик тока. Устройство имеет три терминала. Напряжение датчика прикладывается к двум клеммам, а третий обеспечивает напряжение, пропорциональное измеряемому току. Это даёт несколько преимуществ: никакого дополнительного сопротивления (шунта, необходимого для наиболее распространенного метода измерения тока) не требуется в первичной цепи. Кроме того, напряжение, присутствующее в линии, которое должно быть измерено, не передаётся на датчик, что повышает безопасность измерительного оборудования.
Недостатки по сравнению с другими методами
Магнитный поток из окружающей среды (например, других проводов) может уменьшать или увеличивать поле, которое датчик Холла намеревается измерить, делая результаты неточными.
Способы измерения механических положений в электромагнитной системе, такой как бесщёточный двигатель постоянного тока, включают (1) эффект Холла, (2) оптический датчик положения (например, абсолютные и инкрементальные датчики) и (3) индуцированное напряжение путём перемещения металлического сердечника, вставленного в трансформатор. Когда эффект Холла сравнивают с фоточувствительными методами, с Холлом труднее получить абсолютное значение. Холловские измерения также чувствительны к паразитным магнитным полям.
Датчики на эффекте Холла доступны от ряда различных производителей и могут использоваться в различных датчиках, таких как датчики скорости вращения (велосипедные колеса, зубья шестерен, автомобильные спидометры, электронные системы зажигания), датчики потока жидкости, датчики тока и датчики давления. Обычные приложения часто встречаются там, где требуется прочный и бесконтактный переключатель или потенциометр. К ним относятся: электрические пистолеты для страйкбола, триггеры электропневматических ружей для пейнтбола, регуляторы скорости картинга, смартфоны и некоторые системы глобального позиционирования.
Преобразователь тока с ферритовым тороидом на эффекте Холла
Схема преобразователя тока на эффекте Холла, встроенного в ферритовое кольцо.
Датчики Холла могут легко обнаруживать паразитные магнитные поля, в том числе магнитные поля Земли, поэтому они хорошо работают в качестве электронных компасов: но это также означает, что такие паразитные поля могут препятствовать точным измерениям малых магнитных полей. Чтобы решить эту проблему, датчики Холла часто интегрируют с каким-либо магнитным экраном. Например, датчик Холла, интегрированный в ферритовое кольцо (как показано), может уменьшить обнаружение полей рассеяния в 100 раз или лучше (поскольку внешние магнитные поля компенсируются в кольце, не давая остаточного магнитного потока). Эта конфигурация также обеспечивает улучшение отношения сигнал/шум и эффекты дрейфа более чем в 20 раз по сравнению с устройством Холла без покрытия.
Диапазон данного сквозного датчика может быть расширен вверх и вниз с помощью соответствующей проводки. Чтобы расширить диапазон до более низких токов, можно сделать несколько витков токоведущего провода через отверстие, каждый поворот добавляя к выходному сигналу датчика одно и то же количество; при установке датчика на печатную плату повороты могут осуществляться скобами на плате. Чтобы расширить диапазон до более высоких токов, можно использовать делитель тока. Делитель разделяет ток по двум проводам разной ширины, и более тонкий провод, по которому проходит меньшая часть общего тока, проходит через датчик.
Множественные витки и соответствующая передаточная функция.
Датчик с разъёмным кольцом
Кольцевой датчик Холла используется в токоизмерительных клещах. Измерительный прибор закрепляется на линии, что позволяет использовать прибор в испытательном оборудовании. При использовании в стационарной установке такой метод позволяет проверять электрический ток без демонтажа существующей цепи.
Выходной сигнал пропорционален приложенному магнитному полю и приложенному напряжению датчика. Если магнитное поле прикладывается соленоидом, выходной сигнал датчика пропорционален произведению тока через соленоид и напряжения датчика. Поскольку большинство приложений, требующих вычислений, в настоящее время выполняются небольшими цифровыми компьютерами, оставшееся полезное приложение — измерение мощности в одном устройстве с эффектом Холла, которое объединяет измерение тока с измерением напряжения.
Измеряя ток, подаваемый на нагрузку, и используя приложенное к устройству напряжение можно определить мощность, рассеиваемую устройством.
Определение положения и движения
Устройства на эффекте Холла, используемые в датчиках движения и переключателей ограничения движения, могут обеспечить повышенную надёжность в экстремальных условиях. Поскольку внутри датчика или магнита нет движущихся частей, типичный ожидаемый срок службы увеличивается по сравнению с традиционными электромеханическими переключателями. Кроме того, датчик и магнит могут быть заключены в соответствующий защитный материал. Это приложение используется в вентильном электродвигателе постоянного тока.
Автомобильное зажигание и впрыск топлива
Обычно используемый в распределителях для определения угла опережения зажигания и в некоторых типах датчиков положения коленчатого вала и распределительного вала для определения времени импульса впрыска, измерения скорости и так далее. Датчик на эффекте Холла используется как прямая замена механических точек прерывания, используемых в более ранних автомобильных приложениях. Его использование в качестве устройства регулировки угла опережения зажигания в распределителях различных типов заключается в следующем. Стационарный постоянный магнит и полупроводниковая микросхема с эффектом Холла установлены рядом друг с другом и разделены воздушным зазором, образуя датчик Холла. Металлический ротор, состоящий из окон и выступов, установлен на валу и расположен так, что во время вращения вала окна и выступы проходят через воздушный зазор между постоянным магнитом и полупроводниковым кристаллом Холла. Это эффективно экранирует и подвергает чип Холла воздействию поля постоянного магнита в зависимости от того, проходит ли язычок или окно через датчик Холла. Для определения угла опережения зажигания металлический ротор будет иметь ряд выступов и окон одинакового размера, соответствующих количеству цилиндров двигателя. Это даёт однородный выходной сигнал прямоугольной формы, поскольку время включения и выключения (экранирование и экспонирование) одинаково. Этот сигнал используется компьютером двигателя или ЭБУ для управления моментом зажигания. Многие автомобильные датчики на эффекте Холла имеют встроенный внутренний NPN-транзистор с открытым коллектором и заземлённым эмиттером, что означает, что вместо напряжения, создаваемого на выходном проводе сигнала датчика Холла, транзистор включается, обеспечивая цепь для заземления через сигнальный выходной провод.
Определение скорости вращения колеса
Важное применение датчика Холла нашлось в антиблокировочных тормозных системах. Принципы работы таких систем были расширены и уточнены, чтобы предложить больше возможностей, чем функция противоскольжения. Теперь они обеспечивают расширенные улучшения управляемости автомобиля.
Некоторые типы вентильных электродвигателей постоянного тока используют датчики эффекта Холла для определения положения ротора и передачи этой информации на контроллер двигателя. Это позволяет повысить точность управления двигателем.
Приложения для измерения эффекта Холла также распространились на промышленные приложения, которые теперь используют джойстики на эффекте Холла для управления гидравлическими клапанами, заменяя традиционные механические рычаги бесконтактным датчиком. К таким приложениям относятся карьерные самосвалы, экскаваторы-погрузчики, краны, экскаваторы, ножничные подъемники и так далее.