Гидрология
наука, занимающаяся изучением природных вод, явлений и процессов, в них протекающих. Г., являясь наукой геофизической, тесно соприкасается с науками географических, геологических и биологических циклов. Предмет изучения Г. — водные объекты: океаны, моря, реки, озёра, водохранилища, болота, скопления влаги в виде снежного покрова, ледников, почвенных и подземных вод. Основные проблемы современной Г.: исследования круговорота воды (См. Круговорот воды) в природе, влияния на него деятельности человека и управление режимом водных объектов и водным режимом территорий; пространственно-временной анализ гидрологических элементов (уровня, расходов, температуры воды и др.) для отдельных территорий и Земли в целом; выявление закономерностей в колебаниях этих элементов. Основное практическое приложение Г. заключается в оценке современного состояния водных ресурсов, прогнозе их будущего состояния и в обосновании их рационального использования. В связи со специфическими особенностями водных объектов и методов их изучения Г. разделяется на океанологию (См. Океанология) (Г. моря), гидрологию суши (См. Гидрология суши), или собственно Г. (точнее, Г. поверхностных вод суши), гидрогеологию (См. Гидрогеология) (Г. подземных вод). Первоначально Г. развивалась как отрасль физической географии, гидротехники, геологии, навигации и как система научных знаний оформилась только в начале 20 в. Определение Г. как науки дал В. Г. Глушков (1915). В формировании Г. большую роль сыграло учреждение в 1919 Гидрологического института (См. Гидрологический институт) государственного. Современная Г. широко пользуется методами, применяемыми в географии, физике и др. науках, всё больше возрастает роль математических методов.Лит.: Глушков В. Г., Вопросы теории и методы гидрологических исследований, М., 1961; Калинин Г. П., Проблемы глобальной гидрологии, Л., 1968; Соколов А. А., Чеботарев А. И., Очерки развития гидрологии в СССР, Л., 1970; Чеботарев А. И., Общая гидрология (воды суши), Л., 1960. А. А. Соколов, А. И. Чеботарев.
Большая советская энциклопедия. — М.: Советская энциклопедия.
.
Смотреть что такое “Гидрология” в других словарях
Гидрология
изучает свойства гидросферы и ее
составляющих (водных
объектов)
– океанов и морей, рек, ледников, озер
и вод болот – и взаимод-я гидросферы с
окр. средой, а также процессов, в ней
происходящих. Г. – наука комплексная и
относится к циклу геогр. наук. На ранней
стадии развития ее подразделяли на
гидрологию
моря
(сейчас океанология)
и гидрологию
суши.
В задачу
океанологии
входит компл. изучение процессов,
протекающих в Мировом океане, изучение
свойств воды как среды обитания живых
организмов, установление взаимосвязи
между процессами в водах океана и
процессами в атмосфере, литосфере и
биосфере. Совр. физ.
океанология
объединяет конкретные дисциплины, из
которых основными являются: общая
океанология,
физика
моря,
региональная
океанология
и морские
прогнозы.
Г. суши
подразделяется на собственно г.
суши (общую)
и гидрографию.
Задача г.
суши –
изучение общих свойств водных объектов
суши, законов, управляющих происходящими
в них процессами, и общего взаимодействия
этих вод с окр. средой, включая и те
изменения, которые происходят под
влиянием деятельности человека.
Гидрография
суши
занимается изучением конкр. водных
объектов и вод отдельных территорий,
основываясь на общих закономерностях,
установленных собственно гидрологией.
Г. и гидрография суши подразделяется
на г. и гидрографию рек, озер, ледников
и болот. Изучение всех видов водных
объектов связано с разл. методами
наблюдений и измерений. Разработкой
этих методов занимается гидрометрия
– прикладной раздел гидрологии. Подземные
воды являются предметом изучения
гидрогеологии
– раздела геологии. Почвенные воды –
изучает почвоведение.
Вода атмосферы – метеорология
и климатология.
Однако, эти воды изучаются и в г. при
исследовании взаимодействия гидросферы
с другими сферами, круговорота воды и
формирования гидрологического режима.
Т.о., г. тесно связана с метеорологией и
климатологией, почвоведением и
гидрогеологией.
В г. применяются
экспедиционный,
стационарный и лабораторный
методы исследований. Экспедиционный
– комплексное обследование вод обширных
районов или гидрологических объектов
по специально разрабатываемым программам.
Этот метод позволяет исследовать
преимущ. те явления, которые, различаясь
в пространстве, медленно меняются во
времени. В наст. время в этом методе
широко прим-ся современные способы
измерения гидрологич. элементов: уровня,
течения, волнения, температуры воды,
ледовых явлений и др. Результаты
используют для региональных описаний
вод. объектов и позволяют судить о
гидрологических процессах, их структуре
и причинных связях. Недостатки: сезонность;
большие матер. затраты; отсутствие
динамики вод. режима. Стационарный
– для изучения динамики элементов
гидрологич. режима водных объектов во
времени. Систематические наблюдения
за показателями производятся с
гидрометеорологических станций,
обсерваторий и водомерных постов.
Преимущества: наблюдение срочное (в
одни и те же сроки); единая программа
ведения измерений; единая приборная
база. Недостатки: дискретность.
Лабораторный,
Математико-статистический, Дистанционного
зондирования.
наука, изучающая воды Земли, их свойства, распространение и протекающие в них процессы. Людей давно занимал вопрос, почему океаны не выходят из берегов, хотя реки постоянно выносят в них огромные массы воды. Когда выяснилось, что вода при нагревании может переходить из жидкого состояния в газообразное, стало очевидно, что под воздействием солнечного тепла нагревается поверхность океана и вода постоянно превращается в пар. Между тем и метеорология постепенно раскрывала причины изменений погоды. Стало известно, что дождь выпадает из облаков, а облака состоят из крошечных капелек воды или кристаллов льда. Наконец, происхождение облаков было соотнесено со скоплениями водяного пара в атмосфере, а описание гидрологического цикла – круговорота воды в природе (рис. 1) – стало краеугольным камнем гидрологии.
По сути, источником всех вод суши является океан. Молекула воды начинает свой путь в этом цикле, когда, получив несколько больше тепловой энергии по сравнению с соседними молекулами, преодолевает поверхностное натяжение жидкости и превращается в молекулу пара. Воздух, в который попадает молекула, вовлечен в процесс циркуляции, порожденный неравномерным нагреванием полярной и тропической зон, перепадами атмосферного давления и вращением Земли. Циркуляция атмосферы в Северном полушарии в целом направлена с запада на восток. Внутри воздушных масс происходит вертикальное движение воздуха, вызванное прежде всего нагреванием воздуха на контакте с более теплой поверхностью океана или суши. Нагретая таким образом отдельная частица расширяется, становясь менее плотной, чем частицы, находящиеся непосредственно выше нее, и благодаря большей подъемной силе, воздействующей на нее, устремляется вверх. Однако в соответствии с известным физическим законом расширение происходит за счет запаса тепла, и поэтому, поднимаясь, эта воздушная частица охлаждается до тех пор, пока температура не понизится до такой степени, что влага уже не сможет оставаться в газообразном состоянии и не произойдет конденсация пара. Крошечные капельки воды, взвешенные в атмосфере, образуют облака. При соответствующих условиях эти капельки сливаются вокруг ядер конденсации (кристаллов льда или пылинок), а достигнув веса, достаточного для преодоления сопротивления воздуха, падают на землю в виде дождя, снега или града. Когда частица воды вместе с наземным или подземным стоком попадает снова в океан, это означает, что она совершила полный круговорот в природе.
Осадки.
Измерение. Современный инструмент для измерения осадков – это автоматический плювиограф, непрерывно регистрирующий в графической форме количество, продолжительность и интенсивность атмосферных осадков. Используются также дождемеры, улавливающие осадки. Там, где снег выпадает нерегулярно и в небольшом количестве, применяются те же приборы, что и для измерения жидких осадков. В горных областях устанавливаются емкости-ловушки, аккумулирующие снег иногда в течение всего холодного сезона. Попадая в емкость, снег тает под воздействием концентрированного солевого раствора. Количество выпавшего снега измеряется также при помощи снегомерной трубки, которой берут снежный керн. Для определения эквивалентного слоя воды этот керн взвешивается.
Типы. Интенсивность и количество осадков зависят от содержания воды, а также от скорости и амплитуды охлаждения воздуха. Выделяются два основных типа осадков. Первый – это осадки, выпадающие на обширной территории в результате циклонической деятельности; их можно подразделить на фронтальные и нефронтальные. Первые формируются, когда теплый воздух поднимается над холодным, вторые – когда происходит горизонтальная конвергенция и поднимающийся воздух перетекает в область низкого давления. Осадки второго типа выпадают на меньшей территории и представляют собой более интенсивные грозовые ливни, при которых более теплый воздух нижних слоев быстро выносится вверх сильными конвективными течениями. Осадки конвективного типа могут быть одной из стадий циклона, и оба типа осадков могут усиливаться за счет дополнительного подъема воздуха над высокими формами рельефа.
Распределение во времени. Дожди циклонического типа умеренной или слабой интенсивности могут продолжаться несколько суток. Такие дожди – благо для фермеров, так как бóльшая часть осадков впитывается в землю и способствует росту растений. Однако, когда контраст во влагосодержании и температурах между соседними воздушными массами крайне велик или конвекция протекает особенно активно, дождь выпадает с такой интенсивностью, что бóльшая часть воды скатывается по поверхности грунта прямо в реки, часто захватывая при этом большое количество плодородного гумуса. Русла оказываются не способными вместить и пропустить весь объем воды в столь короткие сроки, и реки выходят из берегов. В результате происходят разрушительные наводнения.
Пространственное распределение. Паводок обычно следует непосредственно за ливнем. В среднем слой выпавших дождевых осадков уменьшается с увеличением площади территории, над которой они выпадают, а также с удалением от центра циклона. В горах структура дождя, изображаемая в изогиетах (линиях равной величины осадков), зависит от распределения высот, экспозиции отдельных склонов и крупных форм рельефа.
Снег. Когда водяной пар конденсируется при температурах значительно ниже 0° С, формирующиеся кристаллы льда при определенных условиях объединяются и падают на землю в виде снежинок. Плотность свежевыпавшего снега варьирует в широких пределах. На востоке США снег рассматривается как рекреационный фактор, однако, если таяние снега предшествует ливневым дождям или происходит одновременно с ними, он также существенно влияет на формирование паводков. На западе США снег является источником воды, использующейся для ирригации, выработки электроэнергии и водоснабжения городов и поэтому играет важную роль в хозяйственной жизни страны. Там, начиная с высоты ок. 2150 м, формируется устойчивый снежный покров, который держится с октября по март. Выше 3000 м его мощность бывает более 6 м.
Испарение. Преобразование воды в пар представляет собой важный энергетический переход в непрекращающемся круговороте воды в природе. Этот процесс происходит почти непрерывно в результате испарения со всех водных поверхностей и влажной почвы и транспирации растениями. Количественная оценка испарения обычно выполняется косвенным путем.
При идеальных условиях испарение с поверхности озера можно определить путем измерения суммарного поступления в него воды, стока из него и аккумулировавшейся воды. При этом предполагается, что остаточная составляющая баланса, необходимая для сохранения равновесия системы, соответствует испарению. Такой метод обычно неудовлетворителен, так как невозможно точно оценить прочие элементы водного баланса, например просачивание воды в грунт. Близкий подход, называемый методом энергетического баланса, заключается в измерении поступающей тепловой энергии, отдаваемой озером и накопленной в нем. Надежность этого метода повышается благодаря огромному количеству тепловой энергии, затрачиваемой на испарение воды (скрытой теплоты парообразования).
Транспирация пышной зеленой растительностью, образующей сплошной покров и в достатке получающей влагу, почти равна испарению с поверхности соседних озер. Если вода, извлеченная из почвы и затраченная на транспирацию, не восполняется за счет осадков или орошения, почва начинает иссушаться, скорость транспирации падает, и, наконец, растения увядают из-за дефицита воды. Таким образом, в годовом осреднении транспирация в районах с достаточным увлажнением несколько меньше, чем испарение с открытой водной поверхности, а в аридных районах она ограничена количеством осадков.
Поверхностный сток формируется, когда дождь выпадает или снег тает со скоростью, превышающей скорость просачивания воды в грунт. Сначала вода заполняет небольшие углубления на поверхности земли, которые, переполнившись, сливаются вместе и образуют промоины и ручейки, продолжающие сливаться, расширяться и превращаться в ручьи и реки, на которых может быть измерен сток.
Питание водотоков осуществляется двумя путями: дождевой или талой снеговой водой, которая стекает с поверхности, и водой, поступающей со дна русла и из бортов долины. Последний источник включает: 1 – воды, поступающие с ливнями на поверхность почвы неподалеку от русла, просачивающиеся в нее и быстро перемещающиеся на небольшой глубине в направлении русла, а при достижении его смешивающиеся с поверхностным стоком, и 2 – воды, просачивающиеся вглубь и достигающие уровня грунтовых вод, имеющих выход в глубокие долины, секущие такие водоносные горизонты. Первый из названных подтипов – внутрипочвенный ливневый сток – не может быть измерен отдельно от поверхностного стока. Второй подтип, называемый грунтовыми водами, поддерживает существование водотоков в периоды, когда осадки не выпадают.
Гидрографы. Графическое изображение изменений уровня воды в данном створе водотока за определенный промежуток времени называется гидрографом. Если подъем уровня воды приводит к затоплению берегов, такой гидрограф называют гидрографом паводка (рис. 2).
Инфильтрация. Часть атмосферных осадков, которая просачивается в грунт, подчиняется воздействию двух сил: силы тяжести и силы молекулярного притяжения между частицами грунта и водой. В целом, эти силы противостоят друг другу. Вода, обволакивающая частицы грунта, т.н. гигроскопическая вода, или влажность почвы, играет важную роль в поддержании жизнедеятельности растений. Вода, прокладывающая себе путь вниз по порам между частицами почвы, в конце концов достигает наземных водотоков или уровня грунтовых вод. Если зеркало грунтовых вод располагается ниже русла потока, то на поверхность они могут быть выведены либо в результате откачивания насосами из скважин, либо через артезианские источники и родники, если создается достаточное гидростатическое давление.
Капиллярное поднятие воды. Если открытый конец трубки, заполненной сухим песком, погрузить в сосуд с водой, то вода в ней поднимется несколько выше уровня жидкости в сосуде. Если в трубку помещать разные грунты, высота, на которую поднимается вода, будет зависеть от их физических свойств (размерности частиц, пористости и пр.). Такой подъем уровня воды, противоположный направлению силы тяжести, является суммарным результатом действия трех сил: молекулярного притяжения между частицами грунта и водой, поверхностного натяжения воды и способности воды противостоять силам, стремящимся разъединить их. Таким образом, иссякшие запасы почвенной влаги компенсируются капиллярным поднятием воды из горизонтов, расположенных ниже корнеобитаемой зоны, которое зависит от размерности почвенно-грунтовых частиц и глубины залегания грунтовых вод.
Грунтовые воды. Их движение зависит от скорости фильтрации воды в рыхлых отложениях, сквозь которые они текут, и некоторых физических свойств этих отложений (в особенности гранулометрического состава, т.е. количественного соотношения частиц разного размера), перепада высот между вершиной и устьем водоносного горизонта и его протяженности. Эти взаимосвязи могут быть выражены простейшими математическими формулами.
Прикладное значение гидрологии. Гидрология как прикладная наука получила развитие в связи с насущными хозяйственными задачами. Она занимается рациональным использованием и охраной поверхностных и грунтовых вод, прогнозом паводков, оценкой водных ресурсов и другими проблемами.
Чеботарев Н.П. Учение о стоке. М., 1962
Великанов М.А. Гидрология суши. М., 1964
Железняков Г.В. Гидрология и гидрометрия. М., 1981
Кто и как изучает самое удивительное вещество планеты
Первый опыт молодых гидрологов – промерные работы на полигоне в Сатино
Гидрология — наука, изучающая природные воды, явления и процессы, в них протекающие в пределах гидросферы. По исследуемым объектам делится на океанологию и гидрологию суши. В каждом объекте изучаются: водный режим и водный баланс, динамика водной массы и ложа, тепловые процессы и агрегатные состояния воды. Исследует круговорот воды в природе, влияние на него деятельности человека, управление режимом водных объектов и водным режимом отдельных территорий Земли в целом. Даёт оценку и прогноз состояния и рационального использования водных ресурсов.
Гидрология суши — раздел гидрологии, занимающийся исследованием гидрологических процессов, протекающих в пределах материков, с упором на континентальную фазу водного цикла.
(Четырёхъязычный энциклопедический словарь терминов по физической географии. Издательство “Советская энциклопедия”. Москва. 1980. Составитель: профессор И.С. Щукин, под редакцией профессора А.И. Спиридонова)
Работа на озёрах в Валдайском национальном парке
— Наталья Леонидовна, роль воды в возникновении жизни на Земле можно назвать решающей. Без гидросферы не появилась бы ландшафтная оболочка, без водотоков и водоёмов не состоялась бы человеческая цивилизация. Получается, что гидрология — самая важная часть географии? Насколько это древняя наука?
— Прежде чем говорить о гидрологии как о науке, надо сказать несколько слов о том, что мы изучаем, о роли воды и водных объектов в формировании географической оболочки Земли, в нашей жизни. Эта роль чрезвычайно велика. Вода образует океаны, моря, озёра, реки, ледники, находится в виде пара в атмосфере, проникает в почву и горные породы литосферы. Она — не только важный компонент многих ландшафтов, но и активный геологический и географический фактор. Благодаря своей подвижности вода играет важнейшую роль в обмене веществом и энергией между геосферами и различными географическими районами. Универсальная роль воды в природе объясняется её уникальными, аномальными физическими и химическими свойствами. Это единственное вещество, существующее на нашей планете в трёх агрегатных состояниях. Его особенности определяют многие характеристики климатических, метеорологических и геоморфологических процессов на Земле.
Студенты-гидрологи на беломорских озёрах
Вода также была и всегда будет самым важным природным ресурсом для человека. Она — необходимое средство жизнедеятельности. Мы пьём воду, вода входит в состав продуктов питания. Она же — источник энергии, необходимое условие существования сельского хозяйства, водного транспорта, многих отраслей промышленности, рыбного и коммунального хозяйства, отдыха и туризма. Вода действительно пронизывает всю жизнь человечества, нехватка воды — тяжкое бедствие. Её наличие — непременное условие поддержания экологического равновесия и биоразнообразия в водных объектах и на суше. С ростом населения планеты и неуклонным расширением хозяйственной деятельности растёт и потребность в воде. Одновременно с этим увеличивается и значение гидрологических знаний.
Наука, изучающая воды суши, впервые была названа гидрологией в конце XVII века в Германии. Как научная дисциплина она обособилась в 1674 году с появлением книги брата известного сказочника Шарля Перро — Пьера. Его работа “О происхождении источников” стала результатом исследований во время сооружения водопровода в Лувре. Автору потребовалось определить количество воды в Сене. Пользуясь современными терминами, он должен был измерить расход воды в этой реке. Перро решил задачу. Он определил количество осадков и величину испарения в бассейне реки, а затем вычел из первой величины вторую. По сути — решил основное уравнение водного баланса в природе, хотя официально это уравнение будет записано австрийским исследователем Пенком лишь 200 с лишним лет спустя — в 1896 году.
Конечно, гидрология имеет гораздо более длинную историю и считается одной из древнейших наук в истории человечества. Ещё шесть тысяч лет назад жрецы Древнего Египта наблюдали за уровнем воды в Ниле и оставляли зарубки на скалах и ступеньках, фиксируя уровни во время разливов. Уже тогда существовала своеобразная сеть станций гидрометрических наблюдений — так называемых ниломеров, расположенных вдоль русла реки. До нас дошла только часть результатов этих наблюдений продолжительностью в 1250 лет.
Вот и выходит, что среди наук о Земле гидрология, безусловно, одна из древнейших. Её развитие шло по пути постепенного накопления знаний, организации наблюдений за режимом водных объектов, обобщения эмпирических фактов. Уже потом были сформулированы основы гидрологической теории. Поначалу наша наука развивалась как отрасль физической географии, гидротехники, геологии, навигации. Как система научных знаний она оформилась только в начале XX века.
Роль гидрологии в жизни человека, часто недооцениваемая, исключительна. И это обусловлено не какими-то особыми достоинствами гидрологов, а вполне объективными обстоятельствами — уникальными свойствами воды как химического вещества, являющегося главным компонентом всего живого и той среды, в которой мы способны обитать.
Гидрологи работают на леднике Джанкуат
— Какое место гидрология занимает в системе географических наук? Как она связана с другими естественными науками?
— Гидрология, безусловно, является фундаментальной наукой. Она изучает природные воды Земли и процессы, которые в них происходят при взаимодействии с атмосферой, литосферой и биосферой, учитывая при этом влияние хозяйственной деятельности человека. Поэтому гидрология занимает важное место среди других геофизических наук, наук о Земле, наук, имеющих отношение к трём основным “геосферам” — литосфере (геология), атмосфере (метеорология), гидросфере (океанология и гидрология). В гидрологии можно выделить два направления — географическое и геофизическое. Первое изучает водные объекты, закономерности изменения их вод по территории и во времени. Геофизическое направление акцентирует своё внимание на физических процессах, связанных с водой в атмосфере, литосфере и, разумеется, в гидросфере.
Также гидрология является и практической дисциплиной, источником информации и технологий, обслуживающих сферу экономики, связанную с водным хозяйством. Постоянно растёт её значение при научном обосновании строительства и экологическом проектировании, правильном природопользовании, охране окружающей среды. Другая важная область приложения — прогнозы речного стока и опасных гидрологических явлений, таких как наводнения, маловодья, селевые потоки, размывы берегов, загрязнение территорий.
Часто гидрологию считают частью физической географии. Является ли она самой важной её частью? Когда мы учились на географическом факультете, философию нам читал Валентин Сергеевич Лямин. Он развил теорию Григорьева о так называемой географической форме движения материи. Сейчас уже мало кто об этом помнит. Так вот, в её основе, насколько я помню, лежит взаимодействие гидросферы и атмосферы. В тепловлагообмен между этими двумя сферами вовлекаются верхние слои литосферы. Это согласуется с распространённым представлением в науке о трёх основных объектах географии — климате, стоке, рельефе. Поэтому самыми важными будем считать гидрологию и метеорологию. Ну и потом геоморфологию, конечно.
Изучение озёр зимой – непростое занятие. Валдай
Гидрология тесно связана с другими физико-географическими дисциплинами — метеорологией и климатологией, геоморфологией, гляциологией, картографией и прочими. Эта связь отражает единство природы, которое проявляется во взаимной зависимости всех компонентов природной среды, а вода — один из главных её элементов. Связь земных вод и других компонентов природной среды обоюдная, поэтому и соответствующие науки тесно взаимосвязаны. Так, с одной стороны, метеорология и климатология позволяют объяснить многие гидрологические явления (дождевые паводки, накопление снега и льда в ледниках, ветровые течения в морях и другие). Но с другой стороны, гидрология помогает метеорологам и климатологам изучать процессы в атмосфере как результат взаимодействия с водными объектами. Точно так же тесно взаимодействуют гидрология и геоморфология, например, при изучении формирования речных долин и русел, оврагов, морских берегов, речных дельт.
Связана гидрология и с другими естественными науками — геологией, биологией, почвоведением, геохимией. Гидрология не может продуктивно развиваться без опоры на фундаментальные науки — физику, химию, математику. К нашей науке тесно примыкают такие разделы физики, как гидрофизика, гидромеханика и гидравлика, термодинамика. В основе многих гидрологических закономерностей — строгие физические законы. Без использования достижений соответствующих разделов физики познать их не получится. Гидрохимия как раздел гидрологии широко использует законы взаимодействия химических веществ и методы химического анализа. Таким образом, гидрология связана и с химией. Сразу в нескольких направлениях идёт использование в гидрологии математики и информатики — широко применяются методы математической обработки данных наблюдений. Применение физических законов в гидрологии требует строгих формулировок и использования математического моделирования. Наконец, создание баз данных и обработка результатов наблюдений опирается на информатику.
При проведении измерений и наблюдений, обработке их результатов (в том числе и дистанционных) широко используют технические достижения. Это значит, что гидрология связана и с такой областью человеческих знаний, как техника. При этом развитие некоторых областей техники (гидротехнического строительства на реках и морях, мелиоративных и других мероприятий) не может обойтись без использования гидрологических знаний. В рамках новой дисциплины начала развиваться и гидроэкология, изучающая водные экосистемы — совокупность водной среды, водных организмов и человеческого общества.
Гидрологи на реке под Норильском
— Какие основные научные дисциплины изучают студенты в процессе обучения на кафедре гидрологии суши? Что нужно знать и уметь настоящему гидрологу?
— На первом курсе студенты географического факультета слушают общую гидрологию, метеорологию, топографию, геоморфологию с основами геологии, землеведение, ландшафтоведение, почвоведение, биогеографию, экономическую географию. Немало времени отводится и на высшую математику. Специализация на геофаке МГУ начинается со второго курса — именно тогда студенты становятся гидрологами. И здесь большое внимание уделяется различным математическим дисциплинам, физике, гидромеханике, гидравлике, программированию. В этом плане мы очень похожи с метеорологами и океанологами. Наши студенты получают фундаментальное образование. Одновременно им читают специальные курсы — гидрологию рек, гидрологию озёр и водохранилищ, устьев рек, болот, гидрогеологию, гидрометрию и технику безопасности, гидрохимию, гидравлику, гидромеханику, воднотехнические изыскания, гидрологические расчёты, гидрологические прогнозы, русловые процессы, гидрофизику, водохозяйственные расчёты, водную экологию и многое-многое другое. Студенты-гидрологи изучают теорию вероятности и математическую статистику, численные методы анализа и оптимизации, математическое моделирование, много внимания уделяется освоению ГИС-технологий.
Полученные знания позволяют будущим специалистам работать как в научных, так и производственных организациях. Хотя, конечно, в первую очередь, мы готовим студентов для научной деятельности. Уже со второго и третьего курсов они вовлекаются в научную работу. Это не только выполнение традиционных курсовых работ, но и участие в научных исследованиях кафедры, грантах РФФИ и РНФ, различных проектах, в том числе международных. Окончив университет, многие уже имеют публикации в различных научных журналах, часто выступают на научных конференциях. Значительная часть студентов остаётся для дальнейшего обучения в аспирантуре.
Карта экспедиций кафедры гидрологии суши географического факультета МГУ в 2019 году
— Как студенты совершенствуют полученные знания в полевых условиях? В какие экспедиции ездят, где проходят учебные практики? Какие самые интересные места удаётся посетить будущим гидрологам?
— Профессия гидролога даёт богатые возможности непосредственного изучения водных объектов в полевых условиях, позволяет ездить в очень интересные экспедиции. Без получения новых данных о водных объектах развитие гидрологии невозможно. Новые приборы, технологии обеспечивают уникальную информацию для дальнейшего анализа. Для учёного-географа год делится на две части — “поле” и “камералку”. Навыки лабораторной и камеральной работы студенты получают в университетских аудиториях. А вот для полевой деятельности нужна особая подготовка. Она начинается на практике в Сатино на полигоне географического факультета МГУ уже после первого курса.
По окончании второго курса студенты отправляются на Оку, где учатся работать на крупной равнинной реке. Здесь они осваивают методики измерений основных гидрологических характеристик. Практика по лимнологии (озёроведению) проходит на учебной станции на берегу Можайского водохранилища в Красновидово. Это подготовка к работе на крупных пресноводных водоёмах. Тут студенты также получают навыки проведения гидрохимических и гидробиологических анализов. Есть ещё и практика по горной гидрологии. Она традиционно проводится в разных местах — это Кузнецкий Алатау, Восточный Саян, Камчатка, Горный Алтай, Приэльбрусье и Безенги на Кавказе. Побывали студенты и на научно-учебных станциях Мюнхенского университета в Цугшпице в Альпах и Стокгольмского университета в Тарфале. Незабываемая практика была и на Тянь-Шане в Киргизии. Во многом благодаря этим практикам у нас стало развиваться направление горной гидрологии и гидрологии ледников, когда-то начатое профессором Геннадием Николаевичем Голубевым.
География и направленность производственных практик после третьего курса очень широки. К этому моменту студенты уже пишут курсовые и дипломные работы, поэтому выбирают регионы, соответствующие собственным научным интересам. Тут — и устья арктических рек, Камчатка и Командоры, великие сибирские реки, Байкал, Ладога и многое-многое другое. Нельзя не сказать ещё про одну замечательную традицию — зимние научно-студенческие экспедиции. По мнению их участников, это лучшие дни студенческой жизни, наполненные интересной работой, чудесными пейзажами, морозом, солнцем, снегом и прекрасными людьми. Стараемся, чтобы эти экспедиции кроме приобретения опыта работы в зимних, часто очень непростых условиях, имели большое научное значение. Белое и Баренцево море, Валдай и Крым, Великий Устюг и Урал, Кавказ и Дальний Восток, Селенга и Хибины, Забайкалье и Подмосковье — такова география наших незабываемых поездок.
Измерение расходов воды в истоке Верхней Терси (Кузнецкий Алатау). Практика 2-го курса
— Какими собственными, особенными инструментами и методами пользуются гидрологи чаще всего в полевой работе и камеральных исследованиях?
— Современная гидрология располагает большим арсеналом методов, взаимно дополняющих друг друга. Классическим методом получения информации остаётся сбор полевых данных во время экспедиций и экспериментальных работ, статистическая обработка данных сетевых наблюдений. Более разнообразную и новую информацию помогают получить современные приборы и технологии. Сейчас широко применяются дистанционные методы наблюдения и измерения с помощью локаторов, аэрокосмической съёмки, автоматических гидрологических постов на реках. Огромные возможности открывает использование авиации и космических аппаратов. Снимки спутников позволяют вести наблюдения за тем, как замерзают и вскрываются реки, за разливами и наводнениями, ледяными заторами, состоянием ледников и снежного покрова. По ним мы можем определять мутность и температуру воды, фиксировать цветение водоёмов и многое другое. Вовсю внедряются в нашу жизнь беспилотные аппараты.
В научную и учебную деятельность широко внедряются компьютерные технологии. Создаются электронные каталоги водных объектов, различные базы данных, разрабатываются новые и совершенствуются существующие средства и методы гидрологических расчётов и особенно гидрологических прогнозов. И в этом участвуют наши преподаватели и студенты. Во многих случаях исследования завершаются теоретическим обобщением и анализом. В гидрологии теоретические методы основаны на законах физики и географических закономерностях изменений гидрологических характеристик в пространстве и времени. Среди этих методов на первый план выходят математическое и имитационное моделирование, машинное обучение, системный анализ, гидролого-географические обобщения и геоинформационные технологии.
В последние годы много исследований проводится на стыке наук — гидрологи всегда тесно сотрудничали с метеорологами и океанологами, сейчас это сотрудничество ещё больше расширилось. Климатические модели, базы данных, общие объекты, часто уникальные — всё это позволяет сделать гидрологические исследования более глубокими и содержательными. Много интересных работ над созданием специальных программ и веб-приложений ведётся с картографами. Эти разработки позволяют получить самые разнообразные данные о водных объектах. Примером может служить проект “Комплексное исследование и картографирование современного водного режима рек европейской территории России и его опасных проявлений”.
Экспедиция кафедры гидрологии в устье Колымы. 2019 год
Сотрудничество с астрономами из ГАИШ МГУ в области космической гравиметрии позволило существенно продвинуться в использовании данных спутников GRACE, что позволяет оценить изменчивость запасов влаги в планетарном масштабе. Очень важны исследования вместе с эконом-географами по оценке рисков и величины ущерба опасных гидрологических явлений, например наводнений, для некоторых рек России. Очень интересной темой на стыке политики, истории, экономики и гидрологии является исследование трансграничных водных объектов, где переплетаются интересы многих стран в области использования водных ресурсов. “Водные войны” — это уже реальность нашего времени. Гидрологи всегда тесно сотрудничали и с биологами. Благодаря этому сотрудничеству у нас появились новые данные об особенностях озёр в прибрежной зоне морей — меромиктических водоёмов. Вместе с геохимиками мы изучаем потоки вещества в бассейне Селенги и многих больших арктических рек. Этот список можно продолжать ещё долго.
— Кем может стать студент-гидролог, когда окончит Московский государственный университет? В каких сферах деятельности он сможет применить полученные знания и умения?
— Многие выпускники поступают в аспирантуру и успешно защищают кандидатские диссертации, часть остаётся работать на кафедре и других подразделениях факультета. Спрос на гидрологов остаётся довольно высоким, всё время поступают просьбы о направлении выпускников на работу в различные организации, связанные с изучением водных объектов. Это, конечно, академические институты, в первую очередь Институт водных проблем РАН, Институт географии РАН, Росгидромет и его подразделения — Гидрометцентр России и Государственный океанографический институт. Возможностей трудоустроиться очень много — подразделения Федерального агентства водных ресурсов, Министерство природных ресурсов, управления водных путей, инженерной защиты, эксплуатации гидротехнических сооружений и другие организации. Множество крупных и небольших фирм занимаются инженерными изысканиями в различных регионах России, поэтому география работ охватывает практически всю страну. Востребованность гидрологов высшей квалификации в настоящее время очень большая и в будущем будет только увеличиваться.
Определение расхода методом ионного паводка на Камчатке
— Какие самые важные исследования провели сотрудники кафедры за время её существования, какие наиболее значимые открытия сделали?
— В 2024 году нашей кафедре исполнится 80 лет. Труд многих поколений её сотрудников и преподавателей воплотился во множестве открытий, теорий, научных монографий, сотнях, если не тысячах статей, разработанных методиках расчётов и прогнозов, которые используются при решении различных практических задач. Перечислить всё в нескольких абзацах текста просто невозможно.
В первые годы своей деятельности кафедра принимала участие в создании крупнейших ГЭС, выполняя гидрологические наблюдения при перекрытии Днепра и Волги, Ангары и Оби. В этих работах участвовали и студенты. Комплекс гидрологических изысканий, выполненных сотрудниками кафедры, был использован при проектировании строительства метромоста и набережной Москвы-реки в районе Ленинских гор. Регулярные гидрологические, гидрохимические и гидробиологические исследования кафедры на Можайском водохранилище и других водоёмах и водотоках, в первую очередь Вазузско-Москворецкой системы водоснабжения Москвы, помогли повысить эффективность использования питьевых водохранилищ столицы. Наши гидрологи проводили полевые исследования практически во всех регионах Советского Союза, а потом и России.
Производственная практика на Байкале. 2009 год
Многие открытия и теории связаны с очень яркими личностями, выдающимися учёными, работавшими на кафедре. Иван Васильевич Самойлов и Борис Александрович Аполлов формировали науку об устьевых процессах. Евгений Варфоломеевич Близняк был лидером в развитии прикладной гидрологии. Участие специалистов кафедры в решении наиболее сложных и актуальных хозяйственных задач — гидротехническое строительство, питьевое и промышленное водоснабжение — связано с его именем. Исследования профессора, заведующего кафедрой Геннадия Павловича Калинина внесли большой вклад в теорию формирования стока весеннего половодья и дождевых паводков, в развитие методов гидрологических прогнозов, развитие теории глобальной и космической гидрологии, палеогидрологии, глобального влагооборота, долгосрочного прогнозирования гидрологического режима различных водных объектов.
Изучение гидрологических процессов в устьях рек получило новое развитие на кафедре благодаря профессору Вадиму Николаевичу Михайлову. Вместе с Научно-исследовательской лабораторией эрозии почв и русловых процессов географического факультета, руководил которой Роман Сергеевич Чалов, проводились масштабные исследования гидрологического и руслового режима устьев Терека, Сулака, Пура, Таза, Енисея, Лены, Яны, Индигирки, Волги, Амударьи и других рек. Их результатом стала серия крупных монографий по устьям рек. Крупным научным достижением стала подготовка под руководством профессора Чалова карты “Русловые процессы на реках СССР” в 1990 году. Мы очень гордимся нашими русловиками и их многочисленными достижениями. Не могу здесь не вспомнить Николая Ивановича Алексеевского, в течение 20 лет возглавлявшего кафедру и сумевшего сделать её одной из лучших на факультете.
Всё перечислить очень трудно, но самое главное достижение кафедры — подготовка более 1200 высококвалифицированных специалистов в области научной и практической гидрологии, инженеров, учёных, руководителей академических институтов и лабораторий, изыскательских партий. Мы очень гордимся всеми! Ещё одно важное дело — создание учебников и учебных пособий. Нашими изданиями пользуются при подготовке гидрологов и географов во многих университетах и учебных заведениях России.
Заведующая кафедрой гидрологии суши, профессор Наталья Фролова
— Что, на ваш взгляд, самое важное и интересное в профессии гидролога?
— Мне очень нравятся слова Юрия Борисовича Виноградова, огромного энтузиаста и замечательного учёного-гидролога. Я бы ими и ответила на этот вопрос: “Это очень интересная и достойная наука, приносящая обществу и государству великую пользу. Перед гидрологом, который сумеет объединить в своей личности способности экспериментатора, полевика-экспедиционника, теоретика, творца математических моделей, инженера-проектировщика, открываются поистине безграничные возможности в служении своей науке”. Добавим ещё любовь к природе и нашим прекрасным водным объектам!
С Натальей Фроловой беседовал Александр Жирнов.
Возврат к списку
Версия для печати
Гидрология
(буквально – наука о воде) занимается
изучением природных вод, явлений и
процессов, в них протекающих, а также
определяющих распространение вод по
земной поверхности и в толще почво-грунтов,
закономерностей, по которым эти явления
и процессы развиваются.
Гидрология
относится к комплексу наук, изучающих
физические свойства Земли, в частности,
ее гидросферы. Предметом
изучения гидрологии
являются водные объекты: океаны, моря,
реки, озера и водохранилища, болота и
скопления влаги в виде снежного покрова,
ледников, почвенных и подземных вод.
Всестороннее
изучение гидрологических процессов
должно
предусматривать, с одной стороны,
исследование вод как элемента
географического ландшафта, а с другой
– установление физических закономерностей,
которым подчиняются гидрологические
процессы. Воды поверхности Земли
(океанов, морей, рек, озер, болот, ледников),
ее воздушной оболочки (атмосферы) и
находящиеся в земной коре тесно связаны
между собой. Поэтому ряд вопросов,
относящихся к деятельности воды на
земном шаре, одновременно рассматривается
гидрологией, метеорологией, геологией,
почвоведением, геоморфологией, географией
и другими науками, изучающими атмосферу
и литосферу. В гидрологических
исследованиях широко используются
выводы физики, гидравлики и гидродинамики.
Так как процессы, совершающиеся в морях
и океанах, существенно отличаются от
процессов, происходящих в реках, озерах
и болотах, это определяет различие в
методах их исследований и позволяет
выделить гидрологию
моря
и гидрологию
суши.
Гидрологию моря чаще называют океанологией
или океанографией, сохраняя термин
«гидрология» за гидрологией суши. В
зависимости от объектов
исследования
можно различать:
4)
гидрологию подземных вод;
По
методам
исследования
гидрология суши включает в себя:
1)
гидрографию, дающую общее описание
водных объектов (географическое
положение, размеры, режим, местные
условия);
2)
гидрометрию, изучающую методы определения
и измерения характеристик водных
объектов;
3)
общую гидрологию, изучающую физическую
сущность и закономерности гидрологических
явлений;
4)
инженерную гидрологию, разрабатывающую
методы гидрологических прогнозов и
расчетов
характеристик гидрологического режима.
Инженерная
гидрология
– раздел гидрологии:
–
занимающийся методами расчета и прогноза
гидрологических режимов; и
–
связанный с практическим применением
гидрологии при решении инженерных
задач.
Из истории гидрологии
Название
науки о воде – гидрология – образовано
из двух греческих слов: «гидро» – вода
и «логос» – знание, наука.
Первые
зачатки гидрологии появились на заре
истории человечества, около 6000 лет
назад, в Древнем Египте. В то время, когда
на территории современной Финляндии и
Карелии, возможно, кое-где еще таяли
остатки льдов последнего периода
оледенения, египетские жрецы вели
простейшие гидрологические наблюдения
– отмечали на скалах в 400 км выше Асуана
уровни воды в периоды ежегодных разливов
Нила. Позднее в Древнем Египте была
создана целая сеть (около 30) «гидрологических»
постов на Нижнем Ниле, так называемых
ниломеров. Некоторые ниломеры представляли
собой богатые архитектурные сооружения:
мраморные колодцы в русле реки с красиво
украшенной каменной колонной посредине,
на которой отмечали высоту подъема
половодья. Сохранился самый длительный
в мире ряд гидрологических наблюдений
– за 1250 лет – по одному из таких ниломеров,
расположенному на острове Рода близ
Каира. По высоте уровня воды во время
половодья Нила жрецы определяли будущий
урожай и заблаговременно назначали
налоги.
Однако
понадобилось несколько тысячелетий
для того, чтобы гидрология, начавшаяся
с наблюдений за половодьем Нила,
превратилась в самостоятельную научную
дисциплину. Важным рубежом в истории
развития гидрологии стал конец XVII в.
Французский ученый П. Перро, а после
него Э. Мариотт, измерив величину осадков
и стока в бассейне Верхней Сены, установили
количественные соотношения главных
элементов водного баланса речного
бассейна – осадков и стока, опровергнув
господствовавшие в то время фантастические
представления о происхождении рек,
источников и подземных вод. В этот же
период английский астроном Э. Галлей
на основании опытов по измерению
испарения показал на примере Средиземного
моря, что испарение с поверхности моря
значительно превышает приток речных
вод в него, и тем самым «замкнул» схему
круговорота воды на земном шаре.
Организация
Объединенных Наций по вопросам,
образования, науки и культуры (ЮНЕСКО)
отметила в 1974 г. на международной
гидрологической конференции в Париже
трехсотлетие научной гидрологии,
приурочив этот юбилей к трехсотлетней
годовщине выхода в свет книги П. Перро
«О происхождении источников» (Париж,
1674), в которой автор приводит результаты
своих подсчетов водного баланса.