Преобразователь давления жидкости

Преобразователь давления жидкости Анемометр
Содержание
  1. Преобразователь давления. Общая информация
  2. Преобразователи избыточного давления
  3. Преобразователи абсолютного давления
  4. Преобразователи вакууметрического давления (разряжения)
  5. Преобразователи гидростатического давления (гидростатические уровнемеры)
  6. Конструкция преобразователей давления
  7. Типы сенсоров
  8. Тонкопленочные сенсоры на стальной мембране
  9. Керамические тензорезистивные сенсоры
  10. Кремниевые тензорезистивные сенсоры
  11. Датчики давления. Правила выбора
  12. Особенности применения датчиков давления
  13. В целом все применения преобразователей давления можно разделить на две основные группы
  14. Температура процесса
  15. Тип соединения датчика с процессом
  16. Параметры окружающей среды
  17. Требуемая точность измерений
  18. В качестве примера, рассчитаем полную погрешность измерений для следующей системы
  19. В зависимости от конструктивных исполнений сенсора (чувствительного элемента) выделяют датчики (или преобразователи) давления
  20. Преобразователи давления (датчики давления)
  21. Определения и основные характеристики преобразователей (датчиков) давления
  22. Виды измеряемого давления и его преобразователей (датчиков)
  23. По конструктивному исполнению чувствительного элемента (сенсора) различают преобразователи давления
  24. Погрешность измерения и класс точности преобразователей (датчиков) давления
  25. Выходные сигналы преобразователей (датчиков) давления
  26. Условия эксплуатации датчиков-преобразователей давления
  27. Параметры энергетического питания датчиков-преобразователей давления
  28. Способы монтажа и присоединения датчиков-преобразователей давления
  29. Дополнительная информация о датчиках/преобразователях давления и принципах их действия
  30. Конструкция и принципы действия преобразователя давления
  31. Методы регистрации сигналов преобразователей давления
  32. Определения, разъяснения и понятия о преобразователях

Преобразователь давления. Общая информация

Преобразователь давления — измерительный прибор, предназначенный для непрерывного измерения давления различных сред и последующего преобразования измеренного значения в унифицированный выходной сигнал по току или напряжению. Преобразователи давления часто называют датчиками давления. Давление определяется как единица силы создаваемая на единицу площади поверхности. В системе СИ единицей измерения давления является Паскаль (Па). Один Паскаль равен силе в один Ньютон, приложенной на площадь в один квадратный метр (Па = Н / м²).

В зависимости от вида измеряемого давления, преобразователи давления делятся на несколько видов.

Преобразователи избыточного давления

Преобразователь давления жидкости

Рисунок 1 — Датчик давления общепромышленный PTE5000

Данные преобразователи измеряют давление, создаваемое какой-либо средой относительно атмосферного давления. Этот тип преобразователей давления является самым распространенным и применяется практически во всех отраслях промышленности: ЖКХ, энергетика, водоподготовка, водоочистка, системы отопления, кондиционирования и вентиляции, пищевая промышленность, химия и др.

Для измерения избыточного давления воды, пара, нейтральных жидкостей и газов ООО «КИП-Сервис» предлагает датчик давления общепромышленного назначения PTE5000. Данные датчики широко применяются российскими предприятиями для измерения давления воды в системах котельной автоматики, системах водоснабжения и водоотведения, ЖКХ и других системах, где на первом плане стоит невысокая стоимость оборудования.

Преобразователи абсолютного давления

Преобразователь давления жидкости

Рисунок 2 — Датчик давления общепромышленный CER-1

Данные преобразователи измеряют давление, создаваемое какой—либо средой относительно абсолютного разряжения (вакуума). Эти датчики давления не так широко распространены, и используются в основном в химической промышленности.
В ассортименте датчиков ООО «КИП-Сервис» преобразователи абсолютного давления представлены серией преобразователей давления CER-8000 и CER-2000 голландской фирмы KLAY-INSTRUMENTS BV, выполненные в корпусе из нержавеющей стали, что актуально именно для химической промышленности. Следует отметить, что данные серии датчиков давления, в зависимости от модификации, могут применяться для измерения и других видов давления.

Преобразователи вакууметрического давления (разряжения)

Преобразователь давления жидкости

Рисунок 3 — Преобразователь абсолютного давления. Датчики Klay.

Эти датчики измеряют уровень разряжения (вакуума) относительно атмосферного давления. На сегодняшний день вакуумные процессы находят широкое применение в таких отраслях, как пищевая промышленность (вакуумная упаковка, вакуумный транспорт), металлургическая промышленность и производство РТИ (литье под вакуумом), автомобилестроение и др.

Преобразователи гидростатического давления (гидростатические уровнемеры)

Данные преобразователи представляют собой разновидность датчиков избыточного давления, в том случае, когда последние применяются для измерения гидростатического уровня жидкостей. Преобразователь фактически измеряет давление столба жидкости над ним. Для применения в водоканалах и системах водоочистки в номенклатуре ООО «КИП-Сервис» представлены погружные гидростатические датчики уровня Hydrobar производства фирмы KLAY-INSTRUMENTS BV.

Как было сказано выше, единицей измерения давления в системе СИ является «Паскаль» (Па). На практике в промышленности широко применяются и другие единицы измерения, кроме «Па» наиболее распространенными являются «bar» (бар), «м.в.с.» (метр водяного столба) и «кгс/см²» (килограмм-сила на сантиметр квадратный), а также производные этих единиц: «мбар» (миллибар), «кПа» (килопаскаль), «МПа» (мегапаскаль).

Конструкция преобразователей давления

Преобразователь давления жидкости

Рисунок 4 — Схема конструкции преобразователей давления

На рисунке снизу приведена общая схема конструкции преобразователей давления. В зависимости от типа датчика, производителя прибора и особенностей применения, конструкция может меняться. Данная схема предназначена для ознакомления с основными элементами типового измерительного преобразователя давления.

На рынке существует 4 основных типа сенсоров, основанных на тензорезистивном методе преобразования, которые используют все существующие производители преобразователей давления. Рассмотрим каждый тип отдельно.

Типы сенсоров

Преобразователь давления жидкости

Толстопленочный сенсор на металлической/керамической мембране

Данный тип тензорезистивных сенсоров является самых дешевым, и, как следствие, широко используется для производства недорогих преобразователей давления неагрессивных сред (вода, воздух, пар).

Толстопленочные сенсоры обладают следующими особенностями:

Тонкопленочные сенсоры на стальной мембране

Преобразователь давления жидкости

Тонкопленочные сенсоры на стальной мембране

Тонкопленочные сенсоры на стальной мембране были разработаны специально для применения в составе преобразователей высокого (более 100 бар) давления. Они обеспечивают хорошую линейность и повторяемость при работе с высокими значениями давления.

Особенности тонкопленочных сенсоров:

Керамические тензорезистивные сенсоры

Преобразователь давления жидкости

Керамические тензорезистивные сенсоры

Данный вид сенсоров используется для высокоточного измерения давления сред, не агрессивных к материалу керамики (как правило Al2O3), кроме пищевых продуктов (т. к. необходимо использование уплотнителя сенсора) и вязких сред. Данный тип сенсоров используют практически все ведущие производители преобразователей давления.

Кремниевые тензорезистивные сенсоры

Преобразователь давления жидкости

Кремниевые тензорезистивные сенсоры

Кремниевые тензорезистивные сенсоры широко применяются всеми ведущими производителями преобразователей давления в сочетании с защитной разделительной мембраной из нержавеющей стали (или других химически стойких сплавов) для высокоточного измерения давления различных сред.
Использование сварной разделительной мембраны из нерж. стали позволяет применять данный тип сенсоров в пищевой промышленности и для вязких сред.

Руководитель отдела маркетинга ООО «КИП-Сервис»Стариков И.И.

Датчики давления. Правила выбора

Преобразователь давления жидкости

Особенности применения датчиков давления

Области применения датчиков давления(преобразователей давления) довольно широки, но, как правило, в каждом конкретном применении есть своя специфика, которая должна быть учтена в конструкции датчиков.

В целом все применения преобразователей давления можно разделить на две основные группы

При подборе датчиков давления для применения в качестве гидростатических датчиков уровня, необходимо учитывать тот факт, что значение давления при одной и той же высоте столба жидкости может меняться с изменением плотности измеряемой среды.

Температура процесса

Температура измеряемой среды — очень важный параметр при выборе датчиков давления. При подборе датчика, необходимо чтобы температура процесса не выходила за пределы допустимого рабочего температурного диапазона.В
пищевой промышленности происходят кратковременные (от 20 до 40 минут) процессы CIP и SIP-мойки (санитарной обработки), при которых температура среды может достигать 145 °C. Для таких применений следует использовать датчики, устойчивые к такому временному воздействию высоких температур, например датчики давления KLAY-INSTRUMENTS в исполнении SAN — 8000-SAN и 2000-SAN.Показания всех датчиков давления, использующих тензорезистивный принцип преобразования, сильно зависят от температуры измеряемой среды, так как с изменением температуры изменяется и сопротивление резисторов, составляющих измерительную схему сенсора давления.Для датчиков давления вводится понятие «температурной ошибки», которая представляет собой дополнительную погрешность измерений на каждые 10 °C изменения температуры измеряемой среды относительно базовой температуры (как правило 20 °C). Таким образом, температуру процесса необходимо знать для определения полной погрешности измерений датчика давления.Для снижения влияния температуры в измерителях давления используют различные схемы температурной компенсации.

Про анемометры:  Датчики уровня воды и поплавковые выключатели)

По использованию термокомпенсации все датчики давления можно разделить на три группы:

Для измерения давления сред постоянной температурой более 100 °C используются специальные высокотемпературные датчики давления, позволяющие измерять давление сред с температурой вплоть до 250 °C. Как правило такие датчики оборудованы радиатором охлаждения и/или имеют специальный конструктив, позволяющий вынести часть датчика с электроникой в зону с допустимой рабочей температурой.

Тип соединения датчика с процессом

Тип соединения датчика с процессом — тип механического включения датчика давления в процесс, для осуществления измерений. Наиболее популярными соединениями для преобразователей давления общепромышленного исполнения являются резьбовые соединения G1/2″ DIN 16288 и M20x1,5.При подборе датчика тип соединения необходимо уточнять для обеспечения удобства монтажа в существующую систему без осуществления дополнительных работ (сварка, нарезка другого типа резьбы и т. п.)Наиболее разнообразными по типам используемых соединений с процессом являются пищевая, целлюлозно-бумажная и химическая промышленности. К примеру, датчики давления KLAY-INSTRUMENTS, которые специально разработаны для этих отраслей, могут быть изготовлены с более чем 50 различными вариантами включения в процесс.

Выбор типа соединения наиболее актуален для пищевой промышленности, т. к. наряду с удобством, соединение в первую очередь должно обеспечивать «санитарность» и отсутствие «мертвых зон» для процесса санитарной обработки. Для датчиков давления, предназначенных для работы в контакте с пищевыми продуктами, существуют специальные сертификаты, подтверждающие их «санитарность» – Европейский сертификат EHEDG (European Hygienic Equipment Design Group) и Американский сертификат 3A Sanitary Standards. В России для датчиков, контактирующих с пищевыми средами, необходимо наличие Санитарно- эпидемиологического заключения. В ассортименте ООО «КИП-Сервис» требованиям данных сертификатов удовлетворяют датчики серий 8000-SAN и 2000-SAN компании KLAY-INSTRUMENTS.

Параметры окружающей среды

При подборе преобразователей давления следует учитывать следующие параметры окружающей среды:

Все параметры окружающей среды должны находиться в допустимых пределах для выбираемого датчика давления.

В случае наличия в окружающей среде агрессивных веществ, многие производители датчиков давления (в том числе KLAY-INSTRUMENTS BV) предлагают специальные исполнения, устойчивые к химическим воздействиям.При работе в условиях повышенной влажности при частых перепадах температуры датчики давления многих производителей сталкиваются с проблемой коррозии сенсора давления. Основная причина коррозии сенсора датчиков давления — образование конденсата. Датчикам избыточного давления, для измерения относительного давления, необходима связь сенсора с атмосферой. У недорогих датчиков сенсор связан с атмосферой за счет не герметичности корпуса (коннектор IP65); влажный воздух, при такой конструкции, после попадания внутрь датчика конденсируется при понижении температуры, тем самым постепенно вызывая коррозию измерительного элемента.Для применения в процессах, где обычные датчики давления выходят из строя из-за коррозии сенсора, идеально подходят промышленные датчики давления KLAY-INSTRUMENTS. У преобразователей давления KLAY связь сенсора с атмосферой осуществляется через специальную «дышащую» мембрану из материала Gore-Tex, которая препятствует проникновению влаги внутрь датчика. Кроме того, контакты сенсора всех датчиков KLAY по умолчанию залиты специальным синтетическим компаундом для дополнительной защиты датчика от коррозии.

Тип выходного сигнала датчика давления

Помимо аналогового выходного сигнала, интеллектуальные датчики давления также бывают с цифровым выходным сигналом. Это датчики с выходом по протоколу Profibus PA, который использует в своих
устройствах компания SIEMENS.

Требуемая точность измерений

При расчете погрешности измерений датчиков давления, необходимо учитывать, что помимо основной погрешности существует дополнительная погрешность.

Основная погрешность – значение погрешности датчика давления относительно диапазона измерений, заявленная заводом изготовителем для нормальных условий эксплуатации. Как правило, под нормальными условиями эксплуатации понимают следующие условия:

Дополнительная погрешность — значение погрешности, вызванное отклонением условий эксплуатации от нормальных, ввиду особенностей данного конкретного применения. Одной из основных составляющих дополнительной погрешности является температурная погрешность, которая указывается в технической документации к датчикам давления и может быть рассчитана для конкретного значения температуры рабочей среды. Также дополнительную погрешность может вызывать турбулентность потока измеряемой среды, изменение плотности среды при гидростатическом измерении уровня, динамические нагрузки на оборудование во время перемещения в пространстве (судна, транспорт и т. д.) и другие возможные факторы.При расчете погрешности измерительной системы в целом нужно также учитывать класс точности измерительного прибора — индикатора.

В качестве примера, рассчитаем полную погрешность измерений для следующей системы

Давление, являясь физической величиной, является максимально информативным и удобным параметром, который широко используется для контроля технологических процессов в различных сферах применения – от систем коммерческого учета энергоресурсов, включая воду, нефть и газ, до автоматических систем и систем как регулирования, так и управления и в ядерной энергетической промышленности, и в авиации, и в космонавтике.

Предназначены преобразователи (датчики) давления для определения величины абсолютного давления или избыточного давления, разрежения и перепада давлений жидкости или газа и преобразования его в электрический или пневматический сигнал, величина которого пропорциональна величине измеряемого параметра, а также в цифровые данные.

В зависимости от конструктивных исполнений сенсора (чувствительного элемента) выделяют датчики (или преобразователи) давления

Они могут быть оснащены устройствами визуального представления информации – цифровыми дисплеями и индикаторами уровня измеряемого давления.Индуктивные и пьезометрические преобразователи (датчики) давления, обладающие высоким быстродействием, позволяют измерять не только уровень плавно изменяющегося давления, но и амплитуду высокочастотных пульсаций.

Для различных областей применения данные приборы предлагаются (применяются) в обычном и взрывозащищенном исполнениях.

Из основных характеристик датчиков и преобразователей давления можно выделить: предел измерения, погрешность (основная и дополнительные (температурная, временная и др.)), тип выходного сигнала, а также межповерочный интервал (если прибор сертифицирован органами Госстандарта в качестве средства измерения).

ООО «НПФ «РАСКО» предлагает потребителям целую гамму датчиков и преобразователей давления, а также датчиков перепада давлений жидкости и газа в самых разнообразных исполнениях, в том числе, выпускаемых под брендом РАСКО: преобразователи давления газа ПД-Р – оптимальное решение для применения в сфере ЖКХ, в том числе, в составе тепло-счетчиков, преобразователь разности давлений ПДД-РАСКО – наиболее современное решение для контроля перепада давлений, в первую очередь, на счетчиках газа, а также фильтрах газовых и другом соответствующем оборудовании.

Показано с 1 по 25 из 35 (всего 2 страниц)

Преобразователи давления — это измерительные приборы, которые применяются для получения параметров давления в различных средах. Процесс измерения идет непрерывно, после чего значения преобразовываются в универсальный сигнал выхода току или напряжению. Другое название устройств – датчики давления.

По типу замеряемого давления можно купить преобразователи давления ОВЕН разных видов:

Приобрести устройства можно в Санкт-Петербурге можно в компании Овен. Мы предлагаем привлекательные цены и быструю доставку после оформления заявки. На все вопросы отвечают грамотные консультанты.

Преобразователи давления (датчики давления)

см. Каталог Датчики-преобразователи давления технические для промышленности, энергетики и ЖКХ.
Спецпредложение на датчики с выходом 4-20мА:
Однодиапазонный преобразователь избыточного давления — цена от 2200 рублей!
(цена указана на базовое исполнение без НДС, подробнее о скидках и акциях, условиях и сроках действия см. ниже).

В данном разделе представлены датчики-преобразователи давления: избыточного, абсолютного, вакуумметрического (разряжения), гидростатического давления и разности (перепада) – дифференциального давления в унифицированный выходной сигнал одного из нижеуказанных видов:

1. Преобразователи давления в сигнал постоянного тока 4-20мА, 0-5мА и цифровые сигналы (HART и др. протоколы): ПД-Р, Сапфир-22-МПС, АИР, Метран, КРТ, Зонд-10/20, МС-20, Корунд, ДМ5007, МИДА, МТ100, ПД-1, ПД100, DMP, DMK, DMD, ДДМ, ДМТ, МПЭ, ДМЭ-МИ, СДВ-И, АДМ, Курант, 415М, ЭнИ-100 и другие датчики.

Про анемометры:  Врет датчик топлива газ 31105

2. Преобразователи давления в сигнал напряжения постоянного тока 0-1,5,10В: Зонд-10/20, ИПД, Мида-ПИ(ПА), DMP-330,-331 и другие датчики.

3. Преобразователи давления в пневматический выходной сигнал 20-100кПа: ДПП-2(1), ДМПК-100, 13ДД11, 13ДИ13, 13ДИ30, ГСП: НСП, МСП, ПЭ, ДПЭ-4 и др. пневматические датчики.

4. Преобразователи давления в сигнал взаимной индуктивности 0-10мГн:  датчики  индуктивные ДМ-3583М, ДКО-3702, ДД-41003(4), ДИ(ДИВ)-41001(2), МЭД.

5. Преобразователи гидростатического давления (уровня): погружные кабельные уровнемеры Зонд-10ГД, Корунд-ДИГ, УГЦ-1, LMP, LMK, ALZ; врезные резьбовые Зонд-10, LMP, LMK-331 и фланцевые Сапфир-22-ДГ.

Определения и основные характеристики преобразователей (датчиков) давления

Измерительный преобразователь давления – это технический прибор с нормативными метрологическими характеристиками, служащий для преобразования измеряемого давления в унифицированный выходной сигнал (электрический, пневматический) и/или цифровой код (HART-протокол, интерфейсы RS-232/485 и др.).
Датчик давления – это конструктивно обособленный первичный преобразователь давления (избыточного, дифференциального, абсолютного, вакуумметрического, гидростатического).

Электрический измерительный преобразователь давления – это датчик, питание, которого осуществляется электроэнергией, а выходным сигналом является электрическая величина (ток, напряжение, индуктивность), состоит из двух основных частей (блоков):

А) Измерительный блок, основой которого является первичный измерительный преобразователь давления – чувствительный элемент (сенсор), преобразующий воздействующее на него давление в первичный сигнал (обычно слабый электрический).

Б) Электроный блок — блока усиления, который преобразует и усиливает первичный сигнал преобразователя до стандартных унифицированных токовых сигналов (мА, В, мГн и др.) и/или цифровых кодов (интерфейсы RS232, RS485, USB, M-Bus или протоколы ModBus, HART-протокол и др.), воспринимаемых системами автоматического регулирования и управления технологическими процессами (АСУТП).

Пневматический преобразователь давления (выход 20-100кПа) обычно состоит из пневмосилового преобразователя и измерительного блока. Принцип действия пневмокомпенсационного преобразователя основан на пневматической силовой компенсации усилия, развиваемого измеряемым перепадом давления на чувствительных элементах измерительного блока.

Виды измеряемого давления и его преобразователей (датчиков)

Краткое определение видов давления (далее Д.) и вакуума:
– Атмосферное (Ратм) — это Д. столба воздуха (атмосферы), примерно 101кПа или 760мм.рт.ст. (нормальное атмосферное Д.).
– Абсолютное (Рабс) — это полное Д. с учетом атмосферного, отсчитываемое от абсолютного нуля.
– Избыточное (Ризб) — это Д. сверх атмосферного, равное разности между абсолютным и атмосферным:
   Ризб = Рабс – Ратм
   Избыточное Д. отсчитывается от «условного нуля», за который принимается текущее атмосферное Д..
– Вакуум (вакуумметрическое Д., разряжение) – разность между атмосферным и абсолютным Д.: Рвакуум = Ратм – Рабс

Поэтому, в зависимости от измеряемого и опорного давления также различают следующие виды датчиков/преобразователей давления (далее, сокращенно- ПД.):

“АД” — датчик-преобразователь абсолютного давления, измерение ведется относительно встроенной в прибор камеры вакуума (сокр.- ПД-ДА).

“ДИ” — датчик-преобразователь избыточного давления, измерение ведется относительно внешнего атмосферного давления (сокр.- ПД-ИД).

“ДВ” — датчик-преобразователь вакуумметрического давления (разряжения в «минус»), измерение ведется относительно внешнего атмосферного давления в сторону понижения к абсолютному нулю (сокр.- ПД-ДВ).

“ДИВ” — датчик преобразователь избыточного давления и разряжения одновременно (плюс-минус), измерение ведется относительно внешнего атмосферного давления (сокр.- ПД-ДИВ +-).

“ДД” — дифференциальные преобразователи перепада (разности) давлений (такие датчики измеряют разность двух давлений: ΔP=P1-P2 и могут применяться, как дифманометр-перепадомер, уровнемер или расходомер, работая в том числе и под избыточным рабочим Д. (сокр.- ПД-ДД).

“ДГ” — преобразователь гидростатического давления столба жидкости на мембрану прибора, измерение ведется относительно атмосферного-Ратм или «давления наддува»-Рн поверх зеркала жидкости в резервуаре по формуле:
ΔP = Р — Рн, где Р=ρgh+Рн,
где ρ—плотность жидкости (масса-кг/ объем-м3), g—ускорение свободного падения (в среднем примерно g=9,81м/с2, точно зависит от широты местности), h—высота столба жидкости (м).
Также допустимо обозначение гидростатического датчика-преобразователя — ПД-ГД (но не путать с автономными (энергонезависимыми) малогабаритными тягонапоромерами-микроманометрами Зонд-10-ГД).

“ДУ” — буйковые преобразователи уровня — уровнемеры. Принцип действия таких уровнемеров основан на определении разности сил тяжести и гидростатической (Архимедовой) силы выталкивания из жидкости цилиндрического полого буйка положительной плавучести — см. Буйковые уровнемеры.

По конструктивному исполнению чувствительного элемента (сенсора) различают преобразователи давления

– тензометрические
– пьезометрические
– емкостные
– резонансные
– индуктивные
– пневмоконпенсационные (пневматические)
– и другие датчики.
(основные методы преобразования, их достоинства и недостатки описаны в соответствующих разделах).

Погрешность измерения и класс точности преобразователей (датчиков) давления

Пределы допускаемой основной погрешности датчиков — преобразователей давления плюс-минус 0,1%; 0,15% (высокоточные); 0,2%; 0,25% (точные); 0,4%; 0,5%; 1,0%; 1,5%(технические) от диапазона измерений. Также преобразователи Д. могут иметь дополнительную погрешность от влияния внешних факторов: температуры и давл. окружающей среды (ОС), электрических помех, нестабильности питания, сопротивления нагрузки, вибрации прочих внешних воздействий.

Выходные сигналы преобразователей (датчиков) давления

2. Пневматический унифицированный сигнал 20-100кПа
Давление на выходе 20кПа соответствует нулю измеряемого, а 100кПа — максимуму измеряемого диапазона (перепада для ДД), причем в линии питания очищенным сжатым воздухом должно поддерживаться Д. не менее 140кПа с расходом воздуха не менее 5 литров в минуту (для этого применяются специальные редуктора Д. с фильтром РДФ-3.1(с манометром) и РДФ-3-2 (без манометра).

Условия эксплуатации датчиков-преобразователей давления

Условия эксплуатации измерительных приборов основаны на отличии параметров измеряемой (ИС) и окружающей среды (ОС) рабочих условий от нормальных и стандартных (условий производства, хранения и т.п.), например:

— Диапазон измерения, возможность гидроудара:
Компенсируется тех. характеристиками преобразователя (расширенной перегрузочной способностью (допустимой перегрузкой) сенсора) или подавляются применением специальных технических средств — гасителей пульсаций (демпферы, сифонные петлевые импульсные трубки Перкинса и т.п.)).

— Температурные режимы измеряемой Тис и окружающей среды Тос:
Компенсируются характеристиками (расширенные температурные диапазоны по климатике — Тос(-50+80С), или высокотемпературным исполнением Тис свыше 150С измерительного блока преобразователя моноблочной или раздельной конструкции),
или применением перед преобразователем охладителей (радиаторов), соединительных рукавов мод.-55004 или сифонные петлевых отборных устройств Перкинса).

— Степень пылеводозащиты (код IP):
Ingress Protection Rating (англ.) — степень защиты от проникновения, обеспечиваемая оболочкой (корпусом): обычно степень пылеводозащиты преобразователей составляет от IP54, вплоть до IP68 (максимальная защита для полностью погружного исполнения).

— Высокая степень агрессивности ИС и ОС:
Компенсируется характеристиками преобразователя (см. специальные нестандартные исполнения: высокотемпературные (до 350°С), виброустойчивые, коррозионностойкие, кислотостойкие, абразивостойкие, гигиенические (для пищевых продуктов) и прочие исполнения) или применением защитно-разделительных устройств (разделители мембранные, рукава соединительные, сосуды (разделительные, конденсационные, уравнительные).

— Степень взрывоопасности среды (измеряемой-ИС или окружающей ОС):
При эксплуатации оборудования во взрывоопасных условиях необходимо применять датчики — преобразователи давления, имеющие взрывозащищенное исполнение (Exi, Вн: Exd/Exsd)
— Exi — искробезопасная электрическая цепь,
— Exd/Exsd (Вн) — взрывонепроницаемая оболочка (включает в себя Exi).

Параметры энергетического питания датчиков-преобразователей давления

Номинальные значения напряжения питания
Электрических преобразователей давления — обычно составляет
=36В постоянного тока (для датчиков с выходом 0-5мА),
=24В постоянного тока (для датчиков с выходом 4-20мА),
причем питание взрывозащищенных приборов (Exi) должно осуществляться стабилизированным напряжением =24В через барьеры искрозащиты/взрывозащиты (типа Корунд, БРИЗ, Искра и др.).
Минимальное значение напряжения питания для большинства датчиков составляет 9В, а максимальное может доходить до 42В.

Пневматических преобразователей (выход 20-100кПа) — давление сжатого воздуха, поступающего от компрессора через редуктор с фильтром (типа РДФ-3.1,-3.2):
140кПа + 10%, расход воздуха до 5 литров в минуту.

Способы монтажа и присоединения датчиков-преобразователей давления

— присоединение датчика к процессу (трубопроводу, импульсной линии):
может осуществляться через монтажный штуцер (резьба М20х1,5, М12х1,5, G1/2, G1/4 и др.) или с помощью монтажных фланцев с приварными ниппелями, быстросъемных разъемов и прочих присоединительных элементов;

Про анемометры:  Обзор газовых котлов на сжиженном баллонном газе: как выбрать

— присоединение датчика к линии питания и/или съема сигнала:
для электрических преобразователей обычно используются сальниковый ввод, с заделанным кабельным выводом, зажимная цаега или специальные разъемы (типа DIN-43650 и др);
для пневматических датчиков — штуцерное присоединение, гайка с ниппелем.

— монтаж корпуса датчика возможен:
— на трубе:
     за штуцер (М20х1,5, G1/2 и т.п.)
     на кронштейне (кронштейн притягивается к трубе скобой, код КМЧ — СК)
— на плите (код ПЛ)
— настенный монтаж
— на 35мм DIN-рейку
— щитовой монтаж (за отбортовку в вырез щита)
— стоечный монтаж,
а также возможны и другие редко встречающиеся виды монтажа корпусов приборов.

Дополнительная информация о датчиках/преобразователях давления и принципах их действия

Датчик давления — это конструктивно обособленный преобразователь давления, физические параметры которого изменяются в зависимости от давления измеряемой среды: жидкости, газа, пара (далее, сокр.- ДД). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический (20-100кПа) или разнообразные электрические сигналы (релейный, тока(мА), напряжения(В), индукции(мГн)) или цифровой код (интерфейс RS232, RS485, USB, M-Bus или HART, ModBus-протоколы).

Конструкция и принципы действия преобразователя давления

Датчик давления (далее сокр.-ДД) состоит из первичного преобразователя (в составе которого чувствительный элемент — приемник давления с сенсором), схемы вторичной обработки сигнала, различных по конструкции корпусных деталей, в том числе для герметичного соединения датчика с объектом и защиты от внешних воздействий и устройства вывода информационного сигнала (обычно сальник или разъем).

Основными отличиями одних приборов от других являются пределы (диапазоны) измерений, динамические и частотные диапазоны, точность регистрации давления (погрешность), допустимые условия эксплуатации (в зависимости от окружающей и измеряемой среды), массогабаритные характеристики, которые зависят от защищенности, вида и величины измеряемого давления и принципов его преобразования в выходной сигнал (например для электрического сигнала — это тензометрический, пьезорезистивный, ёмкостный, индуктивный, резонансный, ионизационный, пьезоэлектрический и другие методы):

Тензометрический метод измерения
Чувствительные элементы тензометрических преобразователей базируются на принципе изменения сопротивления при деформации тензорезисторов, приклеенных на диэлектрической подложке к упругому чувствительному элементу (обычно мембрана), который деформируется под действием измеряемого давления.

Пьезорезистивный метод измерения
Пьезорезистивный метод измерения основан на интегральных чувствительных элементах из монокристаллического кремния (Si). Кремниевые преобразователи имеют высокую чувствительность благодаря изменению удельного объемного сопротивления полупроводника при деформировании давлением.

Для измерения давления чистых неагрессивных сред применяются так называемые Low cost — решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем.

Для измерения агрессивных сред и большинства промышленных применений, используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостный метод измерения
При емкостном методе измерения «Сердцем» сенсора является ёмкостная ячейка. Ёмкостный метод основан на зависимости изменения электрической ёмкости между обкладками конденсатора и измерительной мембраны от подаваемого Д.. Основным преимуществом ёмкостного метода является защита от перегрузок (измерительная мембрана при перегрузке просто ложится на стенки «обкладки» конденсатора, длительное время не подвергаясь деформации, при снятии перегрузки мембрана восстанавливает исходную форму, при этом дополнительная калибровка сенсора не требуется), также обеспечивается высокая стабильность метрологических характеристик, уменьшение влияния температурной погрешности за счет малого объема заполняющей жидкости непосредственно в ячейке.

Резонансный метод измерения
В основе резонансного метода лежит изменение резонансной частоты колеблющегося упругого элемента при деформировании его силой или Д.. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора.

К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Индуктивный метод измерения
Индуктивный метод основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенной нагрузке.

Пьезоэлектрический метод измерения
В основе пьезоэлектрического метода лежит прямой пьезоэлектрический эффект, при котором пьезоэлемент генерирует электрический сигнал, пропорциональный действующей на него силе или Д.. Пьезоэлектрические преобразователи используются для измерения быстроменяющихся акустических и импульсных давлений, обладают широкими динамическими и частотными диапазонами, имеют малую массу и габариты, высокую надежность и могут использоваться даже в жестких условиях эксплуатации.

Ионизационный метод измерения
В основе ионизационного метода лежит принцип регистрации потока ионизированных частиц. Аналогом являются ламповые диоды.

Лампа оснащена двумя электродами: катодом и анодом, — а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов.

Преимуществом таких ламп является возможность регистрировать низкое давление — вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками Д., например, емкостными. К тому же, зависимость сигнала от измеряемого давления не является линейной — она логарифмическая.

Из вышеизложенного становится очевидно, что выбор датчика-преобразователя давления должен начинаться с выбора и анализа основных параметров, под которые подбирается метод измерения (тензометрический, пьезорезистивный, ёмкостный, индуктивный, резонансный, пьезоэлектрический, ионизационный или иной).

Методы регистрации сигналов преобразователей давления

Сигналы с датчиков-преобразователей давления могут быть как медленноменяющимися, так и быстропеременными. В первом случае их спектр лежит в области низких частот. Для того, чтобы с высокой точностью оцифровать такой сигнал, необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях.

Специально для ввода медленноменяющихся сигналов используются интегрирующие аналого-цифровые преобразователи — АЦП*. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи.

Для измерения переменных давлений применяют датчики-преобразователи с аналоговым выходным сигналом, например, 0—20мА, 4—20мА и 0—5В, 0,4—2В.

Пьезоэлектрические датчики-преобразователи применяются для измерения быстропеременных процессов в диапазоне частот от единиц Гц до сотен кГц.

Определения, разъяснения и понятия о преобразователях

* — АЦП — Аналого-цифровой преобразователь (англ. Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигнал в дискретный бинарный код (цифровой сигнал).

Отличие датчика от манометра
В отличие от датчика-преобразователя в выходной сигнал, манометр — прибор, предназначенный для измерения (а не просто преобразования) давления. В манометре от давления зависят показания прибора, которые могут быть считанны с его шкалы, цифрового дисплея, барографа или аналогичного устройства.

В данном разделе представлены датчики-преобразователи давления: избыточного, абсолютного, вакуумметрического (разряжения), гидростатического и разности (перепада) – дифференциального давления в унифицированный выходной сигнал одного из нижеуказанных видов:

Заранее благодарим Вас за обращение в любое из предприятий группы компаний — ГК «Теплоприбор» (Теплоприборы, Промприбор, Теплоконтроль и другие) и обещаем приложить все усилия для оправдания Вашего доверия.

Вернуться в начало описания и переходу в Каталог датчиков.

Оцените статью
Анемометры
Добавить комментарий