При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко Анемометр

Общие сведения

Гиперкапния не является самостоятельной нозологической единицей. Она представляет собой клинический синдром в пульмонологии, который отражает неспособность системы органов дыхания поддерживать физиологический уровень углекислого газа в крови. Термин гиперкапния в медицинской литературе отождествляется с вентиляционной («насосной») дыхательной недостаточностью. Истинная частота синдрома не установлена, что обусловлено его высокой распространенностью и частым развитием на фоне других жизнеугрожающих состояний.

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

Симптомы гиперкапнии

В клинической картине на первый план выходит одышка. Частота дыхания увеличивается боле 30-35 раз в минуту, иногда наблюдается парадоксальное дыхание – втяжение живота и выпячивание грудной клетки на вдохе. Пациенты испытывают постоянную нехватку воздуха, дыхание становится шумным и пыхтящим. При попытках вдохнуть полной грудью необходимо напрягать вспомогательную мускулатуру грудной клетки, живота и шеи.

Вследствие патологических влияний углекислоты возникают признаки нарушения работы сердечно-сосудистой системы. Наблюдается системное расширение сосудов, из-за чего кожа приобретает интенсивную розовую окраску, становится очень теплой на ощупь. При гиперкапнии учащается сердечный ритм и повышается сила сокращений миокарда. Поражение ЦНС представлено нарушениями сна, головными болями, хлопающим тремором.

Капнография, неинвазивный метод измерения и графической регистрации уровня СO2 во время дыхательного цикла, хорошо изучена, и много лет применяется для контроля за вентиляцией в анестезиологии и интенсивной терапии. Ниже будут описаны лишь наиболее актуальные аспекты применения этого метода при проведении мониторинга в интенсивной терапии.

При спокойном дыхании уровень PetСO2 у здоровых людей равен 36-45 мм рт. ст. Или, если выразить концентрацию углекислого газа в процентах (1% = 7,6 мм рт. ст.) при давлении 760 мм рт. ст., FetСO2 равен 4,7-5,9%. У женщин в третьем триместре беременности нормальная PetСO2 составляет 32-36 мм рт. ст.

Фаза I обусловлена наличием аппаратного и анатомического мертвого пространства. Видно, что уровень СO2 в начале выдоха не определяется. В фазе II начинает поступать альвеолярный газ, и уровень СO2 в выдыхаемом воздухе резко повышается. В фазе III, которая получила название «фаза плато» происходит медленное повышения уровня CO2 за счет поступления прогрессивно уменьшающегося объема газа из неперфузируемых альвеол, в которых низкий уровень СO2.

В самом конце выдоха уровень СO2 максимален, это и есть PetСO2. Затем начинается новый вдох, и уровень CO2 снижается до нуля.

Причины гиперкапнии

Появление гиперкапнии связано с резким падением или неадекватным возрастанием альвеолярной вентиляции в тех случаях, когда ресурсов дыхательной системы не хватает для поддержания функции внешнего дыхания. Самыми частыми причинами синдрома выступают эмфизема при тяжелой ХОБЛ и астматический статус, которые сопровождаются резким снижением объема вентиляции в легких. Другие провоцирующие факторы гиперкапнии:

  • Длительная интубация. При проведении ИВЛ объем мертвого пространства легких возрастает до 50-70%, в результате чего углекислый газ не может в должной мере выводиться из организма. Риск гиперкапнической дыхательной недостаточности повышается, если интубация проводилась на фоне развития ТЭЛА.
  • Нервно-мышечные заболевания. При миастении, полинейропатии, боковом амиотрофическом склерозе поражается дыхательная мускулатура и резко ухудшается легочная вентиляция. Все пациенты с тяжелыми формами таких заболваний страдают от гиперкапнической недостаточности функции дыхания.
  • Патологии ЦНС. Причиной гиперкапнии выступают травмы, опухоли и другие патологические процессы, протекающие с поражением дыхательного центра. Без центральной регуляции процессы внешнего дыхания становятся хаотичными и неэффективными.
  • Травмы. Изредка гиперкапнический синдром развивается при серьезных повреждениях мышечного и реберного каркаса грудной клетки. Сильные боли и механическое препятствие ограничивают возможности расправления легких, повышают показатели мертвого пространства.
  • Критические состояния. Гиперкапния может возникать при относительной гиповентиляции на фоне возрастающей нагрузки на дыхательную систему. Такое состояние наблюдается при сепсисе, разных видах шока, тромбоэмболии.

Углекислый газ. Транспорт углекислого газа.

Углекислый газ является продуктом метаболизма клеток тканей и поэтому переносится кровью от тканей к легким. Углекислый газ выполняет жизненно важную роль в поддержании во внутренних средах организма уровня рН механизмами кислотно-основного равновесия. Поэтому транспорт углекислого газа кровью тесно взаимосвязан с этими механизмами.

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

В плазме крови небольшое количество углекислого газа находится в растворенном состоянии; при РС02= 40 мм рт. ст. переносится 2,5 мл/100 мл крови углекислого газа, или 5 %. Количество растворенного в плазме углекислого газа в линейной зависимости возрастает от уровня РС02.

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

В плазме крови углекислый газ реагирует с водой с образованием Н+ и HCO3. Увеличение напряжения углекислого газа в плазме крови вызывает уменьшение величины ее рН. Напряжение углекислого газа в плазме крови может быть изменено функцией внешнего дыхания, а количество ионов водорода или рН — буферными системами крови и HCO3, например путем их выведения через почки с мочой. Величина рН плазмы крови зависит от соотношения концентрации растворенного в ней углекислого газа и ионов бикарбоната. В виде бикарбоната плазмой крови, т. е. в химически связанном состоянии, переносится основное количество углекислого газа — порядка 45 мл/100 мл крови, или до 90 %. Эритроцитами в виде карбаминового соединения с белками гемоглобина транспортируется примерно 2,5 мл/100 мл крови углекислого газа, или 5 %. Транспорт углекислого газа кровью от тканей к легким в указанных формах не связан с явлением насыщения, как при транспорте кислорода, т. е. чем больше образуется углекислого газа, тем большее его количество транспортируется от тканей к легким. Однако между парциальным давлением углекислого газа в крови и количеством переносимого кровью углекислого газа имеется криволинейная зависимость: кривая диссоциации углекислого газа.

Видео физиология газообмена в легких и транспорта газов кровью – профессор, д. Умрюхин

– Также рекомендуем “Роль эритроцитов в транспорте углекислого газа. Эффект Холдена.”

Концентрация и парциальное давление кислорода в альвеолах. Выдыхаемый воздух

Кислород постоянно абсорбируется из альвеол в кровь легочных капилляров, и также постоянно поступают из атмосферы в альвеолы новые порции кислорода. Чем быстрее абсорбируется кислород, тем ниже становится его концентрация в альвеолах. И наоборот, чем быстрее вдыхается кислород из атмосферы, тем выше становится его концентрация в альвеолах.

Таким образом, концентрация кислорода в альвеолах, а также его парциальное давление контролируются: (1) скоростью абсорбции кислорода в кровь; (2) скоростью доставки новых порций кислорода в легкие путем вентиляции.

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

Влияние альвеолярной вентиляции на PO2 в альвеоле при разной величине скорости абсорбции кислорода из альвеол (250 мл/мин и 1000 мл/мин). Точка А — оптимальная точка

На рисунке выше показано влияние альвеолярной вентиляции и скорости абсорбции кислорода в кровь на альвеолярное парциальное давление кислорода (PO2). Одна кривая представляет абсорбцию кислорода со скоростью 250 мл/мин, другая — со скоростью 1000 мл/мин.

При нормальной величине вентиляции (4,2 л/мин) и потреблении кислорода 250 мл/мин рабочей точкой на рисунке выше является точка А. На рисунке выше также видно, что при абсорбции кислорода в кобольшое увеличение альвеолярной вентиляции не может поднять PO2 в альвеолах выше 149 мм рт. ст., если человек дышит нормальным атмосферным воздухом на уровне моря, т.к. для увлажненного воздуха при таком давлении это значение PO2 является пределом возможного.

На рисунке выше также показано, что даже очень большое увеличение альвеолярной вентиляции не может поднять PO2 в альвеолах выше 149 мм рт. ст., если человек дышит нормальным атмосферным воздухом на уровне моря, т.к. для увлажненного воздуха при таком давлении это значение PO2 является пределом возможного. Если человек дышит газовой смесью с парциальным давлением кислорода, превышающим 149 мм рт. ст., то при высокой скорости вентиляции PO2 в альвеолах может сравниться с PO2 вдыхаемой смеси.

б) Концентрация и парциальное давление двуокиси углерода в альвеолах. Двуокись углерода образуется в организме человека постоянно и переносится кровью в альвеолы; из альвеол она также постоянно удаляется путем вентиляции. На рисунке ниже показано влияние альвеолярной вентиляции и двух разных уровней выделения двуокиси углерода (200 и 800 мл/мин) на парциальное давление двуокиси углерода в альвеолах.

Про анемометры:  Газоаналитика.РФ - PORRDZBI Seitron (Сейтрон): течеискатель переносной на метан и бутан, цена. PORRDZBI Seitron (Сейтрон): характеристики детектора утечек. Описание прибора

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

Влияние альвеолярной вентиляции на PCO2 в альвеоле при разной величине скорости выведения двуокиси углерода из крови (800 мл/мин и 200 мл/мин). Точка А – оптимальная точка

Нормальная скорость выделения двуокиси углерода составляет 200 мл/мин, и на соответствующей кривой на рисунке при альвеолярной вентиляции в 4,2 л/мин альвеолярное PCO2 определяется точкой А, т.е. составляет 40 мм рт. ст.

На рисунке выше показаны еще два факта. Во-первых, альвеолярное PCO2 растет прямо пропорционально скорости выделения двуокиси углерода, т.к. при скорости выделения CO2, равной 800 мл/мин, кривая поднимается выше в 4 раза. Во-вторых, альвеолярное PCO2 снижается обратно пропорционально альвеолярной вентиляции, поэтому концентрация и парциальное давление личестве 1000 мл/мин, как это бывает при умеренной физической нагрузке, для поддержания нормального PO2 в альвеолах (104 мм рт. ст.) скорость альвеолярной вентиляции должна увеличиться в 4 раза.

Отравление углекислым газом (двуокисью углерода) и его лечение

Наркотическое действие двуокиси углерода в высоких концентрациях известно с 1820 г.. Большинство людей теряют сознание, сделав от 8 до 12 вдохов 30 % двуокиси углерода, что может привести к повышению парциального давления двуокиси углерода в артериальной крови (рСO2) до величины, превышающей 100 мм рт.ст., и к понижению рН артериальной крови до уровня ниже 7,1.

Отмечены многочисленные смертные случаи, когда люди входили в бродильные чаны, бражные сборники и силосохранилища, где воздух был замещен двуокисью углерода. Случаи гиперкапнии при использовании двуокиси углерода в анестезии приводили к летальному исходу и поражению мозга. Обусловленная двуокисью углерода эмболия — редкое, но потенциально тяжелейшее осложнение при проведении лапароскопии или гистероскопии.

Предполагалось, но не было окончательно подтверждено, что именно двуокись углерода явилась причиной смерти примерно 1700 человек в Камеруне (Западная Африка) в 1986 г., когда произошел грандиозный выброс газов из озера Ньос (Nyos), расположенного в кратере вулкана.

а) Физические свойства. Двуокись углерода представляет собой бесцветный, лишенный запаха, невоспламеняющийся газ, растворимый в воде. Его обычно продают в виде сжатой жидкости или в твердом виде (сухой лед).

б) Источники. Двуокись углерода обычно присутствует в атмосфере в концентрации около 0,03 % (300 ppm). Двуокись углерода — компонент организма, постоянно выделяемый при клеточном дыхании. Большую часть промышленной двуокиси углерода получают в производственных процессах, в которых она образуется в качестве побочного продукта. Она присутствует в скважинах природного газа и является продуктом сгорания топлива и ферментации.

Двуокись углерода — побочный продукт производства аммиака и применения известково-обжигательных печей; двуокись углерода используют при газировании напитков, в качестве пропеллентов в аэрозолях и сухого льда для искусственного охлаждения.

в) Уровни острой токсичности. Концентрации 20—30 % приводят к потере сознания и судорогам через 1 мин после экспозиции. Экспозиция к концентрациям 75 000 ppm (7,5 %) в течение 15 мин может вызвать головную боль, головокружение, чувство беспокойства и/или одышку. Экспозиция к 100 000— 150 000 ppm двуокиси углерода в течение 15 мин сопровождается такими неврологическими симптомами, как моргание глаз, миоклонические подергивания мышц, расширенные зрачки и беспокойство.

г) Продолжительная экспозиция. Пятидневная экспозиция к 30 000 ppm (3 %) двуокиси углерода обусловила несильные головные боли в области лба. Хроническая гиперкапния у пациентов, страдающих от легочных болезней, может вызвать головную боль, сонливость, спутанность сознания, вялость, раздражительность и потерю сознания.

д) Предельно допустимые концентрации для экспозиции. Стандарт OSHA равен 10 000 ppm (18 000 мг/м3) как средневзвешенная во времени величина за 8 ч.

е) Патофизиология отравления углекислым газом. Двуокись углерода сильно влияет на регуляцию дыхания и мозговое кровообращение. Она действует периферически, и как сосудорасширяющий, и как сосудосуживающий агент, она является сильным церебральным вазодилататором. В высоких концентрациях она оказывает стимулирующее действие на центральную нервную систему, тогда как избыточные концентрации действуют как депрессант. Двуокись углерода индуцирует постепенное увеличение минутного объема дыхания и интенсивности легочной вентиляции.
Повышенные концентрации двуокиси углерода могут вызвать респираторный ацидоз. После двухдневной экспозиции к 3 % (30 000 ррт) двуокиси углерода величина рН крови может снизиться.

ж) Клиника отравления углекислым газом:

– Острые эффекты. Кратковременная экспозиция к 6 — 10 % двуокиси углерода может индуцировать снижение сосудистого сопротивления, усиление почечного кровотока, активизацию мозгового кровообращения и повышение систолического и диастолического кровяного давления, частоты пульса и минутного объема дыхания с потоотделением и гиперпноэ. Экспозиция к концентрациям между 10 и 20 % может индуцировать судорожные подергивания мышц, расширение зрачков и беспокойство; после экспозиции к 17 % в течение 20 — 50 с возможны раздражение горла, повышение частоты дыхания, слабость зрения, головокружение и бессознательное состояние.

– Хронические эффекты. Экспозиция к концентрациям 1 — 1,5 % в течение 30— 42 сут приводит к увеличению минутного объема и частоты дыхания, анатомического “мертвого” пространства и дыхательного объема.

з) Лабораторные данные отравления углекислым газом. Экспозиция к 7,5 % двуокиси углерода в течение 15 мин может привести к снижению общего числа эозинофилов, повышению содержания сахара в крови, увеличению РСО2 и Н+. После вдыхания 7 — 14 % двуокиси углерода в течение 10 — 20 мин может повыситься концентрация катехоламинов в плазме.

и) Лечение отравления углекислым газом. Первоначальные обязательные меры при лечении тяжелых симптомов, наблюдаемых после вдыхания двуокиси углерода, включают немедленное удаление от источника газа, обеспечение адекватного поступления кислорода и внимательное наблюдение за состоянием дыхательных путей, дыханием и кровообращением. Чуть было не ставший летальным случай СО2-эмболии, наблюдавшийся во время лапароскопии и гистероскопии, был успешно вылечен с помощью сердечно-легочного шунтирования. Симптоматического и поддерживающего лечения бывает достаточно. Антидотов нет.

Редактор: Искандер Милевски. Дата обновления публикации: 21.12.2022

– Также рекомендуем “Отравление сероуглеродом и его лечение”

Все чаще говорят о том, что повышенное содержание углекислого газа в воздухе негативно влияет на самочувствие человека. Но как определить качество воздуха? Какие меры принять по его улучшению? Какая вообще допустимая норма СО2 в помещении? Расскажем об этом, и начнем с того, как влияет углекислый газ на человеческий организм и чем он опасен.

Чем опасен для человека углекислый газ

Мы вдыхаем кислород, а выдыхаем углекислый газ, и это общеизвестно. За 1 час взрослый человек без физических нагрузок потребляет около 25 литров кислорода и выделяет примерно 22 литра углекислого газа, а во время тренировок, активных движений это количество возрастает до 36 литров. Воздух, который мы выдыхаем, содержит в 100 раз больше этого компонента, чем тот, что содержится в атмосфере. Однако многие не задумываются о том, что СО2 накапливается в помещении с недостаточной вентиляцией, изменяя состав и качество воздуха. По сути, это побочный продукт нашей жизнедеятельности, а мы, находясь в закрытом помещении, вынуждены вдыхать его повторно. Загрязненный воздух провоцирует ухудшение самочувствия у людей. Самые распространенные «симптомы» – сонливость, апатия, потеря концентрации, головная боль.

Влияние углекислого газа

Углекислый газ является неотъемлемой частью воздушной смеси, но его концентрация на улице не высока – всего около 400-450ppm (миллионные доли, parts per million), что соответствует 0,04% объемной концентрации. Чем больше промышленных предприятий расположено в жилом районе, тем выше будет концентрация загрязняющих веществ и углекислого газа. Поэтому для таких районов характерны повышенные нормы, а для зон с благоприятной экологической обстановкой – наоборот, пониженные. Норма уровня СО2 в помещении превышает уличные значения примерно в 1,5 раза, то есть до 600ppm.

Концентрация в 800ppm уже считается небезопасной, а при 1000ppm, то есть 0,1% объемной концентрации, возникают первые признаки «отравления» (беспричинная вялость, затрудненное дыхание). Однако и эти значения все еще входят в норму: превышением по санитарным нормативам считается уровень выше 1400ppm. При таких показателях уже трудно концентрироваться на выполнении заданий, если человек на работе, и трудно нормально засыпать, если речь идет об отдыхе дома.

Критические величины – более 3000ppm (0,3%). В этом случае быстро развиваются признаки кислородного голодания, тошнит, учащается пульс.

Симптомы воздействия углекислого газа

О том, что нормы СО2 в помещении (ppm) действительно влияют на самочувствие учащихся, проживающих и работающих, свидетельствуют многочисленные исследования, проводившиеся в странах Азии и Европы. Среди них:

  • Индийские ученые из Калькутты определили, что СО2 – опасный токсин, в повышенной концентрации приводящий к биохимическим изменениям вплоть до клеточных мембран, а также провоцирующий ацидоз. Исследовали около 600 человек из промышленных районов и пригорода, и выяснили, что у тех, кто живет в загазованной атмосфере, в среднем на 60% выше уровень бикарбоната в сыворотке крови.
  • Ученые Робертсон из Великобритании рассчитал, что неблагоприятные изменения в человеческом организме начинаются уже при содержании СО2 в пределах 426 ppm. Более существенные превышения провоцируют кратковременное перевозбуждение, непрекращающееся беспокойство и снижение желания проявлять физическую активность.
  • Группа ученых из Финляндии во главе с Olli Seppanen задействовали в своем эксперименте более 30 тысяч человек и обнаружили, что в тех офисах, где концентрация углекислого газа не превышает 800ppm, люди работают с большей концентрацией внимания, реже жалуются на головную бол и меньше болеют респираторными инфекциями.
  • В Италии ученые (члены Европейской комиссией DG SANCO в рамках программы «Health Effects of School Environment»), исследовали влияние СО2 на детей (эксперимент проводился в 2006 году) и выявили, что при превышении уровня в 1000ppm у детей в 2 раза выше риск появления ринита, а сухой кашель возникает в 3,5 раза чаще. Дети, которые долго находятся в загазованных помещениях, имеют более уязвимую носоглотку.
  • Корейские специалисты исследовали связь между астмой и концентрацией углекислого газа в квартирах, где живут больные дети. Выяснилось, что содержание СО2 напрямую влияет на количество приступов.
  • Аудиторская группа «KPMG» (Нидерланды) и ученые из Мидлсекского университетом (Великобритания) и провели эксперимент среди добровольцев – сотрудников офиса. Они доказали, что при превышении уровня в 800ppm внимательность снижалась на 30%, на уровне 1000ppm у людей начинались головные боли, Когда уровень достиг 1500ppm, то у большинства (80%) появилась усталость, а при 2000ppm 60% работников не смогли сосредоточиться на своих обычных действиях.
Про анемометры:  Метеорологическая станция ведет наблюдение за направлением ветра. результатом одного измерения является одно из восьми возможных направлений, которое записывается при помощи минимально возможного количества бит. станция сделала 216 измерений. каков информационный объем результатов наблюдения? ответ укажите в байтах — Школьные

Все эти исследования так или иначе подтверждают: духота, головокружения, падение работоспособности и прочие симптомы общих недомоганий возникают не от недостатка О2, а от избытка СО2.

В каких случаях необходим контроль уровня углекислого газа

Существует 4 класса качества воздуха (согласно ГОСТ Р ЕН 13779):

  • IDA 1 или высокое качество, менее 400ppm
  • IDA 2 или среднее качество, около 400-600ppm
  • IDA 3 или приемлемое, от 600ppm до 1000ppm
  • IDA 4 или низкое, свыше 1000ppm

Невозможно уменьшить выделение углекислого газа: он образуется при дыхании, поступает с улицы (особенно если окна выходят на автомобильную трассу), выделяется при горении камина, при работе газовой плиты, котла или колонки.

Однако можно контролировать количество СО2 в помещении с помощью специальных датчиков и своевременно обеспечивать вентиляцию, не усугубляя негативные процессы и не ухудшая состояние людей. Особенно необходимы такие измерительные приборы в помещениях, где учатся дети, находятся на лечении астматики или проходят техпроцессы, требующие повышенной концентрации внимания от сотрудников. Понятно, что «на глаз» эти величины не определить, к тому же, люди обладают разными порогами чувствительности.

Обычно датчики объединяют с оборудованием вентиляционной системы. При этом важно, чтобы вентиляция обладала достаточно производительностью. Нормативы предписывают такой стандартный воздухообмен: для конференц-залов и аудиторий 25,5 м³/ч свежего воздуха, для ресторанов и офисов – 34 м³/ч, для больниц и жилых помещений – не менее 42,5 м³/ч в расчете на 1 человека.

Нормы углекислого газа в жилых помещениях

Для жилых помещений действуют строительные нормативы концентрации СО2, в соответствии с  ГОСТ 30494-2011, однако мнения физиологов на этот счет отличаются (они считают, что нормативы завышены и не могут обеспечить безопасность в действительности). Выделяют такие уровни «загазованности»:

  • Атмосферный воздух, хорошее бодрое самочувствие: 400-600ppm по нормам и 300-400 по мнению физиологов;
  • Среднее качество – 800-1000, однако на практике при верхнем пороговом значении каждый 2-й ощущает вялость, духоту, сонливость;
  • Допустимая норма 1000-1400. Эти величины считаются предельно допустимыми значениями, но на практике у многих людей уже снижается внимательность, ухудшается восприятие и способность к обработке информации, нарушается дыхание, пересыхает слизистая в носоглотке;
  • Воздух низкого качества – выше 1400 – провоцирует чувство сильной усталости, люди становятся безынициативными, не могут сосредоточиться на обычных делах, плохо засыпают. При превышении более 2000ppm 70% людей допускают ошибки в работе.

Нормы в школах

Чем больше углекислого газа в классе, тем сложнее воспринимать информацию и справляться с учебной нагрузкой. Так, в США действуют рекомендации, согласно которым концентрация СО2 в учебных помещениях не должна превышать 0,06%. В России по действующим стандартам объемная доля может составлять 0,08%. На практике такие величины соблюдаются редко – возможно 2-х или даже 3-х кратное превышение, из-за чего возникают потливость, заложенность носа, высокая утомляемость. Герметичные пластиковые окна существенно ухудшают естественную вентиляцию: в классе, где учится 25-30 человек, углекислый газ накаливается вдвое выше нормы всего за полчаса, то есть даже раньше, чем закончится урок. Поэтому рекомендуют проветривать помещение каждую перемену (если нет возможности провести комплексную модернизацию вентиляционной системы).

Нормы в офисах

Повышенное содержание углекислого газа в офисах провоцирует те же проблемы, что и в случае со школьниками в учебных учреждениях: производительность труда падает, а число ошибок растет. Согласно СанПин, допустимыми считаются уровни в диапазоне от 800 до 1400ppm, однако на практике уже при 1000 (0,1%) возникают признаки «передозировки».

В помещениях, где используется кондиционер, проблема только усугубляется. Ведь охлажденный воздух кажется комфортным, окна не открываются, вот только снижение температуры не приводит к понижению концентрации СО2. Поэтому важно установить специальный датчик, усовершенствовать систему вентиляции и следить за тем, чтобы плотность размещения сотрудников соответствовала действующим строительным стандартам – от 4 до 6,5 м2 на каждого человека.

Выводы

В квартирах, офисных зданиях и детских образовательных учреждениях наиболее выражена проблема с вентиляцией. Она усугубляется и тем, что между строительными и санитарно-гигиеническими нормативами есть существенные расхождения. Если ГОСТ допускает превышение нормы СО2 до 1400ppm, то физиологи верхним предельным значением называют 800-1000.

На ситуацию сильно влияет и строительство с нарушениями: недостаточная вентиляция и установка пластиковых окон, кондиционеров без обеспечения соответствующего притока свежего воздуха. В помещениях, где постоянно находятся люди и невозможно постоянно держать открытыми окна, следует установить датчики контроля СО2 и компактную приточную вентиляцию, помогающую стабильно снижать уровень углекислого газа, исключая его пагубное воздействие на здоровье.

Гиперкапния

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

Гиперкапния – это повышение содержания углекислого газа в артериальной крови более 45 мм рт. ст. Состояние чаще всего развивается при снижении вентиляции легких на фоне ХОБЛ и обострения бронхиальной астмы. Причиной синдрома также выступают нервно-мышечные патологии, травмы ребер, критические состояния. Гиперкапния проявляется повышением частоты и нарушением ритма дыхания, дисфункцией миокарда, разнообразной неврологической симптоматикой. Для диагностики используется анализ газов крови, рентгенография ОГК, спирометрия. Лечение включает адекватную респираторную поддержку и комплексную медикаментозную терапию.

Подтвеждение правильной интубации

На сегодняшний день рекомендации категоричны: капнография должна быть использована в качестве основного подтверждающего метода, что произведена интубация трахеи, а не пищевода. При попадании эндотрахельной трубки в пищевод может наблюдаться кратковременный подъем концентрации CO2 за счет находящегося в ротоглотке газа. Но затем за несколько дыхательных циклов концентрации СO2 снижается до нуля.

Контроль правильности выполнения сердечно-легочной реанимации

Много лет назад было показано, что если во время проведения сердечно-легочной реанимации (СЛР) PetСO2 оставался ниже 7-10 мм рт. ст., в подавляющем большинстве случаев полноценного восстановления функций ЦНС в постреанимационном периоде у пострадавшего не происходило. В настоящее время капнография рекомендована как важный компонент контроля правильности проводимых мероприятий на разных этапах СЛР.

Внутривенное введение гидрокарбоната натрия вызывает увеличение PetСO2, которое не имеет отношения к эффективности массажа сердца.

3. Резкое устойчивое повышение значений PetCO2 (обычно ≥40 мм рт. ст.) подтверждает восстановление спонтанного кровообращения;

4. Внезапное, в течение 5-10 дыхательных циклов, падение PetСO2 почти до нуля – характерный признак остановки кровообращения.

Возможные причины низкого PetСO2 во время СЛР

  • Погрешности в методике в правильности выполнения массажа сердца;
  • Гипервентиляция;
  • Интубация пищевода;
  • Смещение эндотрахеальной трубки;
  • Массивная ТЭЛА;
  • Тяжелая гиповолемия;
  • Напряженный пневмоторакс;
  • Тампонада сердца.

Осложнения

При быстром нарастании количества СО2 в крови развивается отек головного мозга, который результирует гиперкапнической комой. При этом в нервной ткани активизируется гликолиз и образование лактата, что усиливает явления ацидоза и усугубляет состояние больного. Опасным для жизни признано значение рН крови менее 7,2. При хронической вентиляционной недостаточности нарушается работа дыхательного центра и его адаптация к изменениям показателей кислорода в крови.

Про анемометры:  Склонение существительного "мера"

Патогенез

В норме во вдыхаемом воздухе находится около 0,03% углекислого газа, тогда как в выдыхаемом – до 4%. Такая разница в концентрациях обусловлена процессами тканевого дыхания, в результате которых в венозную кровь попадает большое количество CO2. Еще больше углекислого газа (до 5,5%) находится в альвеолярной среде, которая включает анатомическое мертвое пространство, не участвующее в процессах газообмена.

Удаление двуокиси углерода из организма происходит по градиенту давления: газ диффундирует через альвеолярные стенки, выделяется в окружающую среду на выдохе. Проницаемость легочных мембран для СО2 составляет до 600 мл в минуту при давлении в 1 мм рт. ст., что в 20-25 раз больше, чем показатель диффузионной способности кислорода. Поэтому гиперкапния встречается реже гипоксемии, в основном при тяжелых дыхательных расстройствах.

При нарушении вентиляционной функции легких и развитии гиперкапнии в крови снижается показатель рН, возникает респираторный ацидоз. Патологическое состояние вызывает сужение сосудов легких при одновременном расширении артерий других органов тела, что ухудшает диффузию газов и усугубляет имеющиеся нарушения. При острой гиперкапнии происходит церебральная вазодилатация, увеличивается внутричерепное давление.

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

Обструктивные нарушения

Увеличение сопротивления во время выдоха сопровождается уменьшением скорости выделения CO2, и, часто, увеличением PetСO2. На капнограмме «фаза плато» становится наклонной.

Наиболее частые причины:

  • Бронхоспазм;
  • Частичная обструкция бронхов;
  • Перегиб или частичная обструкция эндотрахельной или трахеостомической трубки.

Выбор параметров ИВЛ

При нормальной функции легких существует небольшой градиент 3-5 мм рт. ст. между уровнем СO2 в артерии (PaCO2) и уровнем углекислого в конце выдоха (PetСO2). Но при любом увеличении объема мертвого пространства (анатомического, аппаратного, альвеолярного), или в случае нарушения диффузии CO2 через альвеолокапиллярную мембрану (например, тяжелый ОРДС), этот градиент возрастает, причем, мало предсказуемым образом.

Практически любое поражение легких, будь то пневмония, эмфизема, астма, ХОБЛ или нарушение гемодинамики со снижением перфузии легких (например, кровотечение, сердечная недостаточность, любой вид шока и т.д.) приводят к росту мертвого пространства и снижению PetСO2.

Внимание. У больных с легочной патологией и (или) нарушениями гемодинамики нельзя проводить коррекцию вентиляции, ориентируясь только на капнограмму.

Вот только до сих пор в стране имеется не столь много больниц, где существует возможность проведения круглосуточного мониторинга газов крови. В то же время существует категория больных, у которых метод контроля PaCO2 по уровню PetСO2 при проведении ИВЛ обеспечивает приемлемую для клинических целей достоверность результатов. В первую очередь это больные с поражением центральной нервной системы (ТЧМТ, инсульты, другие нейрохирургические вмешательства) и (или) пациентов других профилей без грубых легочных и гемодинамических нарушений. У большинства пациентов ИВЛ проводится в режиме нормовентиляции – ориентируются на PetСO2 = 34-40 мм рт. ст.

Гиперкапния – лечение в Москве

Течение гиперкапнии определяется ее первопричиной, скоростью развития и степенью тяжести симптоматики. Более благоприятный прогноз определяется для пациентов с отсутствием органических поражений легочной паренхимы или дыхательной мускулатуры. Профилактика заключается в предупреждении и раннем выявлении хронических заболеваний легких, индивидуальном подборе параметров при проведении ИВЛ.

Лечение гиперкапнии

При острой гиперкапнии назначаются неотложные лечебные мероприятия, которые направлены на стабилизацию дыхательной функции. Терапия проводится в ОРИТ и начинается с восстановления адекватной вентиляции: проверки проходимости дыхательных путей, назначения неинвазивной или инвазивной респираторной поддержки с положительным вентиляционным давлением. Фармакотерапия гиперкапнии включает такие группы препаратов:

  • Бронходилататоры. Лекарства расширяют просвет бронхов и облегчают вентиляцию легких, уменьшают размеры мертвого пространства, благодаря чему избыток СО2 быстрее выводится из организма.
  • Муколитики. Медикаменты усиливают дренажную функцию бронхов, способствуют выведению вязкой мокроты из дыхательных путей, которая может препятствовать нормальному газообмену.
  • Диуретики. Препараты используются при осложнении гиперкапнии отеком мозга и перегрузкой кардиоваскулярной системы. Назначаются под постоянным контролем водного баланса, иногда в комбинации с внутривенной инфузионной терапией.

После стабилизации состояния пациентам проводится этиопатогенетическая терапия, направленная на ликвидацию основного заболевания, вызвавшего гиперкапнию. Помимо медикаментов, в комплексном лечении применяются методики постурального дренажа, лечебной физкультуры, физиотерапии. При некоторых нервно-мышечных болезнях длительная ИВЛ является единственно возможным способом поддержания баланса газов крови.

Выдыхаемый воздух является смесью воздуха мертвого пространства и альвеолярного воздуха, поэтому его состав определяется:

(1) количеством воздуха мертвого пространства;

(2) количеством альвеолярного воздуха в этой смеси.

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

Парциальные давления кислорода и двуокиси углерода в разных порциях спокойного выдоха

На рисунке выше показаны прогрессирующие изменения парциального давления кислорода и двуокиси углерода в выдыхаемом воздухе в течение одного выдоха. Первая порция этого воздуха (воздух мертвого пространства дыхательных путей) является типичным увлажненным воздухом .

В последующих порциях к воздуху мертвого пространства примешивается все большее количество альвеолярного воздуха, пока из мертвого пространства не вымывается весь воздух, содержавшийся там до начала выдоха. В конце выдоха выходит только альвеолярный воздух, поэтому для сбора альвеолярного воздуха можно просто собрать последнюю порцию выдыхаемого воздуха после форсированного выдоха, вытолкнувшего из мертвого пространства весь воздух, содержащийся там до начала выдоха.

При нормальном выдохе выдыхаемый воздух содержит воздух как из мертвого пространства, так и из альвеол, т.е. они находятся в диапазоне между данными состава альвеолярного воздуха и увлажненного атмосферного воздуха.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

– Также рекомендуем “Диффузия газов через дыхательную мембрану. Дыхательная мембрана легких”

1. Зоны кровотока в легких. Разновидности легочного кровотока2. Кровоток в легких при физической нагрузке. Легочный кровоток при сердечной недостаточности3. Обмен жидкости в капиллярах легких. Обмен интерстициальной жидкости в легких4. Отек легких. Механизмы отека легких5. Жидкость в плевральной полости. Плевральная жидкость и плевральный выпот6. Газообмен в легких. Диффузия газов и газообмен7. Парциальное давление газов. Давление паров воды8. Диффузия газов через жидкости. Механизмы диффузии газов через жидкости9. Состав альвеолярного воздуха. Увлажнение воздуха в дыхательных путях10. Концентрация и парциальное давление кислорода в альвеолах. Выдыхаемый воздух

Диагностика

Обследованием пациентов с острой формной гиперкапнии занимаются врачи-реаниматологи в рамках экстренного оказания медицинской помощи. Хронические варианты дыхательных нарушений находятся в компетенции пульмонолога. По показаниям к консультации привлекают кардиолога, невролога. Для оценки степени тяжести гиперкапнии и выявлении первопричины ее развития проводится:

  • Рентгенография грудной клетки. При острой гиперкапнической недостаточности на фоне ХОБЛ или бронхиальной астмы определяется картина «чистых» легких. Другие причины нарушений состава газов крови могут визуализироваться в виде диффузных двусторонних затемнений, лобарного или сегментарного поражения. На рентгенограммах также можно определить травмы ребер.
  • Спирометрия. Исследование функциональной способности легких необходимо пациентам с хронической гиперкапнией для поиска возможных провоцирующих факторов. При эмфиземе наблюдается необратимое снижение ОФВ и ФЖЕЛ, тогда как для бронхиальной астмы типична частично обратимая обструкция.
  • ЭКГ. При исследовании определяются признаки перегрузки правых отделов сердца, ишемии миокарда, гипертрофии левого желудочка. У пациентов с длительно существующей пульмонологической патологией диагностируется типичная картина хронического легочного сердца.
  • КТ головного мозга. Исследование проводится для исключения неврологических причин гиперкапнии, при подозрении на развитие отека легких на фоне острой быстропрогрессирующей дыхательной недостаточности. Для уточнения диагноза назначается МРТ головного мозга.
  • Анализ газового состава крови. По результатам исследование определяется повышение уровня СО2 при одновременном снижении содержания кислорода. Дополнительно исследуется уровень бикарбонатов: возрастание значение более 26 ммоль/л указывает на хроническую гиперкапнию, поскольку для активации компенсаторных механизмов требуется время.

При концентрации углекислого газа в выдыхаемом воздухе до 4 человек Реанимационная школа профессораСергея Васильевича Церенко

Оксигенотерапия при гиперкапнии

Контроль за вентиляцией

Капнография традиционно применяется для контроля за вентиляцией во время проведения ИВЛ. Реже – при сохраненном спонтанном дыхании пациента.

Быстрое снижение PetСO2 до нуля

Быстрое снижение PetСO2 до нуля может быть обусловлено несколькими причинами:

  • Остановкой дыхания;
  • Обтурацией, смещением эндотрахеальной или трахеостомической трубки;
  • Остановкой кровообращения;
  • Нарушением забора газов (смещение, обтурация канюли, попадание воды);
  • Неисправность аппарата ИВЛ;
  • Неисправностью капнографа.

Быстрое снижение PetСO2, но не до нулевых значений

Наиболее часто встречающиеся причины быстрого снижения PetСO2 < 36 мм рт. ст. (см. Рис.4), но не до нулевых значений – капнографическая кривая сохраняется:

  • Гипервентиляция при аппаратном дыхании, или одышка – на спонтанном;
  • Смещение эндотрахеальной трубки;
  • Тромбоэмболия легочной артерии;
  • Кровотечение;
  • Пневмоторакс;
  • Ателектаз;
  • Смещение канюли.
Оцените статью
Анемометры
Добавить комментарий