Прибор для измерения температуры воздуха

Прибор для измерения температуры воздуха Анемометр

Термо́метр (греч.  «тепло» +  «измеряю»), также гра́дусник — измерительный прибор для измерения температуры различных тел и сред (воздуха, почвы, воды и т. д.). По принципу измерения существует несколько видов термометров:

  • жидкостные;
  • механические;
  • электронные;
  • оптические;
  • газовые;

Прибор для измерения температуры воздуха

спиртовой термометр для измерения температуры воздуха

Прибор для измерения температуры воздуха

Электронный медицинский термометр

Прибор для измерения температуры воздуха

Прибор для измерения температуры воздуха

Цифровой кулинарный термометр

Содержание
  1. История изобретенияПравить
  2. Жидкостные термометрыПравить
  3. Механические термометрыПравить
  4. Электронные термометрыПравить
  5. Оптические термометрыПравить
  6. Технические термометрыПравить
  7. Максимальные и минимальные термометрыПравить
  8. Газовый термометрПравить
  9. ЛитератураПравить
  10. СсылкиПравить
  11. ИсторияПравить
  12. Физические основы измерения температурыПравить
  13. Основные уравнения, на которых базируется термометрияПравить
  14. Магнитная термометрияПравить
  15. Виды термометров по принципу действия
  16. Контактные
  17. Термометры сопротивления
  18. Электронные термопары
  19. Манометрические
  20. Бесконтактные пирометры
  21. Виды термометров по используемым материалам
  22. Описание термометров
  23. Критерии выбора
  24. Предложения торговой компании «Олдис»
  25. Описание температуры и влажности
  26. Особенности электронных измерителей температуры и влажности воздуха
  27. Потребители могут купить измерители влажности воздуха, имеющие разную специфику работы
  28. Как измерить влажность воздуха в домашних условиях с помощью психрометра
  29. Как измерить количество водяного пара
  30. Домашние метеостанции для удобного контроля микроклимата

История изобретенияПравить

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем, при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

Изобретение термометра также приписывают лорду Бэкону, Роберту Фладду, Санториусу, Скарпи, Корнелиусу Дреббелю, Порте и Саломону де Коссу, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точность. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В 1703 г. Амонтон (англ. ) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второй постоянной точкой — температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии барометра. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог Андерс Цельсий в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий «Observations of two persistent degrees on a thermometer» рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от атмосферного давления. Он предположил, что отметку 0 (точку кипения воды) можно откалибровать, зная, на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° — кипения воды). В таком виде шкала оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим — шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции — под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в «шкале Кельвина» послужило значение абсолютного нуля: −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометрыПравить

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

Ртутный медицинский термометр

Такой заменой стал галинстан (сплав металлов: галлия, индия, олова и цинка). Галлий применяют для измерения высоких температур. Также ртутные термометры все чаще с большим успехом заменяются платиновыми или медными термометрами сопротивления. Также все шире применяются и другие типы термометров.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация

Механические термометрыПравить

Оконный механический термометр

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла. По принципу действия отдалённо напоминают анероид.

Электронные термометрыПравить

Уличный электронный термометр

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.

Отсюда
  сопротивление при T °C,
  сопротивление при 0 °C, и константы (для платинового сопротивления) —

Оптические термометрыПравить

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Технические термометрыПравить

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом, во всех жизненных сферах.

Выделяют такие виды технических термометров:

  • термометры технические жидкостные;
  • термометры биметаллические ТБ, ТБТ, ТБИ;
  • термометры сельскохозяйственные ТС-7А-М;
  • термометры ртутные электроконтактные ТПК;
  • термометры лабораторные ТЛ;
  • термометры для нефтепродуктов ТН;
  • термометры для испытаний нефтепродуктов ТИН.

Максимальные и минимальные термометрыПравить

Электронный термометр. Поликлиника в Улан-Удэ

Газовый термометрПравить

Газовый термометр — прибор для измерения температуры, основанный на законе Шарля.

В 1787 году Шарль установил, что одинаковое нагревание любого газа приводит к почти одинаковому повышению давления, если при этом объём остается постоянным. При изменении температуры по шкале Кельвина давление идеального газа в постоянном объёме прямо пропорционально температуре. Отсюда следует, что давление газа (при V = const) можно принять в качестве количественной меры температуры. Соединив сосуд, в котором находится газ, с манометром и проградуировав прибор, можно измерять температуру по показаниям манометра.

В широких пределах изменений концентраций газов и температур и малых давлениях температурный коэффициент давления разных газов примерно одинаков, поэтому способ измерения температуры с помощью газового термометра оказывается малозависящим от свойств конкретного вещества, используемого в термометре в качестве рабочего тела. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.

  • Геращенко О.А., Федоров В.Г. Тепловые и температурные измерения. — Киев: “Наукова думка”, 1965. — С. 20—22. — 303 с.
  • A Review of Events That Expose Children to Elemental Mercury in the United States Архивная копия от 19 сентября 2015 на Wayback Machine / Environ Health Perspect; DOI:10.1289/ehp.0800337: «Exposure to small spills from broken thermometers was the most common scenario»
  • Отказ России от ртути и люминесцентных ламп. Дата обращения: 4 ноября 2018. Архивировано 4 ноября 2018 года.
  • Чем максимальный и минимальный термометры отличаются от обычного. Дата обращения: 26 ноября 2013. Архивировано 2 декабря 2013 года.

ЛитератураПравить

  • Гельфер Я. М. История и методология термодинамики и статистической физики. — Изд. 2-е, перераб. и дополн.. — М.: Высшая школа, 1981. — 536 с.
  • Лермантов В. В. // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.

СсылкиПравить

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 декабря 2021 года; проверки требуют 2 правки.

Термоме́трия — раздел прикладной физики и метрологии, посвящённый разработке методов и средств измерения температуры. В задачу термометрии входят: установление температурных шкал, создание эталонов, разработка методик градуировки и калибровки приборов для измерения температуры.

ИсторияПравить

Температура не может быть измерена непосредственно. В связи с этим термометрия в своём развитии прошла долгий и сложный путь для достижения единства температурных измерений. С давних времён известен метод качественной оценки температуры с помощью осязательных ощущений. Отсюда возникли понятия: горячий, тёплый, холодный. На основе чувственного восприятия природных явлений появились понятия: зимний холод, летняя жара, вечерняя прохлада, красное и белое каление, жар (в отношении повышенной температуры тела при заболевании).

В средних веках неоднократно был описан опыт, в котором предлагалось подержать одну руку в горячей воде, а другую ─ в холодной, после чего погрузить обе руки в смешанную воду. В результате первая рука ощущала смешанную воду как холодную, а вторая ─ как тёплую. Несмотря на высокую чувствительность организма к изменению температуры тела (до  ) количественное измерение температуры с помощью наших ощущений невозможно, даже в очень узком диапазоне.

Потребность в измерении температуры в познавательных и прикладных целях возникла в середине XVI столетия. Для таких измерений необходимо было воспользоваться функциональной зависимостью от температуры какого-нибудь, известного из наблюдений, параметра. Способность воздуха расширяться при нагревании была известна ещё в l веке Герону Александрийскому. Этим он объяснял почему огонь поднимается вверх. В 1597 г. Галилей предложил для температурных исследований термоскоп, который состоял из заполненного воздухом стеклянного баллончика, соединённого тонкой трубкой с сосудом, заполненным окрашенной жидкостью. Изменение температуры баллончика вызывало изменение уровня окрашенной жидкости. Существенным недостатком таких термометров была зависимость их показаний от атмосферного давления. Конструкцию термометра, подобного современным жидкостным стеклянным термометрам, связывают с именем ученика Галилея герцога тосканского Фердинанта ll. Термометр представлял собой заполненный спиртом запаянный стеклянный сосуд с вертикально расположенным указательным капилляром. Деления градусов были нанесены эмалевыми капельками непосредственно на трубку капилляра.

Метрологическая основа термометрии была заложена падуанским врачом Санторио. Используя термоскоп Галилея он ввёл две абсолютные точки, которые отвечали температуре при снегопаде и температуре в самый жаркий день, и регламентировал систему проверки, по которой все флорентийские термометры градуировались по образцовому санкорианско-галилеевскому прибору. В начале XVIII столетия был выдвинут ряд предложений, касающихся привязки термометрической шкалы к нескольким легко и надёжно воспроизводимым точкам, которые в дальнейшем получили название «реперных».

Значительная роль в становлении температурных измерений принадлежит Фаренгейту. Он впервые применил ртуть в качестве термометрического тела и создал воспроизводимую температурную шкалу. В шкале Фаренгейта за нуль принята температура смеси снега с нашатырём, а вторая точка соответствовала температуре тела здорового человека. Температура таяния льда в окончательном варианте шкалы составляет 32 градуса, температура тела человека ─ 96 градусов, а температура кипения воды, которая вначале была производной величиной, равна 212-ти градусам. Фаренгейту, который также был успешным предпринимателем, удалось впервые наладить серийное производство унифицированных термометров. Шкала Фаренгейта до сих пор используется в США для технических и бытовых измерений температуры.

В 1742 г. шведский математик и геодезист Цельсий предложил разбить в ртутном термометре диапазон между точками таяния льда и кипения воды на 100 равных частей. В первом варианте шкалы за 0 градусов была принята точка кипения воды, а за 100 градусов ─ точка плавления льда. В 1750 г. эта шкала была «обращена» одним из учеников Цельсия Стреммером. До начала XX века была также распространена шкала Реомюра, предложенная в 1730 г. французским зоологом и физиком Реомюром. Реомюр использовал в качестве термометрического тела 80 % раствор этилового спирта. Один градус шкалы Реомюра, как и у флорентийского термометра соответствовал изменению объёма жидкости на одну тысячную часть. За начало отсчёта была принята точка таяния льда, а температура кипения воды равнялась 80 градусам.

Физические основы измерения температурыПравить

Как было упомянуто выше, непосредственно температуру измерить невозможно. Об её изменениях судят по изменению других свойств тел, таких как объём, давление, электрическое сопротивление, термо-ЭДС, интенсивность излучения и т. п., которые связаны с температурой определёнными закономерностями. Поэтому методы измерения температуры по сути являются методами измерения вышеуказанных термометрических свойств. При разработке конкретного метода или прибора необходимо выбрать термометрическое тело, у которого соответствующее свойство хорошо воспроизводится и весьма существенно изменяется с температурой. Термометрическое свойство тела ─ это такое свойство, зависимость которого от температуры является монотонным и не имеет ощутимого гистерезиса, что даёт возможность использования его для измерения температуры.

Для измерения температуры необходимо также иметь единицу измерения и шкалу, по которой отсчитываются её значения от выбранного уровня. Принцип построения эмпирической температурной шкалы состоит в выборе двух основных легко воспроизводимых реперных точек, которым приписывают произвольные значения температуры   и  . Температурный диапазон между этими значениями делят на равное число частей   и часть   принимают за единицу измерения температуры. Далее выбирают физическое свойство ─ термометрическую величину  , например, объём жидкости, давление газа, электрическое сопротивление, термо-ЭДС и т. д., которую условно полагают линейно зависящей от температуры. Отсюда следует уравнение

где   ─ коэффициент пропорциональности. В интегральной форме ─

Для определения постоянных   и   используем вышеуказанные температуры   и  . После преобразования интегральное уравнение приобретает вид

Опыты показывают, что в природе не существует веществ, физические свойства которых строго линейно зависят от температуры. Коэффициент   сам является функцией температуры. Шкалы температур, построенные на разных температурных свойствах, совпадая в основных точках   и   дают расхождения в значениях температур как внутри указанного промежутка температур, так и за его пределами. Кроме упомянутого расхождения, к недостаткам эмпирических температурных шкал относится отсутствие их непрерывности, связанной с невозможностью термометрических тел работать во всём диапазоне возможных температур.

Термометр (от греч. thérme ─ тепло и metréo ─ измеряю) ─ прибор для измерения температуры.

В зависимости от методики измерений термометры подразделяются на две основные группы:

1. Контактные термометры, чувствительные элементы (датчики) которых вступают в непосредственный контакт с измеряемым объектом;

2. Неконтактные термометры, которые измеряют дистанционно интенсивность интегрального теплового или оптического излучения объекта;

3.Особую группу составляют специальные термометры, которые используют для измерения сверхнизких температур.

Контактные приборы и методы по принципу действия делятся на:

а) термометры контактные волюметрические, в которых измеряется изменение объёма (volume) жидкости или газа с изменением температуры;

б) Термометры диламетрические, в которых о температуре судят по линейному расширению различных твёрдых веществ при изменении температуры. В ряде случаев датчиком служит биметаллическая пластина, изготовленная из двух металлов с различными коэффициентами линейного расширения, которая изгибается при нагревании или охлаждении;

в) Термометры термоэлектрические, датчики которых ─ термопары, представляющие собой спаянные по концам два разнородных проводника. При наличии разности температур спаев в термопаре возникает термо-ЭДС. Температура измеряется по величине термо-ЭДС, либо по величине тока в цепи термопары;

г) Термометры сопротивления ─ принцип действия которых основан на изменении сопротивления проводника или полупроводникового прибора (термистера) с изменением температуры.

К неконтактным методам и приборам относятся:

а) Радиометрия (радиометры) ─ измерение температуры по собственному тепловому излучению тел. Для невысоких и комнатных температур это излучение в диапазоне инфракрасного диапазона волн.

б) Тепловидение (тепловизоры) ─ радиометрическое измерение температуры с пространственной разрешающей способностью и с превращением температурного поля в телевизионное изображение, иногда с цветовым контрастом. Позволяет измерять градиенты температуры, температуру среды в замкнутых пространствах, например, температуру жидкостей в резервуарах и трубах.

в) Пирометрия (пирометры) ─ измерение высоких температур самосветящихся объектов: пламени, плазмы, астрофизических объектов. Используется принцип сравнения либо яркости объекта с стандартом яркости (яркостный пирометр и яркостная температура); либо цвета объекта с цветом стандарта (цветовой пирометр и цветовая температура); либо тепловой энергии, излучаемой объектом, с энергией, испускаемой стандартным излучателем (радиационный пирометр и радиационная температура).

Основные уравнения, на которых базируется термометрияПравить

1.Уравнение газового состояния Клапейрона. Это уравнение используется для построения идеально-газовой температурной шкалы.

2. Уравнение теплового расширения объёма жидкостей и газов, линейно зависящего от температуры, является основой волюметрического метода измерения температур.

3. Уравнения теплового линейного расширения твёрдых тел от температуры лежит в основе дилатометрического метода измерения температур.

4. На уравнении линейной зависимости сопротивления проводников от температуры основаны термометры сопротивления.

5. Закон Стефана ─ Больцмана, который связывает функциональной зависимостью полную энергию теплового излучения и температуру, лежит в основе неконтактных методов измерения температуры.

где   — интегральная излучательная способность абсолютно чёрного тела,   ─ постоянная Стефана—Больцмана.

Магнитная термометрияПравить

  • Різак, 2006, с. 166─172.
  • Різак, 2006, с. 181.
  • Сивухин, 2005, с. 20;21.
  • . БСЭ (3-е изд.), 1974, т. 15. Дата обращения: 26 февраля 2015. Архивировано 27 февраля 2015 года.
  • Физика. Большой энциклопедический словарь, 1998, с. 368.
  • Трайбус М., Термостатика и термодинамика, 1970, с. 443—445.
  • Евдокимов И. Н. Методы и средства исследований. Часть 1. Температура, с. 31. Рос. гос. ун-т нефти и газа им. И. М. Губкина. Дата обращения: 26 февраля 2015. Архивировано 5 марта 2016 года.
  • Иванова Г.М. и др., Теплотехнические измерения и приборы, 1984, с. 18.
  • Базаров И. П. Термодинамика. — М.: Высшая школа, 1991. — 376 с. — ISBN 5-06-000626-3.
  • Белоконь Н. И. Основные принципы термодинамики. — М.: Недра, 1968. — 112 с.
  • Різак В.,Різак І., Рудавський Е. Кріогенна фізика і техніка. — К.: Наукова думка, 2006. — 512 с. — ISBN ISBN 966-87641-4-5.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. — М.: Физматлит, 2005. — 544 с. — ISBN 5-9221-0601-5.
  • Козлов М. Г. Метрология и стандартизация. Учебник. — М., СПб: Петербургский ин-т печати, 2001. — 372 с.
  • Иванова Г. М., Кузнецов Н. Д., Чистяков В. С. Теплотехнические измерения и приборы. — М.: Энергоатомиздат, 1984. — 232 с.
  • Трайбус М. Термостатика и термодинамика / Пер. с англ.. — М.: Энергия, 1970. — 504 с.
  • Физика. Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1998. — 944 с. — ISBN 5-85270-306-0.
  • Асланян А. М., Асланян И. Ю., Масленникова Ю. С., Минахметова Р. Н., Сорока С. В., Никитин Р. С., Кантюков Р. Р. Диагностика заколонных перетоков газа комплексом высокоточной термометрии, спектральной шумометрии и импульсного нейтрон-нейтронного каротажа // Территория «НЕФТЕГАЗ». 2016. № 6. С. 52-59.

Большинство технологических процессов корректно проходят только при определенной температуре. Кроме того, измеряемые температурные показатели помогают определять, насколько корректно используется затрачиваемая энергия.

  • Виды термометров по принципу действия
  • Виды термометров по использованию

Иными словами, это — та величина, которую нужно постоянно контролировать. Все виды приборов для измерения температуры делятся на контактные и бесконтактные. Также они классифицируются по материалам, принципам и способам действия.

Виды термометров по принципу действия

Процесс измерения температуры может основываться на разных физических процессах. Исходя из этого, выделяют 5 видов термометров.

Контактные

Такие приборы еще называют термометрами расширения. Они основаны на отслеживании изменения объема тел под действием меняющейся температуры. Обычно измеряемый диапазон температур составляет от -190 до +500 градусов по Цельсию.

К этой категории относятся жидкостные и механические устройства. Жидкостные представляют собой приборы в стеклянном корпусе, заполненные спиртом, ртутью, толуолом или керосином. Они прочные и устойчивые к внешним воздействиям. Температурный диапазон измерений зависит от типа используемой жидкости (наибольший — у ртутных, наименьший — у цифровых).

Механические могут работать с разными типами сред, включая жидкостные, газообразные, твердые или сыпучие. Универсальность позволяет использовать их в разных инженерных системах.

Термометры сопротивления

К этой категории относятся приборы, которые способны измерять электрическое сопротивление веществ, меняющееся в зависимости от температурных показателей. Рабочий диапазон этих устройств — от -200 до +650 градусов.

Такие термометры состоят из чувствительных термодатчиков и точных электронных блоков, контролирующих изменения проводимости, сопротивления и электрического потенциала. Обычно их встраивают в общую систему мониторинга и оповещения, туда, где нужно отслеживать меняющиеся параметры и не допускать их превышения.

В котельных установках наибольшее применение получили термометры сопротивления медные (ТСМ). Термометрами сопротивления можно измерять температуры от -50 до +600°С.

Электронные термопары

При нагревании эти приборы генерируют ток, что и позволяет измерять температуру. Принцип действия основан на замерах термоэлектродвижущей силы. Диапазон измерений в этом случае — от 0 до +1800 градусов.

Манометрические

Такие термометры учитывают зависимость между температурными показателями и давлением газа. В измеряемую среду помещают термобаллон, соединенный с манометром латунной трубкой. При нагреве термобаллона давление внутри него увеличивается, и эта величина измеряется манометром. Таким образом проводят замеры температуры в диапазоне от -160 до +600 градусов.

Бесконтактные пирометры

В основе этих приборов — инфракрасные датчики, считывающие уровень излучения. Они подразделяются на два вида: яркостные, проводящие измерения излучений на определенной длине волны (диапазон — от +100 до +6000 градусов), и радиационные, когда определяется тепловое действие лучеиспускания (от -50 до +2000 градусов). Они могут использоваться в том числе и для определения температуры нагретого металла, а также при наладке и испытаниях котлов.

Виды термометров по используемым материалам

Здесь различают 7 категорий:

  • Жидкостные. Представляют собой корпус, заполненный жидкостью, которая подвержена температурному расширению. Колба с жидкостью прикладывается к шкале. При нагреве жидкость расширяется, и столбик растет, а при охлаждении — наоборот, сжимается (уменьшается). Погрешность измерений такими приборами составляет менее 0,1 градуса.
  • Газовые. Принцип действия — тот же, что и у жидкостных, но в качестве заполнителя для колбы выбирается инертный газ. Это позволяет существенно увеличить температурный диапазон измерения (если для жидкостных предел — +600 градусов, то для газовых — +1000 градусов). С их помощью можно измерять температуру в различных раскаленных жидких средах.
  • Механические. В основе действия — принцип деформации металлической спирали. Часто эти термометры комплектуются стрелочным “дисплеем”. Устанавливаются в спецтехнике, автомобилях, на автоматизированных линиях. Нечувствительны к ударам.
  • Электрические. Работают, измеряя уровень сопротивления проводника при разных температурных показателях. В качестве проводника могут использоваться разные металлы (например, медь или платина). Соответственно, и диапазон измерений таких устройств будет отличаться. Чаще всего такие модели применяются в лабораторных условиях.
  • Термоэлектрические. В конструкции предусмотрено два проводника, проводящие замеры по физическому принципу на основе эффекта Зеебека. Эти устройства очень точные, работают с погрешностью до 0,01 градуса и подходят для высокоточных измерений в производственных процессах, когда рабочая температура превышает 1000 градусов.
  • Волоконно-оптические. Чувствительные датчики из оптоволокна (оно натягивается и сжимается или растягивается при изменении температуры, а прибор фиксирует степень преломления проходящего луча света). Допустимый диапазон измерений — до +400 градусов, а погрешность — не более 0,1 градуса.
  • Инфракрасные. Непосредственный контакт с измеряемым веществом не требуется: прибор генерирует инфракрасный луч, который направляется на изучаемую поверхность. Это современный вид бесконтактных термометров, которые работают с точностью до нескольких градусов и подходят для высокотемпературных измерений. С их помощью можно измерять даже температуру открытого пламени.

Компания «Измеркон» предлагает как разные виды термометров, так и комбинированные устройства, в том числе манометры-термометры или гигрометры-термометры для автономной работы с энергонезависимой памятью, обеспечивающей постоянную фиксацию результатов измерений.

Описание термометров

Торговая компания «Олдис» рада предложить посетителям интернет-магазина широкий выбор профессиональных и бытовых термометров воздуха. Подробное техническое описание, характеристики и визуализированный вид приборов, представленные в карточках товара, помогут в полной мере составить представление об устройстве и принять решение о покупке.

Термометры контактного и бесконтактного типа, ртутные термометры, логгеры данных пищевые термометры отличаются высоким качеством исполнения, поставляются в фирменной упаковке завода-изготовителя и снабжены сертификатом соответствия. Профессиональные средства измерения температуры включены в госреестр СИ и могут использоваться в любой отрасли промышленности, медицины, науки.

Критерии выбора

Компания предлагает приобрести показывающие термометры, отличающиеся назначением и техническими характеристиками. Перед тем, как совершить покупку, определитесь с:

  • диапазоном и точностью измерений;
  • типом источника питания;
  • областью применения;
  • массой и габаритными размерами.

На страницах интернет-каталога можно выбрать и купить термометры со встроенными или выносными зондами, классом защиты корпуса от IP20 до IP65, максимальной температурой измерений до 18200 С.

Карманные, портативные и лабораторные термометры от ведущих европейских и российских производителей измерительных приборов отличаются низкой погрешностью измерений, современным дизайном и длительными гарантийными сроками. Некоторые модификации оснащены функцией измерения влажности воздуха.

Стоимость устройства напрямую зависит от вышеуказанных параметров. Затрудняетесь сделать выбор? Оставьте контактные данные, и специалисты компании перезвонят в кратчайшее время.

Предложения торговой компании «Олдис»

«Олдисс» – один из ведущих поставщиков профессионального измерительного оборудования в центральном регионе. Компания является официальным дистрибьютором европейских и российских производителей. Длительный опыт работы позволил завоевать уважение Клиентов и заслужить репутацию надёжного партнёра.

В каталоге интернет-магазина компании можно выбрать и купить термометры:

  • карманного исполнения;
  • контактного типа без зондов;
  • электронного типа для лабораторных исследований;
  • для пищевого сектора с сигналами тревоги;
  • типа «измеритель-регистратор» с Bluetooth-интерфейсом.

В наличии и под заказ свыше 100 моделей цифровых и электронных термометров от таких производителей, как «ТЕРМЕКС», «Hanna Instruments, Inc», «ТЕХНО-АС». Эти бренды не нуждаются в рекламе и смогли завоевать свой авторитет благодаря исключительному качеству и надёжности оборудования.

Описание температуры и влажности

Температура и Влажность для измерения влажности воздуха в помещении позволяют измерить изменения в концентрации электролита, которым покрыт материал с электроизоляционными свойствами. К таким материалам относятся пластмасса и стекло. Некоторые варианты устройств обладают функцией автоматического подогрева. Они измеряют точку росы.

Особенности электронных измерителей температуры и влажности воздуха Помимо этого, учитываются колебания температуры, поскольку она может оказывать влияние на работу прибора, хоть и незначительное, поэтому устройства оснащаются термометрами, облегчающими их эксплуатацию.

Электронные модификации точны в измерениях, чего не могут предложить механические конструкции. Процент погрешностей в их работе крайне низкий.

Продажа приборов температуры и влажности — основное направление деятельности компании. Купить приборы температуры и влажности в нашем интернет-магазине просто, выберите подходящую по характеристикам модель и нажмите заказать в один клик, и.

Особенности электронных измерителей температуры и влажности воздуха

Прибор для измерения температуры воздуха

Возможности электронного прибора для измерения влажности воздуха в помещении позволяют измерить изменения в концентрации электролита, которым покрыт материал с электроизоляционными свойствами. К таким материалам относятся пластмасса и стекло. Некоторые варианты устройств обладают функцией автоматического подогрева. Они измеряют точку росы.

Потребители могут купить измерители влажности воздуха, имеющие разную специфику работы

  • Измерение проводимости воздуха – устройства определяют значение абсолютной влажности. Чтобы вычислить показатель относительной влажности требуется измерить температуру.
  • Оптоэлектронные измерения – приборы измеряют точку росы, используя при этом охлажденное зеркало. Оно замораживается, после чего происходит процесс его постепенного нагревания.
  • Резистивные измерения – в основу работы устройств положен эффект изменения проводимости полимеров или солей под воздействием уровня влажности.
  • Емкостные измерения – в процессе работы агрегат отслеживает изменение емкости конденсатора (полимерного или металлооксидного).

Как измерить влажность воздуха в домашних условиях с помощью психрометра

Прибор для измерения температуры воздуха

Психрометры предназначены для определения показателя относительной влажности. Прибор функционирует за счет физических свойств жидкости, в частности, ее способности испаряться. В процессе этого возникает разница между температурными показаниями влажного и сухого термометра. Жидкостью во время испарения теряется часть энергии, из-за чего происходит снижение температуры. Это изменение улавливает термометр.

Конструкция психрометра состоит из пары спиртовых или ртутных психрометров. Во время испарения жидкости происходит охлаждение влажного термометра. Чем ниже уровень влажности воздуха, тем быстрее испаряется жидкость. В свою очередь, чем суше воздух, тем меньше температурный показатель, отображаемый мокрым термометров. За счет этого и возникает разница между показаниями.

Прибор для измерения температуры воздуха

Обратите внимание! Независимо от того,  каким прибором измеряется влажность воздуха, не допускается его установка поблизости от радиаторов или кондиционеров, иначе измерения будут неточными. Кроме этого, нужно следить за состоянием материала для увлажнения. Он должен быть чистым и мокрым.

Некоторым психрометрическим гигрометрам нужны определенные температурные условия. Например, максимально низкий допустимый показатель для зимы составляет -15°С, для лета максимально высокая граница температуры равна 40°С. Диапазон измерений зависит от температуры, таблицу влажности воздуха с показателями окружающей среды можно использовать в качестве ориентира.

Как измерить количество водяного пара

Процесс измерения влажности с помощью психрометра очень прост. Помимо этого значения устройство измеряет еще и температурный параметр. Как правило, вместе со спиртовыми термометрами, закрепленными на пластиковой основе, производитель размещает психрометрическую таблицу относительной влажности воздуха, которая позволяет прочитать показания.

Существует одно важное условие, обеспечивающее точную работу приспособления. Психрометр крайне чувствителен к сквознякам, поэтому рекомендуется создать условия, при которых скорость перемещения воздушных масс в комнате не должна быть более 1 м/сек., иначе разница в показаниях, взятых с термометров, окажется намного больше, чем в действительности, что приведет к получению неточного результата.

Психрометрическая таблица влажности воздуха используется для расшифровки показаний психрометра. В первом столбце размещаются температурные показатели сухого термометра. Первая строка отображает разницу, возникающую в процессе измерения между показаниями обоих термометров. Чтобы получить фактический уровень относительной влажности, нужно взять значение, которое образуется на пересечении соответствующего параметра из первого столбца и первой строки.

Психрометр Ассмана – улучшенная модификация устройства, которая более точно выполняет измерения и не боится сквозняков, поскольку его термометры находятся под защитой от теплового воздействия и прямого попадания солнечных лучей благодаря металлическому корпусу.

Прибор для измерения температуры воздуха

Домашние метеостанции для удобного контроля микроклимата

Потребителям, уделяющим повышенное внимание к собственному здоровью и стремящимся приблизить показатели воздуха к оптимальному значению, производители климатической техники предлагают купить электронный гигрометр – измеритель влажности и температуры и барометр в одном приборе. Конструкция с подобным функционалом способна полноценно осуществлять контроль микроклимата. Однако цена таких устройств достаточно высока.

Такие приборы не только имеют большое количество функций, но и обладают декоративным дизайном. Они могут оптимально вписаться практически в любой интерьер комнаты. В продаже можно встретить и необычные сочетания, например, радио-няни со встроенным гигрометром. Эти устройства оптимизированы специально для детских комнат. Так же встречаются модели с функцией Wi-Fi. Они подключаются ко Всемирной сети интернет и отображают на дисплее прогноз погоды и другие данные.

Гигрометр станет незаменим помощником в поддержании оптимальных климатических условий в доме. Его показания помогают скорректировать работу увлажнителя или осушителя воздуха и привести уровень водяного пара в составе воздуха в норму.

Как измеряют температуру воздуха: методы, приборы, анализ данных

Температура воздуха: что это такое, измерение в градусах, изменения за сутки

7 495 645-6601

ФГУП МИА «Россия сегодня»

Про анемометры:  Купить со склада ДАТЧИКИ гбо для автомобиля с доставкой по России
Оцените статью
Анемометры
Добавить комментарий