Разница между полным сгоранием и неполным сгоранием – Разница Между – 2022

Разница между полным сгоранием и неполным сгоранием - Разница Между - 2022 Анемометр

Основные технические характеристики паровых и водогрейных котлов

Расчетные параметры, характеризующие работу котла, указываются в паспорте котла, составленном изготовителем по установленной форме (прил. 4 к ПБ 10-574–03) и хранящемся у владельца в течение всего срока эксплуатации.

На каждом котле должна быть прикреплена заводская табличка с маркировкой паспортных данных, нанесенных способом, обеспечивающим четкость и долговечность изображения.

На табличке парового котла должны быть нанесены следующие данные:

  • наименование, товарный знак организации-изготовителя;
  • обозначение котла;
  • номер котла по системе нумерации организации-изготовителя;
  • год изготовления;
  • номинальная паропроизводительность Dп в т/ч;
  • рабочее давление на выходе в МПа (кгс/см2);
  • номинальная температура пара на выходе в °С.

На табличке водогрейного котла должны быть нанесены следующие данные:

  • наименование, товарный знак организации-изготовителя;
  • обозначение котла;
  • номер котла по системе нумерации организации-изготовителя;
  • год изготовления;
  • номинальная теплопроизводительность Q в МВт (Гкал/ч); рабочее давление на выходе в МПа (кгс/см2);
  • номинальная температура воды на выходе в °С.

В обозначении парового котла приводятся:

  • тип,
  • паропроизводительность (т/ч),
  • абсолютное (избыточное) давление пара рп, (МПа или кгс/см2),
  • вид топлива (Г – газ, М – мазут);
  • котлы под наддувом обозначаются буквой Н.

Например: ДКВР-10/13; Е-25-2,4 ГМ; ДЕ-6,5/14-225 ГМ; Е-1/9-Г.

В обозначении водогрейного котла приводятся:

  • тип – КВ (котел водогрейный);
  • вид топлива (Г – газ, М (Ж) – мазут, соляра);
  • тип топки (Н – под наддувом);
  • номинальная тепловая мощность (МВт или Гкал/ч);
  • номинальная температура воды на выходе из котла, °С;
  • давление газа (Гн – низкое; Гс – среднее);
  • автоматизированный котел обозначается буквой «а»;
  • С – стальной.

Например: КВ-ГМ-10-50; КСВа-2,5-Гс; КВа-3-95; КВа-0,75Ж-115.

На каждом котле, введенном в эксплуатацию и после проведенных технических освидетельствований, должна быть на видном месте прикреплена табличка форматом не менее 300×200 мм с указанием следующих данных:

  • регистрационный номер;
  • разрешенное давление;
  • число, месяц и год следующего внутреннего осмотра и гидравлического испытания.

Основные технические характеристики паровых котлов:

  • номинальная паропроизводительность, Dп, т/ч – максимальное рабочее количество пара, вырабатываемого котлом, в течение 1 ч;
  • параметры получаемого пара:
  • рабочее (расчетное, или разрешенное) давление пара, рп, МПа (кгс/см2);
  • пробное давление, рпроб, МПа (кгс/см2);
  • вид пара (насыщенный, перегретый);
  • температура насыщенного пара, tнас, °С (при рабочем давлении пара рп или температуре перегретого пара, tпп, °С);
  • температура питательной воды, °С;
  • паровой и водяной объем котла, м3;
  • объем воды, м3;
  • время испарения этого объема, мин.

Основные технические характеристики водогрейных котлов:

номинальная теплопроизводительность (тепловая мощность), Q, Гкал/час (МВт) – максимальное рабочее количество теплоты, воспринимаемое водой, за 1 ч работы; 1 Гкал/ч = 1,163 МВт;

параметры воды:

  • рабочее давление воды, МПа (кгс/см2);
  • минимально допустимое давление воды рв при номинальной температуре tв;
  • пробное давление, рпроб, МПа (кгс/см2);
  • минимально допустимая температура воды на входе в котел, °С;
  • номинальная температура воды на выходе из котла, °С;
  • номинальный расход воды через котел, Gв, м3/ч, а также минимально и максимально допустимый;
  • гидравлическое сопротивление, не более, МПа.

Общие параметры, характеризующие паровые и водогрейные котлы:

  • вид топлива и его характеристики;
  • тип горелочного устройства;
  • поверхность нагрева котла: радиационная, конвективная, общая, S, м2;
  • расчетный КПД, брутто, % при сжигании газа и мазута;
  • сопротивление газового и воздушного трактов, Па (мм вод. ст.);
  • температура продуктов сгорания на выходе из топки, за котлом, температура уходящих газов – при сжигании газа и мазута;
  • содержание в уходящих газах О2, СО, NOX;
  • конструктивные показатели: внутренний диаметр барабанов, толщина стенки барабанов, длина цилиндрической части верхнего и нижнего барабанов; диаметры опускных труб, экранных и конвективных труб; шаг труб экранов, их число; габариты котла.

Использование котлов на газовом топливе

Горячую воду и пар для нужд промышленности и коммунального хозяйства получают главным образом в специальных котлах, которые являются одним из видов теплообменных аппаратов поверхностного типа непрерывного действия. В котлах теплота отбирается от нагретых продуктов сгорания и передается холодной воде.

Теплообмен в котлах происходит без непосредственного контакта воды и продуктов сгорания газа, отделенных друг от друга металлическими поверхностями нагрева. Такие теплообменники называют аппаратами непрерывного действия, так как горячие продукты сгорания, отдающие теплоту, и холодная вода, воспринимающая теплоту, находятся в непрерывном движении.

Котлы в зависимости от их назначения бывают водогрейными и паровыми. Если потребителю требуются горячая вода и пар, то применяют паровые котлы. В этих котлах часть получаемого пара используется для нужд производства, а часть направляется в специальный теплообменный аппарат – бойлер.

В бойлере пар отдает часть теплоты воде, движущейся по трубам от водопровода к потребителю, конденсируется и вновь возвращается в котел для превращения в пар. Пар, идущий на нужды производства, также может быть собран после его использования и конденсации и возвращен обратно в котел для повторного нагрева.

Для нормальной эксплуатации котлов большое значение имеет качество питательной воды. В этой воде могут содержаться различные примеси в виде солей, которые при нагреве выделяются и оседают на стенках котлов. Эти отложения приводят к уменьшению площади поперечного сечения труб, по которым движется нагреваемая вода, ухудшают теплообмен между продуктами сгорания и водой и могут привести к перегревам отдельных участков поверхностей нагрева и, как следствие, к разрушению этих участков.

Поверхности котла, обрабатываемые с одной стороны продуктами сгорания газа, а с другой – водой, называются поверхностями нагрева. Поверхность нагрева измеряют в квадратных метрах и подразделяют на конвективную и радиационную.

Радиационная поверхность обращена в топку и воспринимает теплоту в основном за счет излучения газового пламени, раскаленных огнеупорных стенок.

Остальная часть поверхности нагрева котла называется конвективной и воспринимает теплоту в основном за счет непосредственного соприкосновения с ней движущихся в газоходах продуктов сгорания, то есть за счет конвекции.

Важная характеристика работы котла – его тепловое равновесие, когда расход и поступление теплоты равны. Если такого соответствия нет, то давление пара в котле и температура воды в нем будут повышаться или понижаться. Другая характеристика работы котла – его материальное равновесие, когда количество поступающей и расходуемой питательной воды соответствуют одно другому.

Естественно, что при быстрой подаче в котел большого количества воды давление и температура воды в нем уменьшаются. При кипении вся вода в котле имеет одинаковую температуру, которая незначительно превышает температуру, соответствующую давлению насыщенного пара в паровом пространстве. В котле одновременно находятся вода и пар, а насыщенный пар имеет практически ту же температуру, что и вода.

Часто для нужд промышленности требуется не насыщенный, а перегретый пар. Чтобы из насыщенного пара получить перегретый, его дополнительно нагревают в конвективном пароперегревателе, расположенном по ходу продуктов сгорания за первым газоходом котла.

Продукты сгорания газа на выходе из газохода имеют еще значительный запас теплоты. Чтобы уменьшить эти потери теплоты, за котлами по ходу продуктов сгорания располагают дополнительные теплообменники – экономайзер и воздухонагреватель.

В экономайзере поступающая в котел питательная вода подогревается за счет использования части теплоты продуктов сгорания. В воздухонагревателе за счет теплоты продуктов сгорания подогревается воздух, необходимый для сжигания газа. Использование более нагретого воздуха приводит к повышению температуры горения газа, улучшению процесса горения и увеличению температуры продуктов горения.

Важная характеристика котельного агрегата – его тепловая мощность, которая определяется как произведение поверхности нагрева на расчетный теплосъем с 1 м2. Расчетный теплосъем с 1 м2 поверхности нагрева зависит от типа котла и колеблется от 25–50 тыс. для чугунных секционных котлов до 100 тыс. кДж/ч и более для водотрубных котлов.

Про анемометры:  Экология и настройка котла

Мощность паровых котлов определяется их паропроизводительностью, то есть количеством тонн пара в час. Поскольку количество теплоты в 1 кг пара зависит от его давления, при определении паропроизводительности котла указывается и расчетное давление.

В отопительных котельных жилищно-коммунального хозяйства преимущественно используют небольшие чугунные или стальные секционные котлы без экономайзеров и воздухонагревателей. В производственно-отопительных котельных применяют водотрубные котлы с установкой индивидуальных или групповых экономайзеров, в котельных электростанций – крупные котлоагрегаты в комплексе с экономайзерами и воздухонагревателями.

Газовое топливо создает хорошие условия для автоматизации его сжигания, что значительно повышает безопасность и эффективность эксплуатации котлов и обеспечивает их работу в соответствии с заданным режимом. Современная комплексная автоматика газифицированных котельных включает в себя приборы автоматики безопасности, регулирования, контроля и сигнализации.

Приборы контроля и сигнализации обеспечивают условия для дистанционного управления работой агрегата с диспетчерского пульта. Установлен минимально необходимый объем автоматики газифицированных котельных, обеспечивающий прекращение подачи газа к горелкам при недопустимом отклонении давления газа, погасании пламени горелок, отсутствии разрежения и прекращении подачи воздуха к горелкам.

Экология и настройка котла

Разница между полным сгоранием и неполным сгоранием - Разница Между - 2022

Автор: Михаил Григорян

Чтобы производство тепловой энергии было сопряжено с минимальным ущербом для окружающей среды, необходимо уделять основное внимание вопросу сокращения выбросов в атмосферу. Наиболее эффективным способом сокращения количества загрязняющих веществ в дымовых газах является оптимальная настройка действующих котельных установок и прекращение использования котлов, отработанные газы которых являются ядовитыми.

Кроме оксида углерода (II) – CO, известного также как угарный газ, оксида углерода (IV) – CO2, углекислый газ, и оксидов азота NOx (NO и NO2), токсичность которых наиболее на слуху, в дымовые газы, в разных пропорциях в зависимости от типа топлива и режима его сгорания, входят такие соединения как SO2 – диоксид серы и CxHy – остаточные несгораемые углеводороды, а также сажа – практически чистый углерод (С) и другие мельчайшие твердые частицы.

Все эти соединения можно отнести к вредным выбросам, они либо вредны здоровью человека, либо неблагоприятно влияют на развитие парникового эффекта в атмосфере.

Состав дымовых газов

Оксид углерода (II)– ядовитый газ без цвета и запаха, являющийся продуктом неполного сгорания. Угарный газ имеет ту же плотность, что и воздух, в отличие от CO2, который тяжелее и поэтому накапливается у поверхности земли. При высоких концентрациях в воздухе, поступая с ним в легкие, CO образует связь с гемоглобином крови, тем самым блокируя возможность связывания с гемоглобином кислорода. Таким образом элементы крови утрачивают возможность доставки кислорода от легких к тканям организма, что приводит к их кислородному голоданию и в итоге к летальному исходу.

Углекислый газ – продукт более полного окисления углерода кислородом, чем угарный газ – также не имеет цвета и запаха, но имеет кисловатый привкус. При его больших концентрациях в атмосфере усиливается парниковый эффект.

При высоких значениях температуры в процессе сгорания присутствующий в топливе азот N (в воздухе он существует в виде молекул N2) реагирует с кислородом воздуха (O2), в результате чего формируется оксид азота (II) – NO. Спустя некоторое время данный бесцветный газ окисляется под воздействием кислорода и образуется оксид азота (IV) – NO2.  NO2 – это водорастворимый дыхательный яд, вызывающий тяжелое поражение легких при вдыхании и способствующий образованию озона под воздействием ультрафиолетового компонента спектра солнечного излучения. Образование оксидов азота зависит от содержания азота в топливе, времени пребывания азота в зоне горения (длины факела пламени) и температуры пламени. При температуре пламени свыше 1,300 °C, образование NOx резко возрастает. Образование NOx можно снизить с помощью современных технологий горения, таких как «холодное пламя», рециркуляция дымовых газов и низкого уровня избыточного воздуха.

Диоксид серы (оксид серы (IV)) – бесцветный и токсичный газ с резким запахом. SO2 образуется при наличии в топливе серы (S) и вызывает раздражение дыхательных путей и глаз. При взаимодействии с водой SO2 образует сернистую кислоту H2SO3. Кроме того, в процессе сгорания часть SO2 (около 3-7 %) окисляется с образованием SO3 (оксид серы (VI)). Это твердое белое вещество поглощает большое количество воды с образованием серной кислоты (SO3 H2O = H2SO4), компонента кислотных дождей.

Рис. 1 Неполное сгорание топлива при недостатке воздуха на горение

Неполное сгорание топлива при недостатке воздуха на горение

Несгораемые углеводороды формируются в результате неполного сгорания топлива (рис. 1) и способствуют образованию парникового эффекта. В данную группу входят метан (CH4), бутан (C4H10) и бензол (C6H6). Причины их образования аналогичны причинам образования угарного газа: неполное сгорание в следствие недостаточного распыления и перемешивания при использовании жидкого топлива и недостаток воздуха при использовании природного газа или твердого топлива. Обнаружение всех компонентов дымового газа с помощью измерительных технологий является сложным, поэтому на практике в случае с жидким топливом проводится проверка на содержание нефтепродуктов, а в случае с природным газом проводится измерение CO. В дизельных установках углеводороды заметны в следствие типичного неприятного запаха газообразных продуктов сгорания.

Законами ЕЭС установлены нормы по выбросам дымовых газов как для оборудования промышленного, так и бытового сектора (табл. 1).

Таблица 1. Нормы выбросов дымовых газов по европейским стандартам.

Класс оборудования

EN 267 (для газа)

EN 676 (для дизельного топлива)

CO (мг/кВт ч)

NOx (мг/кВт ч)

CO (мг/кВт ч)

NOx (мг/кВт ч)

1

≤ 100

≤ 250

≤ 100

≤ 250

2

< 110

< 185

< 100

< 120

3

≤ 60

≤ 120

≤ 100

≤ 120

Сажа образуется в результате неполного сгорания в дизельных горелках. При нормальных температурах углерод реагирует очень медленно. Для полного сгорания 1 кг углерода требуется 2,67 кг молекулярного кислорода. Температура воспламенения: 725 °C. Более низкие температуры приводят к образованию сажи.

В дымовых газах присутствуют мельчайшие твердые частицы, почти всегда образующиеся в процессе горения и имеющие размеры менее 1 мкм. Частицы именно таких размеров представляют наиболее значительный риск для здоровья. В частности, ВОЗ классифицирует частицы дизельных выхлопов как канцерогенные.

Входят в дымовые газы и такие компоненты воздуха, как азот N2 и не вступивший в реакцию окисления (горения) кислород – O2, а также пары воды – Н20, которые не являются по сути вредными выбросами, но концентрации их в дымовых газах также имеют значение для настройки топливосжигающего оборудования на безопасный и наиболее эффективный режим работы.

Анализ дымовых газов позволяет определить концентрации загрязняющих веществ и максимально эффективно настроить системы отопления. В инструкциях по настройке и эксплуатации топливосжигающего оборудования всегда указывается данные по концентрациям СО, NOx, SO2 и CxHy в дымовых газах. Соответствие концентраций в реальных выбросах, работающего оборудования, с концентрациями, указанными производителями топливосжигающих систем, является необходимым условием их правильной работы.

Анализ дымовых газов и настройка газового котла

Анализ дымовых газов и настройка котельного оборудования производится с помощью газоанализаторов (рис. 2).

Рис. 2 Газоанализатор

ГазоанализаторЦелью для экологически безопасной и максимально эффективной работы топливосжигающей системы является полное сгорание всех компонентов, входящих в состав топлива. Ключом к оптимальной работе является установление объема воздуха, идущего на горение. На практике доказано, что небольшое количество избыточного воздуха является оптимальным для работы системы. На горение подается немного больше воздуха, чем это теоретически необходимо.

Потери невыработанного тепла с дымовыми газами увеличиваются при недостатке воздуха, а также при наличии определенного количества избыточного воздуха. Относительное увеличение потерь с дымовыми газами можно объяснить следующим:

Про анемометры:  Температура дымовых газов твердотопливного котла

1. При недостатке воздуха используемое топливо сгорает не полностью и увеличивается расход топлива.

2. При наличии избыточного воздуха большее количество кислорода нагревается и непосредственно через дымоход выводится наружу, при этом, не используясь для вырабатывания тепла.

Максимальная эффективность сгорания достигается только если потери тепла с дымовыми газами минимальны за счет незначительного количества избыточного воздуха.

Отношение реального количества воздуха, идущего на горение к теоретически необходимому называется «избытком воздуха» и обозначается λ.

Рис. 3 Состав дымовых газов в зависимости от избытка воздуха (λ).

Состав дымовых газов в зависимости от избытка воздуха (λ)

Соотношение топливо-воздух определяется исходя из концентрации дымовых газовых компонентов CO, CO2 и O2 (рис. 3). Во время горения любое содержание CO2 в свою очередь имеет конкретное содержание CO (при недостатке воздуха/λ<1) или O2 (для избыточного воздуха/λ>1). Значение CO2 само по себе не дает четкого представления, так как отображает максимальную концентрацию, поэтому дополнительно требуется измерение CO или O2. При работе с избыточным воздухом предпочтительным является определение O2. Для каждого топлива есть своя отдельная диаграмма и свое максимальное значение концентрации CO2 в дымовых газах.

В случае с неконденсационным оборудованием соотношение газ/воздух устанавливается с помощью манометрического метода. Давление перед соплом горелки устанавливается для минимальной и максимальной мощности. Уплотнительный винт штуцера контроля давления отворачивается и манометр подключается к измерительному соединению для измерения давления. Газовый котел, как правило, сначала включается на максимум (полная нагрузка), а затем опускается до своей минимальной мощности (слабая нагрузка) через меню управления. Для обоих уровней мощности давление перед соплом корректируется соответствующими регулировочными винтами на газовой арматуре и контролируется манометром.

Информация о требуемом давлении дана в документации производителя (в зависимости от числа Воббе используемого газа, которое можно уточнить у поставщика газа).

В случае с конденсационными котлами соотношение газ/воздух обычно устанавливается посредством измерения содержания CO2 в дымовых газах. Для этого зонд газового анализатора устанавливается в дымоходе (рис. 4 а, б). Затем необходимо с помощью регулировочных винтов (дроссельной заслонки) корректировать объем газа, пока содержание CO2 в дымовых газах не достигнет значения, указанного в спецификации производителя. В некоторых случаях производители указывают заданные значения для минимальной мощности оборудования. Затем выполняется настройка в соответствии с процедурой и для максимальной мощности. После выполнения обеих базовых настроек, надо провести проверку уже настроенного газового котла.

Рис. 4 Анализ дымовых газов с помощью газоанализатора, зонд установлен в дымоходе: а – настенного котла, б – напольного котла.

Анализ дымовых газов с помощью газоанализатора, зонд установлен в дымоходе настенного котлаАнализ дымовых газов с помощью газоанализатора, зонд установлен в дымоходе напольного котла

Проверка заключается в измерении потерь тепла с дымовыми газами (qA) и измерении содержания угарного газа (CO) в дымовых газах.

Потери и эффективность сгорания

Потери тепла с дымовыми газами – это разница между количеством теплоты в дымовых газах и количеством теплоты в воздухе, идущем на горение, по отношению к низшей теплотворной способности топлива. Следовательно, это количество теплоты в дымовых газах, отводимых через дымоход. Чем больше потери тепла с дымовыми газами, тем ниже эффективность и, следовательно, больше затраченной энергии, и тем больше выбросов от данной отопительной системы. По этой причине в некоторых странах существуют ограничения на допустимые потери с дымовыми газами для установок сжигания.

После определения содержания кислорода и разницы между температурой дымовых газов и воздуха, идущего на горение, потери тепла с дымовыми газами будут автоматически рассчитаны газоанализатором с учетом коэффициентов для топлива. Коэффициенты для топлива (A2, B) хранятся в памяти анализатора дымовых газов. Для того, чтобы обеспечить использование корректных значений для коэффициентов A2 и B необходимо правильно выбрать тип топлива в приборе.

Вместо значения содержания кислорода для расчета может использоваться значение концентрации CO2. Температура дымовых газов (FT) и содержание кислорода или содержание CO2 должны быть измерены одновременно в одной точке. Большинство анализаторов дымовых газов стандартно оснащены зондом температуры (в приборе). Температура воздуха, идущего на горение, может быть измерена в непосредственной близости от заборного отверстия горелки путем присоединения прибора к корпусу горелки. Например, для котлов с уравновешенной тягой данный зонд заменяется отделенным (выносным) зондом температуры, который помещается в место подачи свежего воздуха.

В это же время необходимо измерить температуру воздуха, идущего на горение (AT). В зонде отбора пробы для измерения температуры используется термопара. Зонд отбора пробы устанавливается в технологическое измерительное отверстие в дымоходе (расстояние между измерительным отверстием и котлом должно быть как минимум в два раза больше диаметра дымохода). Путем постоянного измерения температуры находится точка с самой высокой температурой дымовых газов (т.е. центр потока) и зонд располагается в данной точке. Центром потока считается точка с самой высокой температурой и самой высокой концентрацией углекислого газа и самым низким содержанием кислорода. При этом надо учитывать, что осаждение конденсата на сенсоре температуры может привести к резкому падению значения температуры дымовых газов, не соответствующему их действительной температуре.

Кислород, который не сгорает по причине избыточного воздуха отводится в виде газообразного компонента дымовых газов и используется для измерения эффективности сгорания. Дымовой газ всасывается зондом

отбора пробы с помощью насоса и перенаправляется в измерительный газовый тракт анализатора дымовых газов. Затем пропускается через газовый сенсор O2 (кислородную измерительную ячейку) и таким образом определяется концентрация газа. Значение содержания O2 также используется для расчета концентрации CO2 в дымовых газах, которое в свою очередь используется для конфигурирования (настройки) газовых конденсационных котлов, как описывалось выше.

Для расчета потерь с дымовыми газами может использоваться не только значение содержания кислорода, но и значение концентрации углекислого газа. Потери с дымовыми газами будут минимальными, когда при наличии очень низкого количества избыточного воздуха доля CO2  максимально высока (полное сгорание). Для каждого топлива есть максимально допустимое содержание CO2  в дымовых газах (CO2макс) которое определяется исходя из химического состава топлива. Однако достигнуть данного значения на практике невозможно, поскольку для безопасной работы горелки всегда требуется определенное количество избыточного воздуха, и это снижает процентное содержание CO2 в дымовых газах. Поэтому основной целью при настройке горелки является стремление к достижению не максимального содержания CO2, но максимально возможного.

Информация о значениях концентрации CO2, которые могут  быть достигнуты, а также об изменениях в параметрах настройки объемов воздуха, которые необходимо сделать для достижения данных значений концентраций указываются в документации производителя оборудования.

В большинстве анализаторов дымовых газов отсутствует сенсор CO2, концентрация CO2 в дымовых газах рассчитывается с помощью измеренного значения содержания O2. Это возможно, поскольку данные значения прямо пропорциональны друг другу. Поскольку для расчета используется значение максимального содержания CO2 для соответствующего топлива, то перед каждым измерением в анализатор дымовых газов необходимо ввести корректный тип топлива системы, на котором проводятся измерения.

Потери с дымовыми газами прибор рассчитывает, используя измеренные значения упомянутые выше.

Степень эффективности сгорания (η) для конвекционных систем отопления рассчитывается путем вычитания значения потерь с дымовыми газами из значения общей подаваемой энергии (низшая теплотворная способность подаваемой энергии HU = 100 %) Поэтому для расчета эффективности необходимо сначала рассчитать потери с дымовыми газами, как описано выше.

Для корректного расчета в современных конденсационных системах можно использовать дополнительное значение “XK”, которое учитывает теплоту конденсации.

Измерение тяги дымохода

Для котлов с естественной тягой основным требованием для отвода дымовых газов через дымоход является подъемная сила или тяга дымохода. Поскольку плотность отходящих горячих газов ниже плотности более холодного наружного воздуха, в дымоходе создается вакуум, также известный как тяга дымохода. За счет этого вакуума воздух, идущий на горение, всасывается, преодолевая сопротивления котла и газохода.

Про анемометры:  Внимание угарный газ!

В котлах с наддувными горелками давление в дымоходе не является важным, поскольку горелка с принудительной тягой генерирует избыточное давление, необходимое для отвода дымовых газов. В системах такого типа можетиспользоваться дымоход с меньшим диаметром.

При измерении тяги дымохода определяется разница между давлением внутри дымохода и давлением в помещении. Также как и при определении потерь с дымовыми газами, это необходимо делать в центре потока дымохода. Сенсор давления прибора необходимо обнулить перед проведением измерения.

Типичные значения тяги дымохода для котлов с наддувной горелкой с принудительной тягой составляют: 0,12 – 0,20 гПа (мбар) избыточного давления для дизельной испарительной горелки и для атмосферной газовой горелки: 0,03 – 0,10 гПа (мбар) разряжения.

Измерение концентрации CO

Проверка значения CO позволяет оценить качество сгорания и обеспечивает безопасность оператора системы.

Если тракты прохождения дымовых газов блокируются, то в случае, например, с атмосферными газовыми горелками, дымовые газы будут поступать в котельную через регуляторы управления потоками, создавая тем самым опасность для оператора. Для предотвращения подобной ситуации после выполнения всех работ по настройке котла необходимо измерить концентрацию угарного газа (CO) и проверить тракты прохождения дымовых газов.

 Данные меры безопасности не требуются для газовых вентиляторных горелок, так как в горелках такого типа дымовые газы принудительно подаются в дымоход.

Измерения не следует проводить раньше, чем через 2 минуты после запуска горелки, поскольку повышенный уровень CO снижается до нормального рабочего значения лишь через некоторое время после запуска системы. Это также применимо для газовых котлов с регулятором процесса горения, поскольку их калибровка осуществляется во время запуска горелки, когда возможны кратковременные выбросы с высоким содержанием CO.

Как и при определении потерь с дымовыми газами, измерения проводятся в центре потока дымохода. Однако поскольку дымовые газы разбавляются свежим воздухом, содержание CO необходимо пересчитать для неразбавленных дымовых газов (в противном случае на содержание CO можно влиять добавлением воздуха). С этой целью прибор рассчитывает неразбавленную концентрацию CO с содержанием кислорода, одновременно измеренным в газоходе, и отображает это значение как COнеразбавленное.

В атмосферных газовых системах концентрация CO разнится на всем протяжении трубы, отводящей дымовые газы (стратификация). Поэтому при концентрациях > 500 ppm необходимо проводить дискретизацию (выборку) с использованием зонда с несколькими отверстиями. Такой зонд имеет ряд отверстий, которые регистрируют концентрацию CO по всему диаметру трубы, отводящей дымовые газы.

Дополнительная проверка топливосжигающих установок

Дополнительная проверка топливосжигающих установок заключается в контроле оксидов азота в отводящихся газах.

Содержание оксидов азота указывает на общее содержание моноксида азота и двуокиси азота. Обычно соотношение концентраций NO и NO2 является постоянной величиной (97 % NO, 3 % NO2). По этой причине измерение концентрации NO является достаточным для определения концентрации NOx. Однако при использовании смешанного топлива или конденсационных установок вышеуказанное соотношение меняется. В силу этого обстоятельства содержание двух компонентов (NO и NO2) измеряется отдельно, а сумма результатов этих измерений указывает на содержание NOx.

При этом следует учитывать, что сигаретный дым влияет на результаты измерений (мин. 50 ppm).  Дыхание курильщика искажает результаты измерений примерно на 5 ppm.  Выполнять обнуление  измерительного прибора надо в условиях свежего воздуха.

NO2 растворим в воде, поэтому для точного определения его концентрации необходимо проводить замеры в сухих дымовых газах, поскольку растворенный NO2 не учитывается. Перед проведением фактических замеров содержания диоксида азота необходимо использовать блок пробоподготовки (Пельтье) для удаления влаги из дымовых газов. При проведении замеров в непосредственной близости от электростатического фильтра зонд отбора пробы необходимо заземлить для исключения риска статического заряда.

В случаях, когда возможно высокое содержание твёрдых частиц и сажи, следует использовать чистые сухие фильтры. Обязательным условием является наличие предварительного фильтра.

Условие безопасности – контроль CO/ CO2 в окружающей среде.

По соображениям безопасности при обслуживании газовых обогревателей в жилых помещениях наряду с измерением дымовых газов необходимо проводить замеры CO в окружающем воздухе, поскольку обратный поток дымовых газов может привести к высоким концентрациям CO и риску отравления оператора. Смертельными для человека являются концентрации CO во вдыхаемом воздухе в 0,16 % по объему и выше (1,600 ppm). В виду высокой токсичности СО и его опасности для жизни (табл. 2) данное измерение необходимо провести до начала всех прочих измерений.

Таблица 2. Влияние угарного газа на здоровье и жизнь человека

Концентрация CO в воздухе, ppm

Концентрация CO в воздухе, %

Влияние на здоровье человека

30

0,003

ПДК (макс. концентрация, при которой период вдыхания может превышать 8 часов)

200

0,02

Появление легкой головной боли в течение 2 – 3 часов

400

0,04

Появление головной боли в области лба в течение 1 – 2 часов с последующим распространением на всю область головы

800

0,08

Головокружение, тошнота и дрожь в конечностях в течение 45 минут, потеря сознания в течение 2 час

1,600

0,16

Головная боль, головокружение и тошнота, в течение 20 минут. Летальный исход в течение 2 часов

3.200

0,32

Головная боль, головокружение и тошнота в течение 5-10 минут. Летальный исход в течение 30 минут

6,400

0,64

Головная боль, головокружение в течение 1 – 2 минут. Летальный исход в течение 10 – 15 минут

12,800

1,28

Летальный исход в течение 1 – 3 минут

Как правило, замеры окружающей среды ограничиваются только измерением содержания CO в окружающем воздухе (рис. 5). Однако высокие концентрации CO2, например, вызванные блокировкой отверстия для отхода дымовых газов, также являются вредными для человека. Для того чтобы исключить потенциальные угрозы, необходимо учитывать оба значения. Максимально допустимая концентрация CO2 в воздухе рабочей зоны составляет 5,000 ppm.

Рис 5 Сигнализатор угарного газа

Сигнализатор угарного газа

Содержание CO2 является надежным заблаговременным индикатором отравления и, следовательно, оптимально дополняет измерение CO. Параллельное измерение обоих значений обеспечивает заблаговременное полное выявление опасных концентраций.

Контролируемые параметры для настройки разных типов котлов и топлива

При настройке с помощью газоанализатора дымовых газов настенных конденсационных газовых котлов, работающих на природном газе, необходимо контролировать следующие параметры: концентрацию кислорода (3 %), угарного (20 ппм) и углекислого газа (13 % об.), коэффициент избытка воздуха (1,6), NOx.

В вентиляторных горелках, работающих на природном газе необходимо контролировать следующие параметры: концентрацию кислорода (3 %), угарного (20 ппм) и углекислого газа (13 % об.), коэффициент избытка воздуха (1,6), NOx.

В вентиляторных горелках, работающих на дизельном топливе, помимо всего предыдущего, перед использованием газоанализатора необходимо измерять сажевое число. Оно должно быть меньше 1 (этот параметр измеряется с помощью анализатора сажевого числа и говорит о качестве распыла через форсунки, при его превышении нельзя использовать газоанализатор для настройки, так как будет загрязнятся тракт газоанализатора и невозможно добиться оптимальных показателей) и концентрацию SO2 (говорит о качестве топлива, чем больше – тем хуже топливо, при локальных избытках кислорода и влажности превращается в H2SO4, которая разрушает всю топливо сжигающую систему).

В пеллетных котлах необходимо контролировать следующие параметры: концентрацию кислорода (5 %), угарного (120 ппм) и углекислого газа (17 % об.), коэффициент избытка воздуха (1,8), NOx. Необходима предварительная защита тонкой фильтрации от запыленности в дымовых газах и защита от превышения рабочего диапазона по каналу СО. Он в считанные секунды может превысить рабочий диапазон сенсора и достигнуть 10000 – 15000 ппм.

Все представленные выше данные по концентрациям являются приблизительными, точные всегда указываются в инструкции по настройке горелочных устройств.

Статья  из журнала  “Аква-Терм” № 3/ 2022, рубрика “Мастер класс”.

вернуться назад

Оцените статью
Анемометры
Добавить комментарий