Уменьшение содержания кислорода в крови (гипоксемия) и кислородное голодание тканей (гипоксия), развивающиеся при дыхательной недостаточности, приводят к развитию тяжелых, и порой необратимых, нарушений в работе организма, если вовремя не оказана квалифицированная медицинская помощь. Большинству пациентов, которые нуждаются в общей анестезии или поступают в отделения интенсивной терапии, требуется кислородотерапия (оксигенотерапия). Использование кислородотерапии при оказании неотложной респираторной поддержки требует осторожного и избирательного подхода. Чтобы не навредить пациенту, к применению кислорода необходимо относиться особенно внимательно, четко дозируя и контролируя оксигенотерапию с помощью газоаналитического оборудования.
Традиционные методы ИВЛ, которые успешны только при легких формах дыхательной недостаточности, при лечении больных с острой дыхательной недостаточностью не приводят к положительному результату из-за неэффективности такой терапии. Применение аппаратной искусственной вентиляции лёгких в случае острой дыхательной недостаточности является единственным эффективным методом, требующим внимательного и ответственного подхода специалиста.
Параметры кислородно-газовой смеси, применяемой в ИВЛ, требующие надежного контроля и влияющие на эффективность ее проведения:
- состав смеси;
- скорость потока;
- влажность;
- температура.
Для поддержания спонтанного дыхания пациента аппарат ИВЛ автоматически подаёт под давлением в лёгкие содержащую необходимую концентрацию кислорода воздушную смесь в необходимом объёме и заданной цикличности. Воздушная смесь может поступать в аппарат ИВЛ из разных источников, таких как: система газоснабжения медучреждения, компрессор, баллон кислородо-воздушной смеси, генератор кислорода. Требования к контролю состава воздушной смеси являются жесткими, что надежно обеспечивается стационарными газоанализаторами кислорода, осуществляющими постоянный мониторинг и управление составом газовой смеси с отображением результатов контроля в графическом и текстовом виде.
Строгий контроль давления на выходе кислородно-газовой смеси из аппарата препятствует возникновению баротравмы легких при применении высокочастотных струйных аппаратов ИВЛ. Важным условием проведения ИВЛ является подача пациенту смеси газов нужной температуры и имеющей необходимую влажность. Постоянный мониторинг поступления заданных концентраций кислорода во вдыхаемом воздухе и количества углекислого газа, содержащегося в выдыхаемом воздухе, обеспечивается системами контроля и дозирования аппаратов ИВЛ. Такие функции заложены в газоанализаторах, осуществляющих контроль и управление составом газовых сред, содержащих кислород. В нашем каталоге цена газоанализатора
выгоднее, чем у большинства конкурентов, так как мы являемся производителями приборов и не делаем дополнительных наценок.
Рис. 1 Пример работы ПО Eksis Visual Lab.
Врачом определяются такие условия применения ИВЛ как:
- выявление показаний к началу и прекращению ИВЛ;
- выбор метода респираторной терапии;
- определение и регулировка параметров вентиляции.
В этом ему должны помочь приборы контроля и регулирования измеряемых параметров в режиме реального времени, позволяющие непрерывно следить за ИВЛ, тем самым повысить эффективность и безопасность терапии дыхательной недостаточности, а при необходимости, изменить параметры вентиляции легких.
Газоанализаторы кислорода, работающие в диапазоне от 0 до 100%, имеют основную абсолютную погрешность измерения кислорода ±1,0 об. %. Специальное ПО Eksis Visual Lab существенно расширяет возможности применения производимых газоанализаторов, в том числе для медицинского назначения.
Стационарные газоанализаторы – постоянный надежный контроль и регулирование состава газовой среды в режиме реального времени с отображением результатов в графическом и текстовом виде и накоплением статистики измерений
Рис. 1 Процентное содержание кислорода в воздухе
Благоприятный уровень содержания кислорода в воздухе
Зона 1-2: такой уровень содержания кислорода характерен для экологически чистых районов, лесных массивов. Содержание кислорода в воздухе на берегу океана может достигать 21,9%
Уровень комфортного содержания кислорода в воздухе
Зона 3-4: ограничена законодательно утвержденным стандартом минимального содержания кислорода в воздухе для помещений (20,5%) и “эталоном” свежего воздуха (21%). Для городского воздуха нормальным считается содержание кислорода 20,8%.
Недостаточный уровень содержания кислорода в воздухе
Зона 5-6: ограничена минимально допустимым уровнем содержания кислорода, когда человек может находиться без дыхательного аппарата (18%).
Пребывание человека в помещениях с таким воздухом сопровождается быстрой утомляемостью, сонливостью, снижением умственной активности, головными болями.
Длительное пребывание в помещениях с такой атмосферой опасно для здоровья
Опасно низкий уровень содержания кислорода в воздухе
Зона 7 и далее:
при содержании кислорода 16% наблюдается головокружение, учащенное дыхание, 13% – потеря сознания, 12% – необратимые изменения функционирования организма, 7% – смерть.
Непригодная для дыхания атмосфера также характеризуется не только превышением предельно-допустимых концентраций вредных веществ в воздухе, но и недостаточным содержанием кислорода.
В связи с различными определениями, которые даются понятию «недостаточное содержание кислорода» газоспасатели очень часто допускают ошибки при описании газоспасательных работа. Это происходит, в том числе и в результате изучения уставов, инструкций, стандартов и других документов, содержащих указание на содержание кислорода в атмосфере.
Рассмотрим отличия в процентном содержании кислорода в основных регламентирующих документах.
1.Содержание кислорода менее 20%.2. Содержание кислорода менее 18%.3. Содержание кислорода менее 17%.
расчет кислород
Атмосфера Земли состоит на 99,9% из воздуха, водяного пара, природных (действие вулканов) и промышленных газов, твердых частиц. В результате природных факторов Земли и процессов жизнедеятельности человека, состав атмосферы в том или ином регионе планеты может подвергаться незначительным изменениям. Одной из главных составных частей атмосферы является воздух. Воздух представляет собой смесь газов, основными компонентами которого являются: Азот (N2) – 78%; Кислород (О2) – 21%; Углекислый газ (СО2) – 0,03%; Инертные газы и другие вещества – до 1%. В воздухе также присутствуют в незначительном количестве водород, оксид азота, озон, сероводород, водяной пар, инертные газы: аргон, неон, гелий, аргон, криптон, ксенон, радон, а также пыль и микроорганизмы.
Общая информация о физиологии дыхания человека
Поступление в организм кислорода и удаление углекислого газа обеспечивает дыхательная система человека.
Транспорт газов и других необходимых организму веществ обеспечивается с помощью кровеносной системы.
Обмен О2 и CO2 между организмом и окружающей средой осуществляется благодаря ряду последовательных процессов:
- Легочная вентиляция – обмен газами между окружающей средой и легкими.
- Легочное дыхание – обмен газами между альвеолами легких и кровью.
- Внутреннее (тканевое) дыхание – обмен газами между кровью и тканями тела.
Дыхательная система – совокупность органов и тканей, обеспечивающих легочную вентиляцию и легочное дыхание. Дыхательная система состоит из воздухоносных путей и собственно легких.
Воздухоносные пути включают в себя:
Воздух вдыхает человек, он попадает в нос и носовую полость. В носовой полости находятся обонятельные рецепторы, с помощью которых мы различаем запахи. Также в носовой полости есть волосы, предназначенное для задержки частиц пыли, поступающего вместе с воздухом из атмосферы.
Воздух, проходя через нос и носовую полость попадает в носоглотку. Носоглотка покрыта слизистой оболочкой, обогащенной кровеносными сосудами, благодаря чему осуществляется нагрев и увлажнение воздуха.
Трахея начинается у нижнего конца гортани и спускается в грудную полость где делится на левую и правую бронхи. Входя в легкие бронхи постепенно делятся на все более мелкие трубки – бронхиолы, маленькие из которых и является последним элементом воздухоносных путей.
Наименьший структурный элемент легкого – долька, которая состоит из конечной бронхиолы и альвеолярного мешочка. Стенки легочной бронхиолы и альвеолярного мешочка образуют альвеолы.
Легкие (легочные дольки) состоят: конечные бронхиолы; альвеолярные мешочки; легочные артерии; капилляры; вены легочного круга кровообращения.
Воздух, проходя через бронхи и бронхиолы, заполняет большое количество альвеол – легочных пузырьков, в которых осуществляется газообмен между кровью и альвеолярным воздухом. Стенки альвеол состоят из тонкой пленки, которая вмещает большое количество эластичных волокон.
С помощью которых альвеолярные стенки могут расширяться, тем самым увеличивать объем альвеол. Диаметр каждой альвеолы составляет около 0,2 мм. А площадь ее поверхности около 0,125 мм. В легких взрослого человека около 700 млн. альвеол. То есть, общая площадь их поверхности составляет около 90 м2.
Таким образом, дыхательная поверхность в 60-70 раз превышает поверхность кожного покрова человека. При глубоком вдохе альвеолы растягиваются, и дыхательная поверхность достигает 250 м2, превышая поверхность тела более чем в 125 раз.
Процесс газообмена при дыхании
Сущность процесса газообмена заключается в переходе кислорода из альвеолярного воздуха в венозную кровь, которая циркулирует по легочных капиллярах (поглощение кислорода), и в переходе углекислого газа из венозной крови в альвеолярный воздух (выделение углекислого газа).
Этот обмен проходит через тонкие стенки легочных капилляров по законам диффузии, вследствие разности парциальных давлений газов в альвеолах и крови.
Обогащенная кислородом кровь из легких разносится по всей кровеносной системе, отдавая для обогащения тканям кислород и забирая от них углекислый газ. Кислород, поступающий в кровь, доставляется во все клетки организма. В клетках происходят важные для жизни окислительные процессы. Отдавая кислород клеткам, кровь захватывает углекислоту и доставляет их в альвеолы. Этот процесс и является внутренним, или тканевым дыханием.
Основные параметры процесса дыхания
Основным параметрами, характеризующими процесс дыхания человека, являются:
- жизненная емкость легких;
- мертвое пространство органов дыхания;
- доза потребления кислорода.
Жизненная емкость легких – это максимальное количество воздуха (л), которую может вдохнуть человек после максимально глубокого выдоха. Этот показатель измеряется прибором, который называется спирометр. Нормальная жизненная емкость легких взрослого человека – примерно 3,5 л.
У тренированного человека, занимающегося спортом, жизненная емкость легких составляет 4,7-5 л.
Общий объем легких человека состоит из жизненной емкости и остаточного объема. Остаточный объем, это количество воздуха, который всегда остается в легких человека после максимального выдоха. Этот объем составляет 1,5 л и его человек никогда не может удалить из органов дыхания.
Как видно из диаграммы, после спокойного вдоха в легких человека находится 3,5 л воздуха, а после спокойного выдоха остается только 3 л воздуха. Таким образом, при дыхании в спокойном состоянии человек использует при каждом вдохе только 0,5 л воздуха, называется дыхательным.
После спокойного вдоха, при желании, человек может продлить вдох и дополнительно вдохнуть еще 1,5 л воздуха. Этот воздух называется дополнительным. После спокойного выдоха человек также может дополнительно выдохнуть из легких еще 1,5 л воздуха. Этот воздух называется запасным или резервным.
Таким образом, жизненная емкость легких состоит из суммы дыхательного, дополнительного и запасного объемов воздуха.
При конструировании изолирующих аппаратов с замкнутым циклом дыхания, в которых используются емкости для приготовления и хранения дыхательной смеси (дыхательные мешки), необходимо учитывать, что их объем должен быть не менее максимальную жизненную емкость легких человека. Поэтому в современных изолирующих аппаратах используются дыхательные мешки, которые имеют объем 4,5-5 л, из расчета, что в них могут работать хорошо физически развитые люди.
Во время выдоха не весь выдыхаемый воздух выходит из организма человека в окружающею среду. Часть воздуха остается в носовой полости, гортани, трахее и бронхах. Эта часть воздуха не участвует в процессе газообмена, и пространство, которое она занимает, называется мертвым пространством.
Воздух, находящийся в мертвом пространстве, содержит малую концентрацию кислорода и насыщенный углекислым газом. При вдохе, воздух мертвого пространства, вместе с воздухом вдыхаемого, попадает в легкие человека, вредно влияет на процесс дыхания. Поэтому мертвое пространство еще иногда называют вредным пространством. Объем мертвого пространства у взрослого человека составляет примерно 140 мл.
Каждый изолирующий аппарат также имеет своё мертвое пространство, которое в общем прилагается к мертвому пространству органов дыхания человека. Мертвое пространство изолирующих аппаратов содержат маска и дыхательные шланги. Пространство между маской и лицом спасателя (органов дыхания) называется подмасочным пространством, оно также является мертвым пространством.
Легочная вентиляция (л/мин.) – Количество воздуха, вдыхаемого человеком за одну минуту.
Частота дыхания – это количество циклов (вдох-выдох), происходящих за одну минуту. Частота дыхания является не постоянной величиной и зависит от многих факторов.
Частота дыхания в зависимости от возраста человека
В зависимости от возраста человека, частота дыхания меняется и составляет:
у только что родившихся – 60 вдохов / мин.
у годовалых младенцев – 50 вдохов / мин.
у пятилетних детей – 25 вдохов / мин.
у 15–летних подростков – 12-18 вдохов / мин.
С возрастом человека, частота дыхания значительно не изменяется. Однако следует отметить, что у физически хорошо развитого человека частота дыхания уменьшается до 6-8 вдохов / мин.
При выполнении работы с физической нагрузкой, ускоряются физико-химические процессы в организме человека и возрастает потребность в большем количестве кислорода. Согласно этому, увеличивается частота дыхания, при значительной нагрузке может достигать 40 вдохов в минуту.
Однако следует помнить, что полностью используется жизненный объем легких только при частоте дыхания 15-20 вдохов / мин. При увеличении частоты дыхания возможность использования полной емкости легких уменьшается. Дыхание становится поверхностным.
При частоте дыхания 30 вдохов / мин., Емкость легких используется только на 2/3, а при 60 вдохов / мин. всего лишь на 1/4. Количество кислорода, поглощаемого человеком из воздуха при дыхании в единицу времени, называется дозой потребления кислорода. Доза потребления кислорода человеком, величина не постоянная и зависит от частоты дыхания и легочной вентиляции.
При увеличении физической нагрузки на организм человека, увеличивается частота дыхания и легочная вентиляция. Соответственно, растет доза потребления кислорода и увеличивается концентрация углекислого газа в выдыхаемом воздухе. Интересным свойством организма является то, что при вдыхании воздуха через нос в организм попадает на 25% больше кислорода, чем при вдыхании через рот.
Материал с сайта fireman.club
физиология дыхание
При разработке подходов к подбору параметров ИВЛ нам пришлось преодолеть ряд предубеждений, традиционно «кочующих» из одной книги в другую и для многих реаниматологов ставших практически аксиомами. Эти предубеждения можно сформулировать следующим образом:
•ИВЛ вредна для мозга, так как повышает ВЧД и опасна для центральной гемодинамики, так как снижает сердечный выброс.
•Если врач вынужден проводить ИВЛ у пострадавшего с тяжелой ЧМТ, ни в коем случае нельзя применять PEEP, так как это еще больше повысит внутригрудное давление и усилит отрицательные эффекты ИВЛ на мозг и центральную гемодинамику.
•Повышенные концентрации кислорода во вдыхаемой больным смеси опасны из-за вызываемого ими спазма сосудов мозга и прямого повреждающего эффекта на легкие. Кроме того, при проведении оксигенотерапии имеются возможность угнетения дыхания из-за снятия гипоксической стимуляции дыхательного центра.
Специально проведенные нами исследования показали, что бытующие представления об отрицательном влиянии аппаратного дыхания на внутричерепное давление не имеют под собой почвы. ВЧД при проведении ИВЛ может повышаться не из-за простого факта перевода больного со спонтанной вентиляции на поддержку респиратором, а из-за возникновения борьбы больного с респиратором. Влияние перевода больного с самостоятельного дыхания на искусственную вентиляцию легких на показатели церебральной гемодинамики и оксигенации мозга был исследован нами у 43 пострадавших с тяжелой ЧМТ.
Респираторная поддержка начиналась ввиду угнетения уровня сознания до сопора и комы. Признаки дыхательной недостаточности отсутствовали. При проведении ИВЛ у большинства пациентов отмечена нормализация церебральной артериовенозной разницы по кислороду, что свидетельствало об улучшении его доставки к мозгу и купировании церебральной гипоксии. При переводе больных со спонтанного дыхания на искусственную вентиляцию легких существенных изменений ВЧД и ЦПД не было.
Совершенно другая ситуация складывалась при несинхронности дыхательных попыток больного и работы респиратора. Подчеркнем, что нужно различать два понятия. Первое понятие – это несинхронность дыхания больного и работы респиратора, присущее ряду современных режимов вентиляции (в частности BiPAP), когда независимо друг от друга существуют спонтанное дыхание и механические вдохи. При правильном подборе параметров режима данная несинхронность не сопровождается повышением внутригрудного давления и каким-либо отрицательным влиянием на ВЧД и центральную гемодинамику. Второе понятие – борьба больного с респиратором, которая сопровождается дыханием пациента через закрытый контур аппарата ИВЛ и вызывает повышение внутригрудного давления более 40-50 см вод. ст. «Борьба с респиратором» очень опасна для мозга. В наших исследованиях получена следующая динамика показателей нейромониторинга – снижение церебральной артериовенозной разницы по кислороду до 10-15% и повышение ВЧД до 50 мм рт.ст. и выше. Это свидетельствовало о развитии гиперемии мозга, вызывавшей нарастание внутричерепной гипертензии.
На основании проведенных исследований и клинического опыта для предупреждения борьбы с респиратором мы рекомендуем применять специальный алгоритм подбора параметров вспомогательной вентиляции.
Алгоритм подбора параметров ИВЛ.
Устанавливают так называемые базовые параметры вентиляции, обеспечивающие поступление кислородно-воздушной смеси в режиме нормовентиляции: VT = 8-10 мл/кг, FPEAK = 35-45 л/мин, f = 10-12 в 1 мин, PEEP = 5 см вод. ст., нисходящая форма потока. Величина МОД должна составлять 8-9 л/мин. Обычно используют Assist Control или SIMV + Pressure Support, в зависимости от вида респиратора. Подбирают такую чувствительность триггера, которая будет достаточно высокой, чтобы не вызывать десинхронизации больного и респиратора. В то же время она должна быть достаточно низкой, чтобы не вызывать аутоциклирования аппарата ИВЛ. Обычная величина чувствительности по давлению (-3)–(-4) см вод. ст., по потоку (-2)–(-3) л/мин. В результате больному обеспечивается поступление гарантированного минутного объема дыхания. При возникновении дополнительных дыхательных попыток респиратор увеличивает поступление кислородно-воздушной смеси. Такой подход удобен и безопасен, однако требует постоянного контроля над величиной МОД, paCO2, насыщения кислородом гемоглобина в венозной крови мозга, так как имеется опасность развития пролонгированной гипервентиляции.
Что касается возможных расстройств гемодинамики при проведении ИВЛ, то к этому выводу приходят обычно на основании следующей цепочки умозаключений: «ИВЛ проводится методом вдувания воздуха в легкие, поэтому при ней повышается внутригрудное давление, что вызывает нарушения венозного возврата к сердцу. В результате повышается ВЧД и падает сердечный выброс». Однако вопрос не столь однозначен. В зависимости от величины давления в дыхательных путях, состояния миокарда и степени волемии при проведении ИВЛ сердечный выброс может как повышаться, так и снижаться.
Следующей проблемой при проведении ИВЛ у пострадавших с ЧМТ является безопасность применения повышенного давления в конце выдоха (РЕЕР). Хотя G. МcGuire et al. (1997) продемонстрировали отсутствие существенных изменений ВЧД и ЦПД при повышении РЕЕР до 5, 10 и 15 см вод.ст. у пациентов с разным уровнем внутричерепной гипертензии, мы провели собственное исследование. По нашим данным, в первые 5 сут тяжелой ЧМТ при величинах PEEP к концу выдоха 5 и 8 см вод.ст. отмечались незначительные изменения ВЧД, что позволяло сделать вывод о допустимости применения этих значений РЕЕР с точки зрения внутричерепной гемодинамики. В то же время уровень РЕЕР 10 см вод.ст. и выше у ряда больных существенно влиял на ВЧД, повышая его на 5 мм рт. ст. и более. Следовательно, такое повышение давления в конце выдоха можно использовать только при незначительной исходной внутричерепной гипертензии.
В реальной клинической практике проблема влияния PЕEP на ВЧД не встает столь остро. Дело в том, что вызываемое применением РЕЕР повышение внутригрудного давления по-разному влияет на давление в венозной системе в зависимости от степени повреждения легких. В случае здоровых легких с нормальной податливостью повышение РЕЕР распределяется примерно поровну между грудной клеткой и легкими. На венозное давление влияет только давление в легких. Приведем примерный расчет: при здоровых легких повышение РЕЕР на 10 см вод. ст. будет сопровождаться повышением ЦВД и ВЧД на 5 см вод. ст. (что составляет примерно 4 мм рт. ст.). В случае увеличения жесткости легких повышение РЕЕР в основном приводит к растяжению грудной клетки и практически вообще не сказывается на внутрилегочном давлении. Продолжим расчеты: при пораженных легких повышение РЕЕР на 10 см вод. ст. будет сопровождаться повышением ЦВД и ВЧД лишь на 3 см вод. ст. (что составляет примерно 2 мм рт. ст.). Таким образом, в тех клинических ситуациях, в которых необходимо значительное повышение PEEP (остром повреждении легких и ОРДС), даже большие его величины существенно не влияют на ЦВД и ВЧД.
Еще одна проблема – возможные отрицательные эффекты повышенных концентраций кислорода. В нашей клинике у 34 пациентов специально исследовано влияние оксигенации 100%-ным кислородом продолжительностью от 5 до 60 мин на тонус сосудов головного мозга. Ни в одном из клинических случаев не отмечено снижения ВЧД. Этот факт свидетельствовал о том, что внутричерепной объем крови не изменялся. Следовательно, не было сужения сосудов и развития церебрального вазоспазма. Вывод подтверждало исследование линейной скорости кровотока в крупных артериях мозга методом транскраниальной допплерографии. Ни у одного из обследованных больных при подаче кислорода линейная скорость кровотока в средней мозговой, передней мозговой и основной артериях достоверно не менялась. Существенных изменений АД и ЦПД при оксигенации 100%-ным кислородом нами также не отмечено. Таким образом, из-за особой чувствительности пострадавшего мозга к гипоксии нужно полностью отказаться от проведения ИВЛ с использованием чисто воздушных смесей. Необходимо применение кислородно-воздушных смесей с содержанием кислорода 0,35-0,5 (чаще всего 0,4) в течение всего периода проведения искусственной и вспомогательной вентиляции легких. Мы не исключаем возможности применения и более высоких концентраций кислорода (0,7-0,8, вплоть до 1,0) для целей экстренной нормализации оксигенации головного мозга. Этим достигается нормализация повышенной артериовенозной разницы по кислороду. Применение повышенного содержания кислорода в дыхательной смеси нужно стремиться ограничить короткими сроками, учитывая известные повреждающие эффекты гипероксигенации на легочную паренхиму и возникновение абсорбционных ателектазов.
Немного физиологии
Как всякое лекарство, кислород может быть и полезен, и вреден. Извечная проблема реаниматолога: «Что опаснее для больного – гипоксия или гипероксия?». О негативных эффектах гипоксии написаны целые руководства, поэтому отметим ее главный отрицательный эффект. Для того чтобы нормально функционировать, клетки нуждаются в энергии. Причем не в любом виде, а только в удобной форме, в виде молекул–макроэргов. В процессе синтеза макроэргов образуются лишние атомы водорода (протоны), эффективно удалить которые можно только по так называемой дыхательной цепочке путем связывания с атомами кислорода. Для работы этой цепочки нужно большое количество кислородных атомов.
Однако использование высоких концентраций кислорода тоже может запускать ряд патологических механизмов. Во-первых, это образование агрессивных свободных радикалов и активация процесса перекисного окисления липидов, сопровождающегося разрушением липидного слоя клеточных стенок. Особенно этот процесс опасен в альвеолах, так как они подвергаются действию наибольших концентраций кислорода. При длительной экспозиции 100%-ный кислород может вызывать поражение легких по типу ОРДС. Не исключено участие механизма перекисного окисления липидов в поражении других органов, например мозга.
Во-вторых, если в легкие поступает атмосферный воздух, то он на 21% состоит из кислорода, нескольких процентов водяных паров и более чем на 70% из азота. Азот – химически инертный газ, в кровь не всасывается и остается в альвеолах. Однако химически инертный – это не означает бесполезный. Оставаясь в альвеолах, азот поддерживает их воздушность, являясь своеобразным экспандером. Если воздух заменить чистым кислородом, то последний может полностью всосаться (абсорбироваться) из альвеолы в кровь. Альвеола спадется, и образуется абсорбционный ателектаз.
В-третьих, стимуляция дыхательного центра вызывается двумя путями: при накоплении углекислоты и недостатке кислорода. У пациентов с резко выраженной дыхательной недостаточностью, особенно у так называемых «дыхательных хроников», дыхательный центр постепенно становится нечувствителен к избытку углекислоты и основное значение в его стимуляции приобретает недостаток кислорода. Если этот недостаток купировать введением кислорода, то из-за отсутствия стимуляции может произойти остановка дыхания.
Наличие негативных эффектов повышенных концентраций кислорода диктует настоятельную необходимость сокращения времени их использования. Однако если больному угрожает гипоксия, то ее отрицательное влияние гораздо опаснее и проявится быстрее, чем негативный эффект гипероксии. В связи с этим для профилактики эпизодов гипоксии необходимо всегда применять преоксигенацию больного 100% кислородом перед любой транспортировкой, интубацией трахеи, сменой интубационной трубки, трахеостомией, санацией трахеобронхиального дерева. Что касается угнетения дыхания при повышении концентрации кислорода, то указанный механизм действительно может иметь место при ингаляции кислорода у больных с обострением хронической дыхательной недостаточности. Однако в этой ситуации необходимо не увеличение концентрации кислорода во вдыхаемом воздухе при самостоятельном дыхании больного, а перевод больного на искусственную вентиляцию, что снимает актуальность проблемы угнетения дыхательного центра гипероксическими смесями.
Кроме гиповентиляции, приводящей к гипоксии и гиперкапнии, опасной является и гипервентиляция. В наших исследованиях, как и в других работах (J. Muizelaar et al., 1991), установлено, что необходимо избегать намеренной гипервентиляции. Возникающая при этом гипокапния вызывает сужение сосудов мозга, увеличение церебральной артериовенозной разницы по кислороду, уменьшение мозгового кровотока. В то же время, если по какой-либо причине, например, из-за гипоксии или гипертермии, у больного развивается спонтанная гипервентиляция, то не все средства хороши для ее устранения.
Необходима коррекция причины, вызвавшей повышение объема минутной вентиляции. Нужно снизить температуру тела, используя ненаркотические анальгетики и (или) физические методы охлаждения, устранить гипоксию, вызванную обструкцией дыхательных путей, недостаточной оксигенацией дыхательной смеси, гиповолемией, анемией. При необходимости возможно применение седативных препаратов в расчете на снижение потребления организмом кислорода и уменьшение необходимой минутной вентиляции легких. Однако нельзя просто применить миорелаксанты и навязать больному желаемый объем вентиляции при помощи аппарата ИВЛ, так как существует серьезная опасность резкой внутричерепной гипертензии из-за быстрой нормализации уровня углекислоты в крови и гиперемии церебральных сосудов. Мы уже приводили результаты наших исследований, которые показали, что нежелательно не только повышение уровня углекислоты выше нормы 38-42 мм рт.ст., но даже быстрая нормализация значений раСО2 после периода длительной гипокапнии.
При выборе параметров вентиляции очень важно оставаться в рамках концепции «open lung rest» (A. Doctor, J. Arnold, 1999). Современные представления о ведущем значении баро- и волюмотравмы в развитии повреждения легких при ИВЛ диктуют необходимость тщательного контроля пикового давления в дыхательных путях, которое не должно превышать 30-35 см вод.ст. При отсутствии поражения легких дыхательный объем, подаваемый респиратором, составляет 8-10 мл/кг массы больного. При выраженном поражении легких дыхательный объем не должен превышать 6-7 мл/кг. Для профилактики коллабирования легких используют РЕЕР 5-6 см вод. ст., а также периодические раздувания легких полуторным дыхательным объемом (sigh) или повышение РЕЕР до 10-15 см. вод. ст. на протяжении 3-5 вдохов (1 раз на 100 дыхательных движений).
Портативные газоанализаторы – постоянный точный контроль состава газовой среды и накопление статистики
Применение таких устройств в медицинской практике при проведении ИВЛ может существенно помочь специалистам, не требуя при этом специального длительного обучения для их эксплуатации. Интерфейс прибора позволяет максимально быстро и четко изменять требуемые настройки контролируемых параметров, что дает возможность своевременно реагировать на изменения текущей ситуации и применять эффективные меры.
Современные устройства ИВЛ имеют автоматическое управление и осуществляют максимальную синхронизацию параметров принудительной вентиляции легких пациента с его респираторным состоянием. Аппараты ИВЛ обязательно должны быть оснащены сигнализацией, оповещающей о выходе контролируемых параметров дыхания за установленные пределы и возникновении сбоев в работе оборудования. Стационарные газоанализаторы, разработанные и производимые компанией «ЭКСИС», снабжены необходимыми функциями контроля, оповещения и управления составом газовой среды, что делает их надежными при оснащении уже используемого терапевтического оборудования и разработке новых современных аппаратов ИВЛ. Накопленный успешный опыт в разработке устройств для медицинского использования в рамках международных проектов и в производстве и продаже газоанализаторов, является надежной и эффективной базой для работы над усовершенствованием производимых и созданием новых контрольно-измерительных приборов, исходя из поставленных задач по применению.