Содержание углекислого газа в атмосфере Земли перешагнуло отметку 400 ppm и не собирается останавливаться. Похоже, эта новость взволновала только ученых, хотя должна бы вызвать отклик в каждом. Рассказываем, почему.
- Углекислый газ в атмосфере
- Углекислый газ и мы
- Гиперкапния
- Средства индивидуальной защиты органов дыханияПравить
- СсылкиПравить
- Что происходит при повышении концентрации углекислого газа в воздухе, который попадает в организм?
- Дыхание
- Дыхание у растенийПравить
- Дыхание у человекаПравить
- Характеристика внешнего дыхания
- Биомеханика и биофизика внешнего дыхания
- Патология внешнего дыхания
- Дыхание и физические нагрузкиПравить
- Приборы для исследования параметров дыханияПравить
Углекислый газ в атмосфере
Углекислый газ (СО2) в атмосфере Земли проходит путь, отдаленно напоминающий известный всем с детства круговорот воды в природе. Смысл его сводится к тому, что СО2 появляется в воздухе вследствие природных и техногенных процессов, а потом частью удаляется из атмосферы, а частью накапливается в ее верхних слоях и влияет на климат.
Распределение СО2 в атмосфере Земли
На протяжении многих веков вплоть до начала промышленной революции основными источниками образования СО2 служили естественные процессы: извержения вулканов, разложение органики, лесные пожары и дыхание животных. Но примерно с середины XVIII в. на содержание СО2 в воздухе начинает ощутимо влиять промышленная деятельность человека, в первую очередь те ее виды, которые связаны со сжиганием ископаемого топлива (нефть, уголь, сланцы, природный газ и др.) и производством цемента. На их долю приходится около 75% антропогенной эмиссии СО2. За остальные 25% ответственно землепользование, в частности, активное сведение лесов.
Удаление части СО2 из воздуха происходит за счет его растворения в океане и поглощения растениями. Впрочем, растения не только поглощают углекислый газ, но и выпускают его: в процессе дыхания они так же, как и люди, «вдыхают» кислород и «выдыхают» СО2. Так что углекислый газ присутствует в атмосфере всегда, вопрос только в том, каково его количество.
За последние десятилетия содержание СО2 возрастает стремительнее, чем когда-либо прежде за время документальной истории. В 1750 г. концентрация СО2 в атмосфере составляла около 270 ppm и только через двести с лишним лет, к 1958 г., «доползла» до отметки 320 ppm. Еще пятьдесят лет – и скачок на целых 60 пунктов: в 2005 г. содержание СО2 в атмосфере составило 380 ppm. В 2010 г. – уже 395 ppm. А недавно ученые сообщили, что содержание углекислого газа перевалило за 400 ppm и обратно в обозримом будущем не вернется. Похоже, пора переписывать энциклопедии.
Между прочим, в истории Земли бывали периоды с куда большим содержанием углекислого газа. Четыре миллиарда лет назад атмосфера нашей юной планеты содержала целых 90% СО2. Правда, жизнь тогда еще не зародилась: кислорода не было вообще. 2,5 миллиарда лет назад появились растения и все наладилось.
Нужно сказать, что отметка в 400 ppm преодолевалась и ранее. Содержание СО2 в атмосфере меняется в течение года, достигая максимума в мае. Так что весенне-летнее повышение концентрации углекислого газа не вызывало опасений ученых. В мае 2015 года даже в Антарктике уровень СО2 достиг 400 ppm, чего не случалось 4 миллиона лет! Но зато в сентябре традиционно наблюдается самое низкое в году содержание СО2 в атмосфере. Поэтому сентябрьское преодоление отметки 400 ppm как нельзя нагляднее свидетельствует о неконтролируемом росте количества углекислого газа в воздухе.
Углекислый газ и мы
Что с нами будет в этом «новом четыреста-пипиэмовом мире», как успела окрестить нашу планету западная пресса? Можно ответить в двух словах: глобальное потепление.
Глобальное потепление началось уже давно, и оно напрямую связано с содержанием углекислого газа в атмосфере. Дело в том, что СО2 – не просто газ, а парниковый газ. СО2 чрезвычайно инертен, он неохотно вступает в реакции с другими химическими элементами. За счет этого он накапливается в атмосфере Земли, где удерживает тепловое излучение с ее поверхности и препятствует его возвращению в космическое пространство. В этом и заключается парниковый эффект.
Парниковый эффект настолько крепко связан в нашем сознании с глобальным потеплением, что обычно ассоциируется с чем-то негативным. А между тем, именно парниковому эффекту мы обязаны комфортной жизнью на Земле. Без парниковых газов (кроме СО2 к ним относятся водяной пар, метан и озон) средняя температура на планете составляла бы –15°С, а не +15°С, как сейчас.
Но неконтролируемое повышение содержания парниковых газов приводит к усилению парникового эффекта, а тот, в свою очередь, – к глобальному потеплению. О нем слышали все и нередко относятся к нему с иронией, а иногда и подозрением: уж не заговор ли это производителей экотоплива? Все дело в том, что мы как будто бы не видим никаких признаков глобального потепления в повседневной жизни.
В самом деле, глобальное потепление – процесс медленный. Гренландия не растает ни завтра, ни послезавтра, ни даже через сто лет. Не будет никакой гигантской волны, смывающей Нью-Йорк, как в фильмах-катастрофах. Его затопит постепенно: городу придется отступить под натиском поднимающегося океана. Маленькие тихоокеанские острова исчезнут с лица Земли (вернее сказать, моря). Влажные регионы станут еще более влажными, а засушливые – еще более сухими. В первых будут плодиться насекомые-переносчики заболеваний, во вторых начнется острая нехватка продовольствия и питьевой воды. Приток пресных ледниковых вод в океан изменит курс теплых и холодных течений, что грозит похолоданиями в Северном полушарии и ураганами по всей планете. Дальше можно не продолжать: даже если малая часть этих прогнозов сбудется, человечеству придется непросто.
А пока среднегодовая температура по миру уже третий год подряд бьет рекорды. 2016 год называют самым жарким за последние 150 лет. Ученые установили, что атмосфера Земли потеплела на 1,45°С по сравнению с доиндустриальным периодом. Цифра может показаться ничтожной, но этого более чем достаточно, чтобы растопить льды.
Таяние льдов (фотографии NASA)
Так что приходится констатировать, что мы живем в эпоху глобального потепления. За последние сто лет уровень моря поднялся на 20 см.
Между прочим, повышение уровня СО2 в помещении тоже опасно, но по-другому: содержание СО2 выше 800 ppm вызывает ощущение духоты и негативно влияет на самочувствие человека. К счастью, есть способ его понизить. А вот снизить количество углекислого газа в атмосфере можно только объединенными усилиями всего мирового сообщества.
Правда, пока попытки ООН сдерживать эмиссию СО2 не приносят ощутимых результатов. Киотский протокол, устанавливающий квоты на газовые выбросы, вызывает недовольство все большего числа участников, потому что ограничивает возможности интенсивного промышленного развития.
Существует, впрочем, и альтернативная версия происходящего: если бы не антропогенная эмиссия, содержание СО2 в атмосфере постепенно уменьшалось бы, вызывая похолодание на всей планете. Люди, сжигая топливо, якобы делают вклад в будущее, сдерживая наступление катастрофы. Однако эта теория выглядит не такой уж оптимистичной, если вспомнить, что, по оценкам ученых, запасов ископаемого топлива нам хватит всего на 150 лет. Судя по всему, человечеству предстоит в очередной раз угадать, какое из двух зол меньшее.
Гиперкапния
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 мая 2022 года; проверки требуют 2 правки.
- При пользовании неисправных дыхательных аппаратов замкнутого цикла (ребризёров).
- В плохо вентилируемых барокамерах, где содержат группу людей.
- При забивке баллонов акваланга.
- При использовании компрессора с плохими фильтрами в душном непроветриваемом помещении.
- При плавании с очень длинной дыхательной трубкой: при выдохе в такой трубке остаётся старый воздух с повышенным содержанием СО2, и пловец вдыхает его в следующем дыхательном цикле.
- При задержках дыхания под водой. Многие подводники стараются экономить воздух и задерживают выдох. Это и приводит к отравлению СО2, отчего начинаются головные боли.
- В результате аллергических реакций организма.
Лечение производится чистым кислородом, но ни в коем случае не при повышенном давлении — пропорционально парциальным давлениям газов гемоглобин не будет успевать освобождаться от кислорода и захватывать углекислый газ. Повышенное давление кислорода — тоже причина гиперкапнии.
Для контроля гиперкапнии и гипокапнии в медицине используют капнограф — анализатор содержания углекислого газа в выдыхаемом воздухе. Углекислый газ обладает большой диффузионной способностью, поэтому в выдыхаемом воздухе его содержится практически столько же, сколько в крови, и величина парциального давления CO2 в конце выдоха является важным показателем жизнедеятельности организма.
Средства индивидуальной защиты органов дыханияПравить
Чрезмерное воздействие углекислого газа на организм мешает своевременному и правильному использованию респираторов в загрязнённой атмосфере, особенно при невысокой концентрации загрязнений.
- Лосев Н.И., Гологорский В.А., Черняков И.Н. Гиперкапния // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1977. — Т. 5. Гамбузия – Гипотиазид. — 568 с. —
- Углекислый газ (углекислота, двуокись углерода, диоксид углерода). Дата обращения: 19 июля 2011. Архивировано 5 ноября 2011 года.
- (Роспотребнадзор). № 2138. Углерода диоксид // ГН 2.2.5.3532-18 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» / утверждены А.Ю. Поповой. — Москва, 2018. — С. 29. — 170 с. — (Санитарные правила). Архивная копия от 12 июня 2020 на Wayback Machine
- R.J. Roberge, A. Coca, W.J. Williams, J.B. Powell & A.J. Palmiero. Physiological Impact of the N95 Filtering Facepiece Respirator on Healthcare Workers (англ.) // American Association for Respiratory Care (AARC) Respiratory Care. — Daedalus Enterprises Inc, 2010. — May (vol. 55 (). — P. 569—577. — ISSN 0020-1324. — PMID 20420727. Архивировано 31 октября 2020 года.PDF Архивная копия от 12 января 2021 на Wayback Machine перевод Архивная копия от 14 апреля 2021 на Wayback Machine
- Raymond J. Roberge, Aitor Coca, W. Jon Williams, Jeffrey B. Powell and Andrew J. Palmiero. Surgical mask placement over N95 filtering facepiece respirators: Physiological effects on healthcare workers (англ.) // Asian Pacific Society of Respirology Respirology. — John Wiley & Sons, Inc., 2010. — Vol. 15. — . — P. 516—521. — ISSN 1440-1843. — doi:10.1111/j.1440-1843.2010.01713.x. — PMID 20337987. Архивировано 14 июля 2021 года. Копия Архивная копия от 15 июля 2020 на Wayback Machine Перевод Архивная копия от 14 апреля 2021 на Wayback Machine
- E.J. Sinkule, J.B. Powell, F.L. Goss. Evaluation of N95 respirator use with a surgical mask cover: effects on breathing resistance and inhaled carbon dioxide (англ.) // British Occupational Hygiene Society The Annals of Occupational Hygiene. — Oxford University Press, 2013. — Vol. 57. — . — P. 384—398. — ISSN 0003-4878. — doi:10.1093/annhyg/mes068. — PMID 23108786. Архивировано 1 ноября 2020 года.
- E.C.H. Lim, R.C.S. Seet, K.‐H. Lee, E.P.V. Wilder‐Smith, B.Y.S. Chuah, B.K.C. Ong. Headaches and the N95 face-mask amongst healthcare providers (англ.) // Acta Neurologica Scandinavica. — John Wiley & Sons, 2006. — Vol. 113. — . — P. 199—202. — ISSN 0001-6314. — doi:10.1111/j.1600-0404.2005.00560.x. — PMID 16441251. Архивировано 1 ноября 2020 года. есть перевод Архивная копия от 6 декабря 2020 на Wayback Machine
СсылкиПравить
Ещё в прошлом веке были проведены различные исследования по воздействию углекислого газа (СО2) на организм человека.
В 60-х годах ученая О.В. Елисеева в своей диссертации приводит детальное исследование о влиянии углекислого газа в концентрациях 0,1% (1000 ррm) до 0,5% (5000 ррm) на организм человека, и пришла к выводу, что кратковременное дыхание углекислым газом (двуокиси углерода) здоровыми людьми в этих концентрациях вызывает отчетливые сдвиги в функции внешнего дыхания, кровообращении и значительные ухудшения электрической активности головного мозга.
Согласно ее рекомендациям, содержание углекислого газа (СO2) в воздухе жилых и общественных зданий не должно превышать 0,1% (1000 ррm), а среднее содержание СO2 должно быть около 0,05% (500 ррm).
Исследователи знают, что существует связь между концентрацией углекислого газа (СО2) и ощущением духоты. Это ощущение возникает у здорового человека уже на уровне 0,08%, т.е. 800 ррm. Хотя в современных офисах бывает 2000 ррm и более. И человек может не ощущать опасного воздействия углекислого газа. Когда речь идёт о больном человеке, то порог чувствительности ещё увеличивается.
Организм практически не распознаёт повышенное содержание СО2, поэтому человек может умереть от удушья без реакции организма. Например, многие умирали в гаражах при работающем двигателе машины. В этом и опасность СО2. Более того, человек даже может чувствовать, так сказать «кайф» при увеличенном содержании СО2, так как это газ в определённом диапазоне расслабляет организм.
Теория К.П. Бутейко о пользе СО2 была опровергнута еще в 1987 г. одним простым экспериментом: «Гипервентиляция вызывает приступ астмы даже при вдыхании воздуха с высоким содержанием углекислого газа» (Л.А. Исаева, чл.-корр. АМН СССР).
Даже незначительное увеличение СО2 во вдыхаемом воздухе у здоровых людей приводило к учащению дыхания и к снижению давления в лёгких. Наблюдались нарушения в нормальной работе дыхательного центра мозга и в работе приспособительных механизмов организма. Этот факт свидетельствует о том, что СО2 включает разрушительные процессы в нервных тканях, в работе иммунной системы и во всём организме в целом.
Уровень СO2, ррm — физиологические проявления:
- Атмосферный воздух 380-400 — Идеальный для здоровья и хорошего самочувствия.
- 400-600 — Нормальное количество воздуха. Рекомендовано для детских комнат, спален, офисных помещений, школ и детских садов.
- 600-1000 — Появляются жалобы на качество воздуха. У людей, страдающих астмой, могут учащаться приступы.
- Выше 1000 — Общий дискомфорт, слабость, головная боль, концентрация внимания падает на треть, растёт число ошибок в работе. Может привести к негативным изменениям в крови, также могут появиться проблемы с дыхательной и кровеносной системой.
- Выше 2000 — Количество ошибок в работе сильно возрастает, 70% сотрудников не могут сосредоточиться на работе. Основные измерения уровня СО2 происходят, конечно же, в центральной нервной системе, и носят они при гиперкапнии фазный характер: сначала повышение, а затем снижение возбудимости нервных образований.
Ухудшение условно-рефлекторной деятельности наблюдается при концентрациях, близких 2%, понижается возбудимость дыхательного центра мозга, уменьшается вентиляторная функция лёгких, также нарушается гомеостаз (равновесие внутренней среды) организма, путем либо повреждения клеток, либо путем раздражения рецепторов неадекватным уровнем определенного вещества. А при содержании углекислого газа до 5% происходит значительное снижение амплитуды вызванных потенциалов головного мозга, десинхронизация ритмов спонтанной электроэнцефалограммы с дальнейшим угнетением электрической активности мозга.
Что происходит при повышении концентрации углекислого газа в воздухе, который попадает в организм?
Увеличивается парциальное давление СО2 в наших альвеолах, его растворимость в крови повышается, и образуется слабая угольная кислота (СО2 + Н2O = Н2СО3), распадающаяся, в свою очередь, на Н+ и НССО3-. Кровь закисляется, что по-научному и называется ацидозом.
Чем выше концентрация углекислого газа в воздухе, которым мы постоянно дышим, тем ниже рН крови и тем более кислую реакцию она имеет.
Когда начинается ацидоз, то сначала организм защищается, повышая концентрацию бикарбоната в плазме крови, — об этом свидетельствуют многочисленные биохимические исследования. Чтобы компенсировать ацидоз, почки усиленно выделяют Н+ и задерживают НССО3-. Потом включаются другие буферные системы, и вторичные биохимические реакции организма. Поскольку слабые кислоты, в т.ч. и угольная (Н2СО3), могут образовывать с ионами металлов слаборастворимые соединения (СаСО3), то они откладываются в виде камней, прежде всего в почках.
Сотрудник медицинской научно-исследовательской лаборатории военно-морского подводного флота США Карл Шафер исследовал, как влияют различные концентрации углекислого газа на морских свинок. Грызунов восемь недель содержали при 0,5% СO2 (кислород был в норме — 21%), после чего у них наблюдалась значительная кальцификация почек. Она отмечалась даже после длительного воздействия на морских свинок меньших концентраций — 0,3% СО2 (3000 ррm). Но это еще не все. Шафер и его коллеги нашли у свинок через восемь недель воздействия 1%-го СO2 деминерализацию костей, а также структурные изменения в легких. Исследователи расценили эти заболевания как адаптацию организма к хроническому воздействию углекислого газа (СО2).
Отличительной особенностью долгосрочной гиперкапнии (повышенное СО2) является длительное отрицательное последствие. Несмотря на нормализацию атмосферного дыхания, в организме человека продолжительное время наблюдаются изменения биохимического состава крови, снижение иммунологического статуса, устойчивости к физическим нагрузкам и другим внешним воздействиям.
В нашем выдохе, примерно 4,5 % углекислого газа. А если начать на таких приборах дышать то получится прибор «мечта начальника концлагеря».
При этом в удушающую камеру жертвы направляются сами, потому что на входе написано «здоровье» и обещание, что когда у вас СО2 в крови будет 6,5 %, то получите обещанное. И не важно, что по пути вы будете получать отравления мелкими дозами, привыкните и подготовитесь. Подготовитесь к разочарованию, так как отметка 6,5 это не причина здоровья, а следствие совсем противоположного действия.
Кто-то может сказать: «Когда двигаются деревья, то они создают ветер». Нет, все наоборот. Дыхание с лечебным сопротивлением и пониженное содержание кислорода (как в горах) становиться редким и глубоким. Кислород начинает хорошо усваиваться, расщепляются токсины и шлаки, содержащие кислород, проявляется естественный анаэробный способ получения энергии в теле человека. Каждая клетка организма начинает оживать. В результате потребность в кислороде уменьшается, а углекислый газ, отчасти занимает место кислорода. Как балансный газ он создаст устойчивую среду в организме.
Именно такая идея описана в древних трактатах по дыханию, именно это доказал на практике доктор медицинских наук Стрелков Р.Б. и другие ученые, детально показав эффективность гипоксической терапии (умеренное уменьшение кислорода во вдыхаемом воздухе).
Именно такую задачу ставили и В.Ф. Фролов и Е.Ф. Кустов, создавая дыхательный прибор ТДИ-01 «Третье дыхание» для каждого человека на этой планете.
Тем не менее, не смотря на заявления Министерства Здравоохранения и видных научных деятелей страны продолжается выпуск и широкая реализация дыхательных приборов, работающих без внутреннего давления, как накопители углекислого газа (СО2).
Производители данных приборов, возникающие, как грибы после дождя, на волне популярности ТДИ-01 Фролова «Третье дыхание», утверждают что это тоже самое, только проще, дешевле, современнее и т.д.
С середины 19 века содержание углекислого газа катастрофически растёт на 1,7% каждый год, что в конечном счёте может привести к выводу из равновесия систему Земля.
Дыхание
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 января 2021 года; проверки требуют 114 правок.
К органам дыхания у рыб относятся жабры
Различия внешнего дыхания человека, птиц и насекомых
Клеточное дыхание включает биохимические процессы транспортировки белков через клеточные мембраны; а также собственно окисление в митохондриях, приводящее к преобразованию химической энергии пищи.
Дыхание у растенийПравить
Анаэробное дыхание растений было открыто Луи Пастёром. Обычно оно происходит в соответствии с суммарным уравнением спиртового брожения:
В анаэробных условиях хлорофилл, растворённый в пиридине, под воздействием света восстанавливается аскорбиновой кислотой или другими донорами электронов. В темноте реакция идёт в обратном направлении:
В свою очередь, «фотовосстановленный» хлорофилл может восстанавливаться такие акцепторы, как НАД+, хиноны, Fe3+.
Общие принципы организации процесса дыхания на молекулярном уровне у растений и животных схожи. Однако в связи с тем, что растения ведут прикреплённый образ жизни, их метаболизм постоянно должен подстраиваться к изменяющимся внешним условиям, поэтому и их клеточное дыхание имеет некоторые особенности (дополнительные пути окисления, альтернативные ферменты).
Газообмен с внешней средой осуществляется через устьица и чечевички, трещины в коре (у деревьев).
Дыхание у человекаПравить
Дыхание у человека можно разделить на стадии:
- внешнее дыхание — газообмен между внешней средой и альвеолами посредством дыхательных путей;
- газообмен в лёгких между воздухом и кровью;
- транспортировка газов кровью между лёгкими и тканями;
- газообмен между кровью и тканями;
- тканевое дыхание.
Видеоиллюстрация дыхательных движений человека полученная при помощи МРТ грудной клетки
Внешнее дыхание человека включает две стадии:
Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступает атмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом. Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц.
- грудной тип дыхания (вдох-выдох производится преимущественно грудной клеткой и участия мышц грудной клетки),
- брюшной тип дыхания (вдох-выдох производится преимущественно путём уплощения диафрагмы со вспомогательным участием мышц брюшной стенки).
Тип дыхания зависит от двух факторов:
Характеристика внешнего дыхания
Объёмы лёгких. Обозначены: TLC — общая ёмкость, VC — жизненная ёмкость, TV — дыхательный объём, IRV — резервный объём вдоха, ERV — резервный объём выдоха, RV — остаточный объём, IC — ёмкость максимального вдоха, FRC — функциональная остаточная ёмкость. Красной линией — спирограмма спокойного дыхания, максимальных выдоха и вдоха
- Ритмичность — регулярность вдохов и выдохов через определённые промежутки времени.
- Частота — число дыханий в минуту (16—20 в минуту у мужчин и 18—22 в минуту у женщин).
- Глубина — объём воздуха при каждом дыхательном движении.
После максимального выдоха в лёгких остаётся воздух в количестве около 1500 мл, называемый остаточным объёмом лёгких. После спокойного выдоха в лёгких остаётся примерно 3000 мл. Этот объём воздуха называется функциональной остаточной ёмкостью (ФОЁ) лёгких.
Благодаря ФОЁ в альвеолярном воздухе поддерживается относительно постоянное соотношение содержания кислорода и углекислого газа, так как ФОЁ в несколько раз больше ДО. Только 2/3 ДО достигает альвеол, который называется объёмом альвеолярной вентиляции.
Без дыхания человек обычно может прожить до 5—7 минут, после чего наступают потеря сознания, необратимые изменения в мозге и смерть.
Дыхание — одна из немногих способностей организма, которая может контролироваться сознательно и неосознанно. При частом и поверхностном дыхании возбудимость нервных центров повышается, а при глубоком — наоборот, снижается.
Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное).
Особые виды дыхательных движений наблюдаются при икоте и смехе.
Биомеханика и биофизика внешнего дыхания
Этот раздел статьи ещё не написан.
Здесь может располагаться Помогите Википедии, написав его. (29 мая 2022)
Патология внешнего дыхания
Основная форма патологии внешнего дыхания — дыхательная недостаточность. В зависимости от характера течения патологического процесса различают острую и хроническую дыхательную недостаточность. Кроме того, выделяют три типа дыхательной недостаточности:
- обструктивный тип;
- рестриктивный тип;
- смешанный тип.
Тахипно́э или «дыхание загнанного зверя» — учащённое поверхностное дыхание (ЧД свыше 20 дыхательных движений в минуту). Учащённое дыхание возникает обычно при раздражении дыхательного центра продуктами жизнедеятельности организма (углекислый газ). Наблюдается при анемии, лихорадке, заболеваниях крови. При желании может вызываться усилием воли (гипервентиляция), например, перед предполагаемой задержкой дыхания. При истерии частота дыхательных движений может достигать 60—80 в минуту.
Так называемое рефлекторное или «ложное апноэ» иногда наступает при сильном раздражении кожи (например, при погружении тела в холодную воду). Апноэ (как патологическое состояние) также следует отличать от искусственно вызванной задержки дыхания (например, при погружении в жидкость) — в результате развившегося кислородного голодания (на фоне прекращения поступления кислорода из атмосферного воздуха в альвеолы) происходит отключение коры головного мозга (потеря сознания или прекращение процессов высшей нервной деятельности), после чего подкорковые и стволовые структуры (дыхательный центр) дают команду на вдох. Если при этом атмосферный воздух проникает в лёгкие, то по мере достижения кислородом тканей и органов (в том числе и ЦНС) происходит спонтанное восстановление сознания. Если тело находится в жидкой среде, то происходит проникновение жидкости в дыхательные пути и развивается утопление (обычное или «сухое», связанное с ларингоспазмом).
Одышка или диспно́э — нарушение частоты и глубины дыхания, сопровождающееся ощущением нехватки воздуха. В случае патологических изменений сердечной мышцы одышка поначалу появляется при физической нагрузке, а затем возникает и в покое, особенно в горизонтальном положении (в связи с увеличением венозного возврата крови к сердцу), заставляя пациента принимать вынужденное положение сидя, способствующее депонированию венозной крови системы нижней полой вены в ногах (ортопное). Приступы резкой одышки (чаще ночные) при заболеваниях сердца — проявление сердечной астмы: одышка в этих случаях инспираторная (затруднён вдох). Экспираторная одышка (затруднён выдох) возникает при сужении просвета мелких бронхов и бронхиол (например, при бронхиальной астме) или при потере эластичности лёгочной ткани (например, при развитии хронической эмфиземе лёгких). «Мозговая» одышка возникает при непосредственном раздражении дыхательного центра (опухоли, кровоизлияния и другие этиологические факторы).
Патологические типы внешнего дыхания:
- периодическое дыхание по типу Чейна — Стокса — дыхание, при котором поверхностные и редкие дыхательные движения постепенно учащаются и углубляются и, достигнув максимума на пятый — седьмой вдох, вновь ослабляются и урежаются, после чего наступает пауза. Затем цикл дыхания повторяется в той же последовательности и переходит в очередную дыхательную паузу. Название дано по именам медиков Джона Чейна и Уильяма Стокса, в чьих работах начала XIX века этот симптом был впервые описан. Механизм патологического дыхания Чейна — Стокса объясняется снижением чувствительности дыхательного центра к СО2: во время фазы апноэ снижается парциальное напряжение кислорода в артериальной крови (РаО2) и нарастает парциальное напряжение углекислого газа (гиперкапния), что приводит к возбуждению дыхательного центра, и вызывает фазу гипервентиляции и гипокапнии (снижение PaCO2). Дыхание Чейна — Стокса встречается в норме у детей младшего возраста, иногда у взрослых во время сна; патологическое дыхание Чейна — Стокса может быть обусловлено черепно-мозговой травмой, гидроцефалией, интоксикацией, выраженным атеросклерозом сосудов головного мозга, при сердечной недостаточности (за счёт увеличения времени кровотока от лёгких к мозгу).
- менингитическое или дыхание Биота — чередованием равномерных ритмических дыхательных движений и длительных пауз при органических поражениях ЦНС.
Основные типы нарушений внешнего дыхания:
- альвеолярная гиповентиляция,
- альвеолярная гипервентиляция,
- нарушения лёгочной перфузии,
- нарушения вентиляционно-перфузионных отношений,
- нарушения диффузии.
Часто наблюдается сочетание типов нарушений.
Альвеолярная гиповентиляция характеризуется недостаточной альвеолярной вентиляцией, в результате чего в кровь поступает меньше кислорода и обычно происходит недостаточный вывод из крови углекислого газа. Гиповентиляция приводит к снижению количества кислорода в крови (гипоксемия) и к увеличению количества углекислого газа в крови (гиперкапния).
Причины альвеолярной гиповентиляции:
- нарушения проходимости дыхательных путей,
- уменьшение дыхательной поверхности лёгких,
- нарушение расправления и спадения альвеол,
- патологические изменения грудной клетки,
- механические препятствия экскурсиям грудной клетки,
- расстройства деятельности дыхательной мускулатуры,
- расстройства центральной регуляции дыхания.
Нарушения проходимости дыхательных путей:
- спазм мелких бронхов (обструктивный бронхит, бронхиальная астма),
- западение языка;
- попадание в трахею или бронхи пищи, рвотных масс, инородных тел;
- закупорка дыхательных путей новорождённых слизью, мокротой или меконием;
- воспаление или отёк гортани;
- обтурация или компрессия опухолью или абсцессом.
Тканево́е или кле́точное дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в процессе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (молекул аденозинтрифосфорной кислоты и других макроэргов) и может быть использована организмом по мере необходимости. Входит в группу процессов катаболизма. На клеточном уровне рассматривают два основных вида дыхания: аэробное (с участием окислителя-кислорода) и анаэробное. При этом физиологические процессы транспортировки к клеткам многоклеточных организмов кислорода и удалению из них углекислого газа рассматриваются как функция внешнего дыхания.
Аэро́бное дыха́ние. В цикле Кребса основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т. д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2,5 молекулы АТФ, ФАДН2 — 1,5 молекулы. Конечным акцептором электрона в дыхательной цепи аэробов является кислород.
Анаэро́бное дыха́ние — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.
Дыхание и физические нагрузкиПравить
При физических нагрузках дыхание, как правило, усиливается. Обмен веществ ускоряется, мышцам требуется больше кислорода.
Приборы для исследования параметров дыханияПравить
- Капнограф — прибор для измерения и графического отображения содержания углекислоты в воздухе, выдыхаемом пациентом, в течение определённого периода времени.
- Пневмограф — прибор для измерения и графического отображения частоты, амплитуды и формы дыхательных движений, в течение определённого периода времени.
- Спирограф — прибор для измерения и графического отображения динамических характеристик дыхания.
- Спирометр — прибор для измерения ЖЁЛ (жизненной ёмкости лёгких).
- Пикфлоуметр
- Дыхание / Глебовский В. Д., Анохин М. И., Коркушко О. В., Лосев Н. И., Миронова Н. С., Немеровский Л. И., Тихонов М. А., Шмелев В. П. // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. — 3-е изд. — М. : Советская энциклопедия, 1977. — Т. 7 : Дегидразы — Дядьковский. — 548 с. : ил.
- Лёгочная вентиляция / Исеев Л. P., Переслегин И. А. // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. — 3-е изд. — М. : Советская энциклопедия, 1980. — Т. 12 : Криохирургия — Ленегр. — 536 с. : ил.
- Газообмен / Исеев Л. Р., Исаакян Л. А., Коркушко О. В., Жмуркин В. П., Лаптева H. Н., Шмелев В. П. // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. — 3-е изд. — М. : Советская энциклопедия, 1977. — Т. 4 : Валин — Гамбия. — 576 с. : ил.
- Дыхательный коэффициент / Шик Л. Л., Дембо А. Г. // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. — 3-е изд. — М. : Советская энциклопедия, 1977. — Т. 7 : Дегидразы — Дядьковский. — 548 с. : ил.
- Дыхание // Малая медицинская энциклопедия. — Т. 2. — С. 146.
- Книги о правильном дыхании (на русском) // Libteka.ru
- Дыхание // Малая медицинская энциклопедия