Расходоме́р — прибор, измеряющий объёмный расход или массовый расход вещества, то есть количество вещества (объём, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счётчик) и служит для одновременного измерения и количества вещества, то его называют счётчиком-расходомером.
Дата публикации:
5 лет назад
- Измерение расхода жидкости
- Методы измерения расхода жидкости
- Приборы для измерения расхода жидкости
- Видео о измерении расхода
- Механические счётчики расхода
- Ёмкость и секундомер
- Расходомеры на базе объёмных гидромашин
- Расходомеры постоянного перепада давления
- Расходомеры переменного перепада давления
- Расходомеры с сужающими устройствами
- Расходомеры с гидравлическим сопротивлением
- Расходомеры с напорным устройством
- Расходомеры теплового пограничного слоя
- Ультразвуковые фазового сдвига
Измерение расхода жидкости
Расход – это объем жидкости протекающий в единицу времени через поперечное сечение трубопровода. Измерение расхода жидкости является одной из задач при производственных испытаниях оборудования.
В этой статье мы собрали для Вас все современные методы определения расхода жидкости, а так же приборы для измерения расхода: трубчатые расходомеры, расходомерные шайбы, крыльчатые расходомеры, ультразвуковые и вихревые расходомеры.
Методы измерения расхода жидкости
Наиболее простые и вместе с тем точные методы измерения расхода жидкости являются объемный и массовый (весовой).
В соответствии с методами измерения, единицами расхода жидкости являются:
При объемном способе измерения протекающая в исследуемом потоке(например, в трубе) жидкость поступает в особый, тщательно протарированный сосуд (так называемый мерник), время наполнения которого точно фиксируется по секундомеру.
Если известен объем мерника – V и измеренное время его наполнения – T, то объемный расход будет
Q = V / T
При весовом способе взвешиванием находят вес Gv = mv × g (где g – ускорение свободного падения) всей жидкости, поступившей в мерник за время T. Затем определяют её массу
mv = Gv /g
m = mv / T
и по ней, зная плотность жидкости (ρ), вычисляют объемный расход
Q = m / ρ
Но объемный и весовой методы измерения расхода жидкости пригодны только при сравнительно небольших значениях расхода жидкости, так как в противном случае размеры мерников получаются довольно громоздкими и, как следствие, замеры очень затруднительными.
Кроме того, этими способами невозможно измерить расход в произвольном сечении, например, длинного трубопровода или канала без нарушения их целостности. Поэтому, за исключением случаев измерения сравнительно небольших расходов жидкостей в коротких трубах и каналах, объемный и весовой способы, как правило, не применяются, а на практике пользуются специальными приборами, которые предварительно тарируются объемным или весовым способом.
Приборы для измерения расхода жидкости
Одним из таких приборов является трубчатый расходомер или расходомер Вентури. Большим достоинством этого расходомера является простота конструкции и отсутствие в нем каких-либо движущихся частей. Трубчатые расходомеры могут быть горизонтальными и вертикальными. Рассмотрим, к примеру, горизонтальный вариант.
Расходомер состоит из двух цилиндрических труб А и В диаметра d1, соединенных при помощи двух конических участков (патрубков) С и D с цилиндрической вставкой E меньшего диаметра d2. В сечениях 1-1 и 2-2 расходомера присоединены пьезометрические трубки a и b, разность уровней жидкости h в которых показывает разность давлений в этих сечениях.
Расход жидкости в этом случае определяется по тарировочным кривым, полученным опытным путем и дающим для данного расходомера прямую зависимость между показаниями манометра и измеряемыми расходами жидкости. Пример такой кривой на картинке рядом
Другим широко распространенным прибором для измерения расхода является расходомерная шайба (или диафрагма), обычно выполняемая в виде плоского кольца с круглым отверстием в центре, устанавливаемого между фланцами трубопровода
Края отверстия чаще всего имеют острые входные кромки под углом 45° или закругляются по форме втекающей в отверстие струи жидкости (сопло). Два пьезометра a и b (или дифференциальный манометр) служат для измерения перепада давления до и после диафрагмы. В основе метода положен принцип неразрывности Бернулли.
Расход в этом случае определяется по замеренной разности уровней в трубках. Трубки подсоединяют к датчикам, замеряющим перепад давления. Датчик перепада давления преобразует перепад в электрический сигнал, который отправляется на компьютер.
Расходы могут быть вычислены также в результате измерения скоростей течения жидкости и живых течений потока.
Одним из широко распространенных приборов, применяемых для этой цели является гидрометрическая вертушка. Современный турбинный расходомер устанавливают только на горизонтальном участке трубопровода. Лопасти крыльчатки колеса турбины изготавливают из не магнитного материала.
Вертушка состоит из крыльчатки А, представляющей собой колесо с винтовыми лопастями, насаженное на горизонтальный вал С. Когда она установлена в потоке, крыльчатка под действием протекающей жидкости вращается, причем число её оборотов прямо пропорционально скорости течения. Число импульсов за один оборот крыльчатки равно числу лопастей, а значит частота импульсов пропорциональна расходу.
При вращении лопасти поочередно пересекают магнитное поле, которое наводит электродвижущую силу в катушке в виде импульса. От вертушки вверх выводятся провода В, подающему сигнал к специальному счетчику, автоматически записывающему число оборотов и время.
Приборы для измерения расхода жидкости в этом случае называют турбинными расходомерами
Ультразвуковой метод измерения расхода
Ультразвуковой расходомер работает по принципу использования разницы по времени прохождения ультразвукового сигнала в направлении потока и против него.
Расходомер формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д.
Такой контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды.
Аналогично электронное устройство подает импульсы в обратном направлении, т.е. от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется своей частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды.
Следующим шагом является определение разности Δf указанных частот, которая пропорциональна расходу среды. Приборы для измерения расхода жидкости называются ультразвуковые расходомеры.
Вихревой метод измерения расхода
В основу работы вихревых расходомеров положена зависимость между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа.
Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости, при обтекании жидкостью специальной призмы, расположенной поперек потока.
В зависимости от конструкции датчика чувствительные тепловые элементы устанавливаются непосредственно в теле датчика или вихревой дорожке.
Если в тело образующее вихри, установить магнит, то он может служить датчиком. Реакция, возникающая при срыве вихрей, заставляет помещённый в поток цилиндр колебаться с частотой вихреобразования. Достоинством вихревых расходомеров является, обеспечение низкой зависимости качества измерений от физико-химических свойств жидкости, состояния трубопровода, распределения скоростей по сечению потока и от точности монтажа первичных преобразователей на трубопроводе. Приборы для измерения расхода жидкости называются вихревые расходомеры.
Видео о измерении расхода
При проведении измерения расхода, в некоторых случая используется понятие количества вещества – это количество жидкости или другой среды, проходящей через поперечное сечение трубопровода в течении определенного промежутка времени(за час, месяц, рабочую смену и т.д.)
Приборы для измерения количества вещества по аналогии с измерением расхода монтируются на – на трубопроводе, с выводом вторичного прибора к оператору.
Вместе со статьей “Измерение расхода жидкости: приборы и методы” смотрят:
Закон Паскаля для газов и жидкостей в гидростатике
Закон сообщающихся сосудов и его применение.
Число Рейнольдса: опыты, формулы и режимы.
Механические счётчики расхода
Скоростной счётчик — турбинка
Скоростные счётчики устроены таким образом, что жидкость, протекающая через камеру прибора, приводит во вращение вертушку или крыльчатку, угловая скорость которых пропорциональна скорости потока, а следовательно, и расходу.
Поступающая в прибор жидкость или газ измеряется отдельными, равными по объёму дозами, которые затем суммируются. Счётчики газа на этом принципе часто встречаются в быту.
Классификация объёмных счетчиков
В зависимости и от конструкции и от вида движения рабочего органа классифицируются на:
Ёмкость и секундомер
Возможно, самый простой способ измерить расход — это использовать некоторую ёмкость и секундомер. Поток жидкости направляется в некоторую ёмкость, и по секундомеру засекается время заполнения этой ёмкости. Зная объём ёмкости и поделив его на время заполнения, можно узнать расход жидкости. Этот способ подразумевает прерывание нормального течения потока, однако может давать непревзойдённую точность измерения. Широко используется в тестовых и поверочных лабораториях.
Область применения ролико-лопастных расходомеров очень широка: измерение расходов на испытательных стендах, в гидроприводах станков и технологического оборудования, на стационарных и передвижных бензо- и маслозаправочных станциях, в топливных системах карбюраторных и дизельных двигателей автомобилей, тракторов, строительно-дорожных, сельскохозяйственных, лесозаготовительных машин, тепловозов и судов, как дозаторы при заливке танкеров, ж/д цистерн, резервуаров.
Расходомер оснащен встроенным электронным датчиком и программируемым микропроцессорным прибором с жидкокристаллическим дисплеем. Электроника расходомера имеет автономное питание на 3 – 5 лет и герметизированный выход на вторичный электронный прибор или компьютер, управляющий механизмами дозирования. Для метрологического применения или при необходимости проведения высокоточных измерений в технологических процессах, расходомер оснащен датчиком с высокой разрешающей способностью (до долей см3).
Впервые расходомер с овальными шестернями был изобретен компанией Bopp & Reuther (Германия) в 1932 году.
Измеряющий элемент состоит из двух шестерёнок овальной формы. Протекающая жидкость вращает данные шестерёнки. При каждом обороте пары овальных колес через прибор проходит строго определённое количество жидкости. Считывая количество оборотов, можно точно определить, какой объём жидкости протекает через прибор.
Данные расходомеры отличаются высокой точностью, надёжностью и простотой, что позволяет их использовать для жидкостей с высокой температурой и под большим давлением. Отличительной особенностью расходомеров с овальными шестернями является возможность использования для жидкостей с высокой вязкостью (мазут, битум).
Расходомеры на базе объёмных гидромашин
В системах объёмного гидропривода для измерения объёмного расхода рабочей жидкости применяют объёмные гидромашины (как правило — шестерённые или аксиально-плунжерные гидромашины).
Объёмная гидромашина в этом случае работает как гидродвигатель, но без нагрузки на валу. Тогда объёмный расход через гидромашину можно определить по формуле:
Заметим, что объёмная гидромашина пропускает через себя весь расход жидкости, что для объёмного гидропривода не представляет сложности ввиду малых расходов.
Принцип измерения базируется на эффекте вихревой дорожки Кармана. Позади тела обтекания образуются вихри обратного направления вращения. В измерительной трубе находится завихритель, позади которого происходит вихреобразование. Частота вихреобразования пропорциональна расходу. Образующиеся вихри улавливаются и подсчитываются пьезоэлементом в первичном преобразователе в качестве ударных волн. Вихревые расходомеры подходят для измерения самых различных сред.
Расходомеры постоянного перепада давления
Ротаметры предназначены для измерения расхода чистых жидкостей и газов. Они состоят из вертикальной конической трубы, выполненной из металла, стекла или пластика, в которой свободно перемещается вверх и вниз специальный поплавок. Поток движется по трубе в направлении снизу вверх, заставляя поплавок подниматься до уровня, на котором все действующие силы находятся в состоянии равновесия. На поплавок воздействуют три силы:
Каждая величина расхода соответствует определённому переменному сечению, зависящему от формы конуса измерительной трубы и конкретного положения поплавка. В случае стеклянных конусов, значение расхода может быть считано прямо со шкалы на уровне поплавка. В случае конусов, выполненных из металла, положение поплавка передаётся на дисплей при помощи системы магнитов — не требуется никакого дополнительного источника питания. Различные диапазоны измерения достигаются за счёт многообразия размеров и форм конуса, а также возможности выбора различных форм и материалов изготовления поплавка.
Принцип электромагнитного измерения расхода
Ещё в 1832 году Майкл Фарадей пробовал определить скорость течения реки Темзы, измеряя напряжение, индуцируемое в потоке воды магнитным полем Земли. Принцип электромагнитного измерения расхода основан на законе индукции Фарадея. В соответствии с данным законом, напряжение создаётся, когда проводящая жидкость проходит через магнитное поле электромагнитного расходомера. Это напряжение пропорционально скорости потока среды.
Индуцированное напряжение измеряется либо двумя электродами, находящимися в контакте со средой, либо ёмкостными электродами, не контактирующими со средой, и передаётся в преобразователь сигналов. Преобразователь сигналов усиливает сигнал и преобразует его в стандартный токовый сигнал (4—20 мА), а также в частотно-импульсный сигнал (например, один импульс на каждый кубический метр измеряемой среды, прошедшей через измерительную трубу). Принцип действия электромагнитных расходомеров основан на взаимодействии движущейся электропроводной жидкости с магнитным полем. При движении жидкости в магнитном поле возникает ЭДС, как в проводнике, движущемся в магнитном поле. Эта ЭДС пропорциональна скорости потока, и по скорости потока можно определить расход.
Расходомеры переменного перепада давления
Расходомеры переменного перепада давления основаны на зависимости разницы давлений, создаваемых конструкцией расходомера, от расхода.
Расходомеры с сужающими устройствами
Они основаны на зависимости перепада давления на сужающем устройстве от скорости потока, в результате которого происходит преобразование части кинетической энергии потока в потенциальную.
Принцип действия расходометров этого типа основан на эффекте Вентури. Вентури-расходомер сужает поток жидкости в некотором устройстве, например, диафрагмой и датчиками давления или дифманометром измеряет разницу давлений перед указанным устройством и непосредственно в месте сужения. Этот метод измерения расхода широко используется при транспортировке газов по трубопроводам и использовался ещё во времена Римской империи.
Зная динамическое давление, с помощью уравнения Бернулли можно определить скорость потока, а значит, и объёмный расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).
Расходомеры с гидравлическим сопротивлением
Принцип действия гидродинамических расходомеров основан на измерении давления движущей среды, т.е. давления, которое действует на помещенное в поток тело. Достоинствами гидродинамических расходомеров являются: конструктивная простота, надежность и удобство обслуживания. Одним из распространенных вариантов применения является их использование в качестве индикаторов расхода загрязнения жидкостей и газов.
Центробежные расходомеры представляют собой колено на трубопроводе, которые охватывают его по всей окружности трубопровода. Отборы давления находятся в верхней части на внешней и внутренней стенках.
Расходомеры с напорным устройством
Расход определяется путём определения скорости потока через сечение канала, причём скорость определяется по времени переноса на известное расстояние каких-либо меток, искусственно вводимых в поток или изначально присутствующих в потоке.
Оптические расходомеры используют свет для определения расхода.
Маленькие частички, которые неизбежно содержатся в природных и промышленных газах, проходят через два лазерных луча, направленных на поток от источника. Свет лазера рассеивается, когда частичка проходит через первый лазерный луч. Рассеянный лазерный луч поступает на фотодетектор, который в результате генерирует электрический импульсный сигнал. Если та же самая частица пересекает второй лазерный луч, то рассеянный лазерный свет поступает на второй фотодетектор, который генерирует второй импульсный электрический сигнал. Измеряя интервал времени между двумя этими импульсами, можно вычислить скорость газа по формуле V = D / T, где D — расстояние между двумя лазерными лучами, Т — время между двумя импульсами. Зная скорость потока, можно определить расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).
Основанные на лазерах расходомеры измеряют скорость частиц — параметр, который не зависит от теплопроводности, вида газа или его состава. Лазерная технология позволяет получать очень точные данные, причём даже в тех случаях, когда другие методы применять не удаётся или они дают большу́ю погрешность: при высоких температурах, малых расходах, высоких давлениях, высокой влажности, вибрациях трубопроводов и акустическом шуме.
Оптические расходометры способны измерять скорости потока от значений 0,1 м/с до более чем 100 м/с.
Расходомеры теплового пограничного слоя
Применяются для измерения расхода в трубах небольшого диаметра от 0,5—2,0 до 100 мм. Для измерения расхода в трубах большого диаметра находят применение особые разновидности термоконвективных расходомеров:
В калориметрических расходомерах происходит нагревание или охлаждение потока внешним источником тепла, создающим в потоке разницу температур, по которой и определяют расход. Если пренебречь потерями тепла из потока через стенки трубопровода в окружающую среду, то уравнение теплового баланса между теплом, генерируемым нагревателем, и теплом, переданным потоку, приобретает вид:
Тепло к потоку в калориметрических расходомерах подводят обычно электро-нагревателями, для которых:
На основе этих уравнений статическая характеристика преобразования, которая связывает перепад температур на сенсорах с массовым расходом, приобретёт вид:
Принцип действия массовых расходомеров основан на эффекте Кориолиса. Массовый расход жидкостей и газов можно рассчитать по деформации измерительной трубы под действием потока. Плотность среды также можно рассчитать по резонансной частоте колебаний вибрирующей трубы. Вычисление силы Кориолиса осуществляется с помощью двух сенсорных катушек. При отсутствии потока оба сенсора регистрируют одинаковый синусоидальный сигнал. При появлении потока сила Кориолиса воздействует на поток частиц среды и деформирует измерительную трубу, что приводит к сдвигу фаз между сигналами сенсоров. Сенсоры измеряют сдвиг фаз синусоидальных колебаний. Этот сдвиг фаз прямо пропорционален массовому расходу.
Принцип ультразвукового измерения расхода
Время-импульсные расходомеры измеряют разницу во времени прохождения ультразвуковой волны по направлению и против направления потока жидкости. Такой принцип измерений обеспечивает высокую точность (± 1 %). При этом он хорошо работает для чистого потока или потока с незначительным содержанием взвешенных частиц. Время-импульсные расходомеры применяются для измерения расхода очищенной, морской, сточной воды, нефти, в том числе сырой, технологических жидкостей, масел, химических веществ и любой однородной жидкости.
Принцип действия ультразвуковых расходомеров основан на измерении разницы во времени прохождения сигнала. При этом два ультразвуковых сенсора, расположенные по диагонали напротив друг друга, функционируют попеременно как излучатель и приёмник. Таким образом, акустический сигнал, поочерёдно генерируемый обоими сенсорами, ускоряется, когда направлен по потоку, и замедляется, когда направлен против потока. Разница во времени, возникающая вследствие прохождения сигнала по измерительному каналу в обоих направлениях, прямо пропорциональна средней скорости потока, на основании которой можно затем рассчитать объёмный расход. А использование нескольких акустических каналов позволяет компенсировать искажения профиля потока.
Ультразвуковые расходомеры на установке висбрекинга
Ультразвуковые фазового сдвига
Доплеровский расходомер основан на эффекте Доплера. Он хорошо работает с суспензиями, где концентрация частиц выше 100 ppm и размер частиц больше 100 мкм, но концентрация составляет менее 10 %. Такие расходомеры жидкости легче и менее точные (± 5 %), а также дешевле, чем время-импульсные расходомеры.
Другим не столь популярным расходомером является ультразвуковой расходомер с последующей корреляцией (кросс-корреляция). Он позволяет устранить недостатки, свойственные доплеровским расходомерам. Они лучше работают для потока жидкости с твёрдыми частицами или турбулентного потока газа.