- Что такое термопара
- Устройство термопары, принцип работы
- Типы и виды термопар
- Подключение термопары
- Где используются?
- Как выбрать?
- Преимущества и недостатки
- <<< ГЛАВНОЕ МЕНЮ
- Термопары. Типы, характеристики, конструкции, производство
- Физическая основа работы термопары
- Принцип действия и структура термопар
- Физическая база работы термопары
- Принцип действия термопары
- Понятие термопары
- Где используются термопары
- Что такое термопара, ее устройство
- Что такое КХС
- Особенности, нюансы по точности
- Отличия термопар от терморезисторов (NTC PTC)
- Разновидности преобразователей термоэлектрического типа
- Тип электропар в зависимости от сплавов проводников
- Варианты спаев
- Многоточечные термоэлектрические преобразователи
- Другие варианты по конструкции
- Роль удлиняющих (компенсационных) проводов
- Как подключаются термоэлектрические преобразователи
- Изготовление термопары для мультиметра самостоятельно
- Где взять проволоку
- Скрутка, сварка
- Другие способы сварки
- Другие сплавы для электродов
- Проверка самодельной термопары для мультиметра
- Калибровка
- Другие самоделки
- Проверка, ремонт и замена термопары
- Починка, восстановление
- С термопарой или с терморезистором
- Видео по теме
- Конструкция
- Для чего нужно проверять термопары
- Какой прибор выбрать для измерения
Что такое термопара
Термопара – это температурный датчик, использующийся в промышленности, технике, где требуется обеспечить высокую точность измеряемых показателей температуры или же когда замер выполняется в условиях агрессивной среды. В быту применяются в отопительных котлах, холодильниках, автомобилях (в системе охлаждения ДВС). Термопары сейчас устанавливаются в том числе в каждый смартфон, ноутбук и компьютер для контроля нагрева процессоров, микроконтроллеров, аккумуляторной батареи.
Устройство термопары, принцип работы
Принцип работы датчика температуры (термопары) основан на таком физическом явлении, как электродвижущая сила (ЭДС, открыта Томасом Зеебеком в 1821 году). Суть явления: в замкнутой цепи между двумя проводниками (электродами) разного типа (например, медью и железом) возникает ток. Единственное требование – это наличие разницы температур в местах контактов (спаев). И чем выше эта разница, тем выше напряжение генерируемого в цепи тока.
Место спайки, где выполняется замер температуры (конец термопары), принято называть «измерительным» спаем (иногда называют «горячим»). Место, где задается первоначальный уровень температуры, называют «эталонным» спаем (или «холодным»). К его же выводам (свободные концы термопары) подключают измерительный прибор, регистрирующий изменение значения ЭДС (мультиметр, автоматический контроллер).
Измеряемая же температура рассчитывается на основании двух значений:
- уровень изменения ЭДС;
- поправка КХС (компенсация холодного спая).
Значение КХС – это условный коэффициент изменения ЭДС, рассчитываемый при температуре холодного спая в 0 градусов по Цельсию. Его определяют лабораторным методом, то есть подключая термопару к измерительному прибору и постепенно меняя значения горячего спая.
Главное: изменение ЭДС при повышении/снижении температуры на горячем спае происходит линейно. Только благодаря этому подобный метод позволяет рассчитать значение температуры, зная только значение ЭДС.
Типы и виды термопар
Термопары, в зависимости от используемых сплавов проводников, разделяют на:
- хромель-алюмелевые (ТХА), диапазон измерения от -270 до 1372 градусов, погрешность до 0,75%;
- железо-константановые (ТЖК), диапазон от -210 до 1200 градусов, погрешность 0,75%;
- платинородий-платинородиевые (ТПР), диапазон от 0 до 1820 градусов, погрешность – 0,5% (только свыше 800 градусов);
- медь-константановые (ТМКн), диапазон от -270 до 400 градусов, погрешность 0,75% при температуре выше нуля, 1,5% – ниже нуля;
- платинородий-платиновые (ТПП 10), диапазон от -50 до 1768 градусов, погрешность 0,25%;
- вольфрамрениевые (ТФР), диапазон от 0 до 2320 градусов, погрешность – 1% (если свыше 425 градусов).
В теории сделать термопару можно из любых двух проводников. Но вышеуказанные комбинации дают самые точные значения, а некоторые (ТХА, ТПП, ТПР, ТВР) – внесены в ГОСТ для использования в промышленных масштабах.
Различаются термопары и по типу конфигурации проводников. Бывают одноэлементные, двухэлементные, с заземлением на корпус и незаземленные. Точная конфигурация подбирается в зависимости от назначения.
Также существуют многоточечные термопары. Они используются, когда необходимо измерить разницу температур в нескольких измеряемых точках. Допустимое количество точек замера – 60. Чаще многоточечные термопары применяются в нефтепромышленности.
Дополнительно их различают по типу используемой колбы (где и располагаются проводники). Например, для измерения в условиях свыше 1000 градусов требуется использовать керамический «наконечник». А в химических реактивах, которые разъедают материал проводников, используется колба из устойчивого к кислотам или щелочам материала.
Ещё используется классифицирование по инерционности, то есть по скорости получения итогового значения ЭДС. Как правило, общий диапазон – от 40 секунд до 3,5 минут. Существуют датчики и с ненормированной инерционностью. Именно они преимущественно используются в быту, хоть и погрешность в их замерах высокая (для того же холодильника это не критично, так как отклонение результата не превышает 1,5%).
Подключение термопары
Проводники датчиков температуры (термопар) к измерительному прибору (который регистрирует ЭДС) подключаются через компенсационные провода. Как правило, изготавливают их из тех же материалов, что и сами проводники термопары. Их главное назначение – минимально изменять значение ЭДС, обеспечивая тем самым минимальную погрешность измерения. По этой причине термодатчики производителями могут поставляться сразу с компенсационными проводами. Вместо них ещё могут применяться термисторы, которые вырабатывают ток компенсации для холодного спая. В плане конструкции такие датчики проще, но погрешность у них на порядок больше.
Ещё один вариант подключения – «на разрыв». Это когда в качестве компенсационных проводов используются проводники из того же материала, что и клеммы измерительного прибора. Но не для всех типов термопар это подходит, так как медь (которая используется в клеммах измерительных приборов) допускается паять не ко всем сплавам. И в таких датчиках место холодного спая – это концы проводников термопары. Если между холодным и горячим спаями расстояние малое, то и погрешность при измерении высоких температур получится большой.
Где используются?
Сейчас они являются самым распространенным вариантом температурных датчиков. Используются как в бытовых приборах, так и в промышленности (в том числе в металлургии, где измеряются температуры жидких металлов). Можно упомянуть следующие варианты применения термопар:
- В холодильниках. Термодатчик включает реле при повышении температуры внутри холодильной камеры, отключает – при её снижении до требуемого уровня.
- В газовых котлах. Термодатчик отключает подачу газа, если внутри камеры сгорания температура падает ниже заданного значения. Таким образом работает аварийная система отключения котла при затухании горелки (форсунки).
- В автомобилях. Датчик устанавливается в системе охлаждения (в некоторых марках авто и в воздуховоде, в топливном насосе) для контроля температурного режима, автоматического включения и отключения вентилятора.
- В компьютерной технике (ноутбуки, смартфоны). Датчик замеряет температуру процессора, микроконтроллеров, GPU-адаптера и при превышении заданного значения – снижает подаваемое напряжение (это называется «троттлинг», то есть принудительное снижение производительности).
- В цифровых градусниках и термометрах, метеостанциях.
- В бытовых мультиметрах.
Как выбрать?
Первое, на чем следует акцентировать внимание: показания термодатчика зависят от типа используемого измерительного прибора. Поэтому, покупая термопару, нелишним будет поинтересоваться у производителя, с какими измерителями она совместима. Именно по этой причине в автомобиль можно ставить только определенные датчики: блок управления «не умеет» работать с другими (имеется в виду, с иными типами используемых проводников).
Основной критерий – это диапазон измеряемых температур. От этого значения зависит выбор сплава проводников, их конфигурация. В дополнение к этому у продавца следует уточнить наличие сертификата и паспорта датчика (при производстве их обязательно проверяют на соответствие характеристикам, сведения о проверке и дате ее выполнения указываются в паспорте).
Преимущества и недостатки
Ключевыми преимуществами термопар можно назвать следующие:
- простота конструкции;
- низкая себестоимость изготовления;
- широкий диапазон измеряемых температур (от абсолютного нуля и свыше 2000 градусов по Цельсию);
- надежность (разрешено использовать в условиях агрессивной среды, в химических растворах);
- высокая точность измерения, при правильной градации можно делать замеры с шагом вплоть до 0,01 градуса;
- малый размер капсулы датчика (в цифровой электронике используются модели, размером с микротранзистор).
Из недостатков стоит упомянуть:
- необходимость в определении точного значения коэффициента компенсации (так как замеры производятся не только при нулевой температуре), для каждого отдельного вида термопары это проводится индивидуально;
- наличие диапазона, при котором изменение ЭДС происходит нелинейно (для каждого типа проводника он свой), что не позволяет использовать датчик за его пределами;
- погрешность измеряемых значений термопары ухудшается со временем за счет снижения градуировочных значений (регулярные перепады температур буквально «изнашивают» датчик);
- необходимость использовать только совместимые измерительные приборы (или задействовать компенсационные провода).
Итого, датчик температуры (термопара) – один из самых простых, точных и дешевых термодатчиков, принцип работы которого заключен в измерении значения электродвижущей силы (указывается в Вольтах, но не следует путать с напряжением).
<<< ГЛАВНОЕ МЕНЮ
С заданным ТКЛР
С заданной упругостью
С высоким эл. сопротивлением
Термопары. Типы, характеристики, конструкции, производство
“Термопары. Типы, характеристики, конструкции, производство”
На странице представлена только выдержка из статьи “Термопары. Типы, характеристики, конструкции, производство”.
Принцип работы термопары основан на таком физическом явлении, как электродвижущая сила (ЭДС, открыта Томасом Зеебеком в 1821 году). Суть явления: в замкнутой цепи между двумя проводниками (электродами) разного типа (например, медью и железом) возникает ток. Единственное требование – это наличие разницы температур в местах контактов (спаев). И чем выше эта разница, тем выше напряжение генерируемого в цепи тока.
Физическая основа работы термопары
Принцип работы термопары основан на обычных физических процессах. Впервые эффект, на основе которого работает данное устройство, был исследован немецким ученым Томасом Зеебеком.
Суть явления, на котором держится принцип действия термопары, в следующем. В замкнутом электрическом контуре, состоящем из двух проводников различного вида, при воздействии определенной температуры окружающей среды возникает электричество.
Получаемый электрический поток и температура окружающей среды, воздействующая на проводники, находятся в линейной зависимости. То есть чем выше температура, тем больший электрический ток вырабатывается термопарой. На этом и основан принцип действия термопары и термометра сопротивления.
При этом один контакт термопары находится в точке, где необходимо измерять температуру, он именуется «горячим». Второй контакт, другими словами — «холодный», — в противоположном направлении. Применение для измерения термопар допускается лишь в том случае, когда температура воздуха в помещении меньше, чем в месте измерения.
Такова краткая схема работы термопары, принцип действия. Виды термопар мы рассмотрим в следующем разделе.
- хромель-алюмелевые (ТХА), диапазон измерения от -270 до 1372 градусов, погрешность до 0,75%;
- железо-константановые (ТЖК), диапазон от -210 до 1200 градусов, погрешность 0,75%;
- платинородий-платинородиевые (ТПР), диапазон от 0 до 1820 градусов, погрешность – 0,5% (только свыше 800 градусов);
- медь-константановые (ТМКн), диапазон от -270 до 400 градусов, погрешность 0,75% при температуре выше нуля, 1,5% — ниже нуля;
- платинородий-платиновые (ТПП 10), диапазон от -50 до 1768 градусов, погрешность 0,25%;
- вольфрамрениевые (ТФР), диапазон от 0 до 2320 градусов, погрешность – 1% (если свыше 425 градусов).
Принцип действия и структура термопар
Состоит термопара из двух проводников и трубки, которая служит защитой для термоэлектродов. Термоэлектроды состоят из неблагородных и благородных металлов, чаще всего из сплавов, закрепленные друг с другом на одном конце(рабочий конец или горячий спай), таким образом они образуют одну из частей устройства. Другие концы термопары (свободные концы или холодный спай) соединены с прибором измерения напряжения. Посередине двух несоединенными выводами возникает ЭДС, величина зависит от температуры рабочего конца.
Одинаковые термопреобразователи объединенные параллельно замыкают цепь, по правилу Зеебека, мы рассмотрим далее это правило, между ними образуется контактная разность потенциалов или термоэлектрический эффект, при соприкосновении на проводниках появляются электрические заряды, между их свободными концами возникает различие потенциалов, и он зависит от разности температур. Только тогда, когда температура между термоэлектродами одинакова, разница потенциалов приравнивается к нулю.
Например: Помещая спай с различными от нуля коэффициентами, в две кипящие кастрюли с жидкостью, температура первой 50, а второй 45, то разность потенциалов будет равна 5.
Разность потенциалов определяется разностью температур источников. Так же зависит материал из которого сделаны электроды термопары. Пример: У термопары Хромель-Алюмель температурный коэффициент равен 41, а у Хромель-Константан коэффициент равен 68.
Проводники термопары к измерительному прибору (который регистрирует ЭДС) подключаются через компенсационные провода. Как правило, изготавливают их из тех же материалов, что и сами проводники термопары. Их главное назначение – минимально изменять значение ЭДС, обеспечивая тем самым минимальную погрешность измерения. По этой причине термодатчики производителями могут поставляться сразу с компенсационными проводами. Вместо них ещё могут применяться термисторы, которые вырабатывают ток компенсации для холодного спая. В плане конструкции такие датчики проще, но погрешность у них на порядок больше.
Физическая база работы термопары
Механизм работы термопары основан на обыденных физических процессах. В первый раз эффект, на базе которого работает данное устройство, был изучен германским ученым Томасом Зеебеком.
Сущность явления, на котором держится принцип деяния термопары, в последующем. В замкнутом электронном контуре, состоящем из 2-ух проводников различного вида, при воздействии определенной температуры среды появляется электричество.
Получаемый электронный поток и температура среды, воздействующая на проводники, находятся в линейной зависимости. Другими словами чем выше температура, тем больший электронный ток вырабатывается термопарой. На этом и основан принцип деяния термопары и указателя температуры сопротивления.
При всем этом один контакт термопары находится в точке, где нужно определять температуру, он называется «жарким». 2-ой контакт, другими словами — «прохладный», — в обратном направлении. Применение для измерения термопар допускается только в этом случае, когда температура воздуха в помещении меньше, чем в месте измерения.
Такая короткая схема работы термопары, принцип деяния. Виды термопар мы разглядим в последующем разделе.
Принцип действия термопары
Принцип действия термопары основан на эффекте, который обнаружил в 1821 году немецкий — эстонский физик Томас Иоганн Зеебек. Он заметил, что при соединении двух проводников из разнородных металлов в них возникает напряжение (термоЭДС), величина которого зависит от степени нагрева места соединения. Позднее это явление стали называть термоэлектрическим эффектом или эффект Зеебека.
Фактическое напряжение, генерируемое термопарой зависит от температуры нагрева и от типа используемых металлов. Напряжение это не велико и, как правило, составляет от 1 до 70 мкВ на 1 градус Цельсия.
При подключении термопары к измерительному прибору получается еще один термоэлектрический переход. Таким образом, фактически получается два перехода находящихся в разных температурных режимах, поэтому входной сигнал на измерителе будет пропорционален разности температур между этими двумя переходами.
Для того, чтобы измерить абсолютную температуру, применяют метод известный как «компенсация холодного спая». Его суть заключается в том, что второй переход (который вне зоны измеряемой температуры) помещают при постоянной (образцовой) температуре. Ранее для этого использовали стандартный метод – помещая данный переход в ледяную воду.
На сегодняшний день применяют дополнительный датчик температуры расположенный в непосредственной близости от второго перехода, и по показаниям дополнительного температурного датчика измерительный прибор вносит коррекцию в результат измерения. Это значительно упрощает общую схему измерения, поскольку термопару и измерительный элемент, с элементом температурной компенсацией, можно объединить в единое целое.
Итого, термопара – один из самых простых, точных и дешевых термодатчиков, принцип работы которого заключен в измерении значения электродвижущей силы (указывается в Вольтах, но не следует путать с напряжением).
Автоматизация производства, технологических процессов, работа бытовых и прочих приборов часто связаны с мониторингом температурных изменений, там применяют высокоточные датчики с малой инерционностью — термопары (ТП). Отличия от других измерителей температуры, например, от терморезисторов: принцип основывается на возникновения тока при нагревании спаянных электродов, температурный диапазон намного шире. Есть и минусы: потребность в усилителях, преобразователях, иногда нужны определенные условия для уменьшения погрешностей. С мультиметром ТП применяется для исследования нагрева электроники и прочих объектов. Рассмотрим что такое термопара, достоинства и недостатки, особенности, типы. Опишем, где термоэлектрические преобразователи более уместные, как их собрать самому.
Понятие термопары
Термопары (преобразователи термоэлектрические, ТП) — это сенсоры для измерения t°, базирующиеся на принципе трансформации тепла в электропроцессы.
Сама по себе термоэлектрический преобразователь не обрабатывает показания, а передает их на отдельный узел для этого, на микросхему приложения (обслуживаемого или специального измерительного оборудования).
Датчик-термопреобразователь обладает достаточной точностью, малой инерционностью. Диапазон рабочих температур шире, чем у сенсоров-термисторов, а также лучшая стойкость к механическим и прочим нагрузкам (это главные плюсы).
Где используются термопары
ТП чаще, чем другие датчики применяют для оборудования, связанного с высокими плюсовыми температурами: топливные котлы и плиты, иное оснащение с горелками, бойлеры, паяльники, пирометры, печи, металлургия.
Термин «термоэлектрический преобразователь» отображает природу сенсора — дифференциальный измеритель, который делает замеры, преобразовывая тепло в электричество.
Термопары — это простые и эффективные сенсоры для высокоточных термоэлектрических термометров, работающих в повышенных температурных рамках.
Яркий пример применения: в составах автоматики топливных котлов и отопления. Сработка оснащения инициируется электросигналом от сенсорного узла с ТП.
Термопары наряду с NTC и PTC термисторами — самые популярные измерители температуры для оборудования, последние имеют свои достоинства (считаются более точными в своих диапазонах), но не охватывают настолько широкие температурные рамки, как ТП.
Что такое термопара, ее устройство
ТП регламентируются ГОСТами 6616, Р 8.585 и МЭК 62460, 60584. Пункт 2.2 последнего дает определение сенсора: пара разносплавных проводников с соединением (спайкой) на одном конце для инициирования термоэлектрического эффекта для замеров t° этим сегментом. ТП измеряет точкой соединения (головкой) своих электродов, так называемой «горячей спайкой».
Надо понимать, что устройство термопары может представлять собой неприглядные отрезки спаянных на одном их окончании тоненьких проводков, но, несмотря на это, сенсор чрезвычайно эффективный. Часто содержит драгметаллы.
- два проводника, с одного конца спаянные, реже — скрученные. Это горячий спай, чувствительный сегмент, проводящий замеры;
- другие концы — место, где нет нагрева, соединения с удлиняющими проводками, холодный спай. Они подсоединяются на приемник показателей.
Создается замкнутая цепь, если в ее разрыв подсоединить гальванометр, микровольтметр, мультиметр, то они покажут возникшую там термоЭДС в несколько мили-, микровольт. Значение зависит от степени нагрева на соединении проволоки и от показателя температуры, на сегменте, где такового нет.
То есть величина ЭДС зависит от разности t° между спаями — холодным и горячим и от термоэлектросвойств сплавов самих проводников.
Если горячую точку соединения подогреть, то между их несоединенными (холодными) концами появится разность потенциалов.
Далее, преобразователь отдельный или на блоке контроля обслуживаемого приборе исчисляет температуру, так как сила ЭДС и она взаимозависимые, затем переводит полученные данные в цифры и/или в команды для управления.
Что такое КХС
Для особой точности замеров температура на холодном сегменте должна быть неизменной, но этого достичь в обычных условиях сложно, поэтому применяют спецсхемы компенсации. Напряжение, фиксируемое на указанном участке ТП зависит от разницы t° на нем же и на горячем сегменте. Поэтому надо знать уровень нагрева первого для исчисления такового на втором. Такие расчеты именуются компенсацией холодного спая — КХС и он часто применяется для аварийных отключений или для управления другими узлами формирования импульсов.
КХС всегда стремятся измерять (исчислять) ближе к точке предполагаемых замеров термопарой, так как удлиненные провода сенситивные к электропомехам (ухудшается сигнал). Данное обстоятельство значимо для производителей при конструировании термодатчиков.
Если кратко, то ТП состоит из проводков из 2 разных сплавов со своими электрохарактеристиками при термических влияниях: создается определенная разность потенциалов и слабый ток, что фиксирует приемник таких показаний.
Но если углубиться в изучение термопары, то надо сказать о значительных особых нюансах как она работает.
Принцип работы термопары использует термоэлектрическое реагирование, впервые описанной ученым Т. Зеебеком. Соединенные проводники имеют контактную разность потенциалов. Конструктивно сенсор состоит из 2 жил из разных сплавов.
Концы образуют головку — контакт, так называемый горячий спай (красный на схеме ниже), созданный скручиванием, а чаще сваркой (швом, встык). Свободные окончания идут на обрабатывающие данные, управляющие узлы обслуживаемого оснащения, они замкнутые компенсационными проводками на контакты таких приборов, а в точках соединения с ТП находится холодный спай (синий на рис. ниже).
Электроды из разных металлов, условно А и B, на чертеже выше тоже изображены разными оттенками. Они защищены герметичной капсулой (может быть с инертным газом, жидкостью), керамическими цилиндриками (на изобр. ниже).
Объяснение из Википедии:
Действие основывается на эффекте с термоэлектрическими свойствами (назван на честь ученого Т. Зеебека). Если цепь замыкается, например, милливольтметром, на точках спаек появляется термо-ЭДС (электродвижущая сила). Если применить электроды с одних и тех же сплавов, то они бы нагревались одинаково (равнозначно), ЭДС взаимно бы компенсировалась, ток бы не возник.
Термопара, как она работает, что это такое простым языком: разные же проводники нагреваются по-разному, их спаи обладают неидентичными температурами, поэтому между ними возникает разность потенциалов, инициирующая термо ЭДС, которая и поддерживает слабый ток на такой цепи. Величина пропорциональная разности t° спаев. Надо акцентировать, что принимать во внимание надо именно ее, а не другие показатели.
Еще одно простое объяснение, как работает термопара: если соединить 2 разных металлических проводника, создав замкнутую электроцепь, и нагреть точку данного соединения, то появится электродвижущая сила (термоЭДС) и малый электроток. ТП передает эти данные на микросхему обслуживаемого или измерительного прибора, который и обрабатывает их, вычисляя t°.
Особенности, нюансы по точности
Напряжение на холодных кончиках пропорционально зависимое от t° в районе горячей спайки. В определенном температурном диапазоне наблюдается линейное термоэлектрическое свойство, показывающее собой зависимость напряжения от уровня разности t° между точками теплым и холодным элементом ТП. Линейность условная — о ней можно говорить, лишь когда t° на последнем постоянная. Данный нюанс надо учитывать, если делается градуировка: при изменении нагрева на холодных окончаниях есть вероятность значительной погрешности
Когда требуется высокая точность замеров, холодные концы помещают в специальные капсулы, где стабильность одного выбранного уровня температуры поддерживается специальными электронными приборами, обрабатывающими показатели термометра сопротивления. При таком подходе добиваются точности до ±0.01. Но это затребовано лишь для немногих технологических процессов. В большинстве случаев, например, при работе термопары в холодильниках, водонагревателях и прочих бытовых приборах требования менее жесткие, допускают отклонения на порядок ниже.
Отличия термопар от терморезисторов (NTC PTC)
Отличия термоэлектрических преобразователей от термисторов (датчиков сопротивления):
- принцип работы. На термопаре возникает малый ток, меняющийся при разном нагреве ее головки, а терморезистор (полупроводниковый) реагирует на такие процессы изменением своего сопротивления;
- конструктивные. Конструкция термопары: два спаянных проводника (ток идет от них) из разных сплавов в защитном кожухе и с компенсационными проводами, термистор — цельный кусок полупроводника с жилами (ток идет на него), сопротивление которого чувствительное к температуре.
Термопара имеет такие преимущества:
- термисторы более точные, но с некоторыми оговорками. При высоких температурах, погрешности, а также деградация, раскалибровка у них может быть выше, чем у ТП. То есть при особо значительных температурах термопары могут быть точнее. Данный минус для них также нивелируется, если есть преобразователь, исчисляющий погрешности;
- часто требуется нормирующий усилитель, который нужен для термопары, чтобы повысить чувствительность, чтобы ее сигнал был сильнее для лучшей работы приемника, обрабатывающего информацию, чтобы он «увидел» ее;
- термистор дешевый из-за того что не требует указанных дополнительных узлов. Для ТП такие устройства зачастую требуются, поэтому в итоге стоимость их использования выше;
- стойкость к механическим влияниям, вибрациям у термопар лучше, они имеют надежные защитные кожухи;
- скорость реакции у ТП выше, чем у термисторов;
- при работе с повышенными температурами термисторы больше подвержены износу и раскалибровке. Но этот минус относительный — такой сенсор часто просто выбрасывают и покупают новый, так как изделие дешевое;
- термисторы со временем деградируют быстрее. Обычно производители дают гарантию всего 1000 часов для таких детекторов. Термопары более живучие.
Итак, измерение температуры терморезистором и термопарой отличается основательно, хоть и в обоих случаях базируется на электропараметрах: вторая создает и меняет ЭДС, первый — свое сопротивление.
Если говорить о специальных узконаправленных сферах — лаборатории, специсследования, промышленность — то там чаще используют ТП.
- преимущества термопары: диапазон рабочих температур намного шире, реакция быстрее, срок эксплуатации намного превышает таковой у термисторов, ТП меньше подвержены раскалибровке, деградации, механическим повреждениям. При диапазоне t° от +300° C именно термопары часто незаменимые;
- минусы: особенности применения ТП повышают затраты (частично нивелируется живучестью), а также принято считать, что точность термопар немного хуже, чем у терморезисторов.
Отдельно выделим безусловный плюс: только термопары используются как измерители температуры исследуемых объектов (радиодеталей и пр.) вместе с мультиметром. Также надо сказать, что неподходящие диапазоны t° всегда повышают погрешности и вероятность отказа, но ТП стойче к таким условиям.
Разновидности преобразователей термоэлектрического типа
Виды термопар чрезвычайно обширные. Есть два основных фактора разделения: по разновидности сплавов и по варианту спайки. А также отдельным типом являются многоточечные ТП.
Тип электропар в зависимости от сплавов проводников
Термопара создает ЭДС, принцип всегда аналогичный, но сплавы нагреваются по-разному, поэтому рабочие диапазоны, скорость срабатывания, погрешности могут колебаться.
Разные сочетания металлов обладают своими параметрами, определяющими выходной импульс напряжения, но главное — температурный диапазон, в котором допускается использовать ту или иную разновидность сенсора
При росте амплитуды выходного напряжения улучшается разрешение измерений. Растет повторяемость, соответственно, и точность.
Есть разные соотношения разрешения и диапазона t° у конкретных типов ТП, что делает их подходящими для определенных условий.
Есть 9 типов термопар по составу сплавов проводников:
Разновидности обозначаются буквами. (J, K, T, E, N, R, S, B, C).
Для нас важна термопара типа К (другое обозначение — ТХА): она наиболее распространенная, подходит для применения в бытовых, других приборах и для задач, не имеющих каких-либо особых требований.
Традиционно ТХА рекомендована всегда, если только нет обоснований для использования иных видов. Ниже приведем описание термопары типа К из узкопрофилированного сайта по электронике:
Варианты спаев
Спаи создаются с разными определёнными конфигурациями под конкретные назначения термопар. Есть 1 и 2-элементные варианты, с заземлением на корпус защитной капсулы или без такового.
Заземление на корпус (не всегда оно есть) уменьшает инерционность термопары, а это улучшает быстродействие сенсора и точность в реальном времени. Также для достижения лучшей эффективности некоторые модели имеют горячий спай снаружи защитной колбы (кожуха, корпуса).
Многоточечные термоэлектрические преобразователи
Иногда требуется замерить t° на разных точках одновременно. Решает данную проблему многоточечный тип термопары. Такие сенсоры фиксируют данные вдоль оси преобразователя. Для стандартных, бытовых задач подобные изделия редкость — они применяются в химической, нефтехимической отраслях, где надо исследовать, как распределена температура в емкостях, реакторах и пр. Количество точек может достигать 60. Такая термопара не требует сложного обслуживания, используется одна капсула и один ввод в установку.
Другие варианты по конструкции
Разные конструктивные решения отображены ниже:
Ниже несколько вариантов термопреобразователей с кабельными выводами:
Роль удлиняющих (компенсационных) проводов
Удлиняющий, он же компенсационный провод или кабель для термопары нужен, чтобы она могла соединяться с отдаленными микросхемами оборудования, с вторичным или обслуживаемым прибором, приемником, обрабатывающим данные, а также для исследования удаленных областей.
Любые провода для удлинения не используют (исключение укажем ниже). Это еще одно отличие от термисторов. Надо применять тот же материал, что и в термопаре. Например, для сенсора типа К с жилами из хромель-алюмеля берут такие же проводки с маркировкой ХА.
Компенсационный кабель можно не применять, только когда у ТП есть преобразователь, который вычисляет и удаляет погрешность. Наиболее распространенная форма такового — «таблетка» внутри клеммного сегмента детектора с сигналом 4–20 мА унифицированного типа.
Как подключаются термоэлектрические преобразователи
На каждой новой отметке соединения разносплавных жил образуется холодный спай, а это, как мы уж описали, влияет на корректность замеров. Подключение желательно делать проводами по составу аналогичными с электродами.
Как правило, производители изначально комплектуют сенсоры такими компенсационными кабелями, их также можно докупить в спецмагазинах. Но, как мы отметили выше, это не актуально, если есть нормирующий преобразователь, схема корректировки, базирующаяся на термисторе. Провода ТП просто втыкаются в гнезда таких узлов согласно полярности.
Измерительные системы желательно размещать ближе при подключении ТП, чтобы длину кабеля сократить до самого возможного минимума. На любом проводе есть риск возникновения помех, а чем он длиннее, тем значительнее отклонения. Если радиопомехи можно устранить экранированием, наводки нивелировать сложнее.
Схема подключения термопары может включать терморезистор компенсации между контактами приемника и точкой холодного сегмента. Внешняя t° на эти элементы влияет аналогично, поэтому такая деталь будет исправлять погрешности:
Подключив ТП к измерителю, надо выполнить градуировку, в сети есть специальные таблицы.
Обозначение термопар на схемах:
Обозначения из ГОСТов:
Изготовление термопары для мультиметра самостоятельно
Термопара, созданная своими руками, это сенсор в своей основе конструктивно аналогичный заводскому: два спаянные разные по составу электроды.
Перечень материалов, инструментов:
- константин. Есть в старых советских низкоомных керамических резисторах ПЭВ-10 или подобных им;
- проволока, медь;
- зажигалки: турбо («печка») и обычная.
Приемником данных может быть любой цифровой или аналоговый тестер. С помощью такой ТП для мультиметра можно замерять температуру исследуемых объектов.
Где взять проволоку
Чем меньше сечение проволоки, тем ниже погрешности ТП, поскольку понижается само влияние массива жил на теплообмен.
В нашем примере взяты 2 проводка из таких сплавов:
- константиновый. Берем из старого керамического резистора ПЭВ-10. Сплав также содержит зарубежный аналог 1R00JSMT и подобные типы радиодеталей. Некоторые такие радиодетали с нихромом — он не подойдет;
- медный проводок: из обмотки б/у трансформаторов от бытовых приборов, из кабелей, например, витой пары.
Скрутка, сварка
Делаем скрутку из 2 проводков. Затем свариваем этот конец: так как жилы тонкие, то подойдет зажигалка турбо, в народе «печка». Должна получиться круглая головка-капелька. Оставшиеся витки затем надо раскрутить, чтобы не было замыкания.
Принцип работы мы уже описали: при нагревании в месте горячего спая, то есть головки-капельки возникает разница потенциалов, инициирующая малый ток, который будет течь по проводкам к приемнику (мультиметру). Значения такого электричества будут характеризовать определенную температуру.
Другие способы сварки
Спаять проводки можно и кустарной сваркой, например, применив лабораторные автотрансформаторы, автомобильный аккумулятор. К одному полюсу («+») такого источника подсоединяем оба конца термопары, скрученные или соединенные механически проволокой. К другому подключаем вывод («−»), присоединенный к куску графита. Возникнет электродуга, произойдет сварка.
Напряжение для сварки подбирают экспериментально: начинают с малых значений 3–5 В и постепенно увеличивают до нужного результата. Оптимальное значение зависит от металла проволоки, ее сечения, длины — оно обычно не превышает 40–50 В. Соблюдают безопасность: не касаются к оголенным участкам, не подают слишком большое напряжение. Для удобства опасные сегменты изолируют изолентой, кембриком, керамическими трубками.
Хорошее соединение получают, разогревая проводки дуговым разрядом, зажигая его между ними и крепким (ропа) раствором поваренной соли.
Другие сплавы для электродов
Выше мы показали пример с электродами константин-медь. Термопара для измерения температуры своими руками может быть создана и с проволоки с иных материалов (сплавы см. выше в табл.). Такие материалы продаются на узкоспециализированных торговых площадках, но все-таки достать их сложнее, наиболее доступный из них хромель и алюмель.
Проверка самодельной термопары для мультиметра
Электроды собранного датчика подсоединяем к мультиметру аналогично как щупы. Затем измеряете среду: нагреваете головку зажигалкой, наблюдаете табло тестера. В нашем случае мультиметр показал напряжение 50 мВ и ток в 5 мкА, это максимальное значение для данной самоделки.
Калибровка
Откалибровать самодельную термопару и создать базу данных какое значение какой температуре соответствует, можно, опуская ТП в жидкость с заранее известной температурой (надо будет значительно ее нагреть). Останется сопоставить t° с показаниями мультиметра и записать цифровые соответствия.
Другие самоделки
Нами описан способ создания «голого» датчика, обрабатывающее устройство было уже готово — мультиметр. Своими руками для такой термопары можно создать и иные приемники на микроконтроллерах Arduino, ATmega, а также, и усилители на подобных микросхемах — они потребуются, так как ЭДС очень низкая.
В сети есть много чертежей, как сделать термопару для различных задач с микроконтроллерами Arduino, ATmega и с цифровым дисплеем.
Проверка, ремонт и замена термопары
Рассмотрим неисправности на примере термопары датчика газового котла, в таких приборах она также называется сенсором пламени. По ходу раскроем некоторые нюансы по эксплуатации термоэлектрических детекторов, как они устроены, из чего состоит такой прибор.
- затухание фитиля, в момент, когда одновременно отпускают кнопку зажигания;
- огонек остается, но после розжига главной горелки подача топлива снова перекрывается, котел гаснет вообще.
- электроды, горячий спай покрылись сажей, прогреваются не достаточно. Поэтому напряжение на цепи падает ниже критического минимума, нужного для сработки прибора;
- прогар защитной капсулы ТП;
- нарушены контакты на точке спаев, обрыв проволоки;
- отошли крепежные гайки;
- перекос рабочего стержня и, как следствие, плохой прогрев запальником;
- сломался датчик тяги или его электроцепь оборвана.
Починка, восстановление
Термопары чувствительные к любым повреждениям и загрязнениям: эти факторы могут уменьшить выдаваемое датчиком напряжение ниже критической границы. Характерная частая причина плохой работы — нагар, сажа на рабочем (нагреваемом) сегменте. Для восстановления достаточно произвести чистку мягкой щеткой, ваткой со спиртом. Важно не допустить царапин, механических повреждений. После очистки надо провести проверку мультиметром.
Часто причиной неисправностей являются окислившиеся контакты, их можно зачистить мелкозернистой (нулевкой) наждачкой, но без чрезмерных усилий
Таким образом, если есть нагар, сажа, окисления, отошедшие или оборванные контакты, крепежи и подобное, то ТП возможно отремонтировать. Но если обнаружены глубокие черные вмятины, прогары (дыры), то такой элемент обычно не восстанавливается. Теоретически можно соорудить новый защитный кожух, попробовать наново спаять концы, если они разошлись, но нет гарантии, что такая починка будет качественная. А от неэффективной работы есть риск значительного ухудшения ресурса обслуживаемого прибора, вероятность аварийных ситуаций увеличивается. Почти всегда сенсоры с такими критическими перечисленными поломками заменяют на новые без раздумий.
Запасные элементы продаются в спецмагазинах, точках сервисного обслуживания. Подобрать не составит труда — достаточно выбрать аналогичный или подходящий по параметрам детектор для конкретной модели оборудования. Замена элементарная — отщелкнуть старую ТП и подключить (воткнуть) в посадочные места новую.
Сложность может быть лишь в том, что прибор придется разбирать, снимать крышки, узлы с горелками и так далее.
С термопарой или с терморезистором
Устройство и принцип действия термопары в термоэлектрическом измерителе и терморезистора в термометре сопротивления:
Нельзя однозначно для всех ситуаций рекомендовать, какие детекторы лучшие: термометр с термопарой или с термистором (ТС, он же термометр сопротивления), так как надо учитывать среду и сопоставлять со свойствами этих типов термодатчиков — каждый имеет свои плюсы и минусы. Подробно мы их рассмотрели. Теперь опишем пример выбора.
Первым делом сравнивают характеристики, сопоставляют:
- с требуемой точностью. Для не особо требовательных целей отклонение на 1–2 градуса не будет критичным. Но для приборов требовательных к точности данный параметр важен. В большинстве случаев корректнее термисторы, но также данный параметр у разных моделей сенсоров может быть равным, что мы видим в таблице;
- с рабочим температурным диапазоном. Тут ТП, безусловно, лучше, охватывает рамки t° намного шире;
- скорость реакции лучше у термопар, но это общее правило. Данный параметр может также сравниваться (см. табл.);
- термоэлектрический преобразователь лучше выдерживают вибрации, механические нагрузки, агрессивные среды.
Определить лучший вариант прибора надо с учетом всех нюансов и поставленных целей. Опишем это в примере:
- цель — максимальная точность, и это самое важное условие;
- можно подобрать термодатчики обоих типов. На первый взгляд ТП более подходящая, так как устойчивее к нагрузкам, вибрации;
- в итоге выбран термисторный прибор, так как цель — точность, а у этого типа сенсоров она выше. Кроме того, применили именно тонкопленочный термистор, этот вариант сенсора более стойкий к вибрациям нагрузкам.
- цель — точность ±5° C;
- ТС выдают стабильно точные измерения, особенно при невысоких вибрациях, но не надо забывать о диапазоне t°. Термисторы не стоит применять при выше + 850° C. Поскольку наша среда имеет от +900, выбран термометр с термопарой.
Видео по теме
Термопары (ТП) функционируют во многих тепловых процессах в качестве первичных датчиков температуры автоматической системы безопасности и регулирования. На объектах бытовой теплоэнергетики они устанавливаются для защиты горелок от отрыва пламени на газовых котлах, колонках и плитах, для приготовления пищи.
Они работают в высокотемпературной зоне газового факела, в связи с чем могут выходить из строя. При этом автоматика безопасности мгновенно отключает газоиспользующее оборудование. Для того, чтобы обеспечить безаварийную и продолжительную работу газовых плит, колонок и котлов, необходимо исключить ложное срабатывание защиты, а так же требуется знать, как проверить термопару мультиметром. В домашних условиях это возможно выполнить без проблем.
Термопара — это устройство, состоящее из спаянных разнородных проводников или полупроводников, образующих единую электроцепь. ТП работает на базе термоэлектрического эффекта, известного как «эффект Зеебека».
Эффект, когда два спаянных разнородных металла при определенной температуре генерируют напряжение, пропорциональное полученной тепловой энергии. Чем выше температурный напор в точке спая, тем больше термопара вырабатывает Э.Д.С.
Конструкция
Эффективность работы и высокая точность срабатывания данного первичного датчика температур базируется на простом принципе.
Его работа обеспечена такими основными элементами конструкции:
- Спай термопары из 2-х разнородных проводников. Иногда вместо проводников могут быть установлены полупроводники.
- Изолированные проводники, составляющие цепь от места спайки до точки вывода сигнала к внешним токоприемникам.
- Экранирующее защитное покрытие — металлическая трубка, закрывающая провода цепи от воздействия открытого огня в газовом факеле.
Важно! В состав спая могут быть включены как цветные, так и благородные металлы. В зависимости от этого термопары группируются по нескольким модификациям, характеристика которых представлена ниже.
Термопара устанавливается в измеряемую зону с высокой температурой. Сплав металлов нагревается до рабочей температуры. Между холодными и горячими соединениями в цепи образуется напряжение. К холодным выводам термопары подключается токоприемник или измерительный прибор, тем самым замыкая цепь. Возникшее напряжение в катушке газового клапана-отсекателя электромагнитного типа создает индукцию, в связи чем он открывается и пропускает газ к горелке.
Для того, чтобы запустить котел или газовую колонку, вначале в ручном режиме потребуется нажать на шток. Начнется пропуск газа к горелке и пьезозапальник подожгет факел. В течении 30 сек будет происходить разогрев термопары. При выработке термопарой рабочего напряжения, электромагнитный клапан будет удерживаться этим напряжением в открытом положении. После того, как газ перестанет попадать в топку или произойдет аварийный отрыв факела от горелки, спай термопары остывает и прекращается подача напряжения на газовый клапан, который закрывается, тем самым отсекая подачу топлива в котел или газовую колонку.
Справка. По этому принципу функционирует система безопасности не только в бытовых газовых установках, но и на мощных энергетических станциях от ТЭЦ до АЭС, а также на металлургических, химических и других видах производств, которые используют газ в технологических процессах.
Для чего нужно проверять термопары
Любой энергетический агрегат будет отключен аварийно, если не сработает датчик температур. Замена термопары дорогостоящий процесс, тем более что она нужна не во всех случаях. Чтобы исключить ложное срабатыватывание автоматики безопасности по факелу пламени, лучше провести проверку ТП. Восстановление его работоспособности начинают с визуального осмотра термопары.
Как правило, она выходит из строя по причине перегорания термального индикатора, что случается довольно часто в котлах. В этом случае на поверхности датчика можно обнаружить черную вмятину либо даже сквозную дыру. В таком случае такой измеритель отбраковывается сразу и потребуется установить новый.
Важно! В некоторых случаях термопара не имеет внешних отклонений. В этом случае ее работоспособность можно проверить только с помощью мультиметра.
Какой прибор выбрать для измерения
Для выполнения тестирования термопары подойдет самый простой мультиметр, который обычно имеется в арсенале у домашнего мастера. В том случае, если потребуется купить новый, то лучше взять модель способную решать многие задачи, в том числе и замер температур.
Также нужно обратить внимание на то, чтобы мультиметр, кроме стандартных замеров напряжения, сопротивления и проводимости электроцепей, обладал такими функциями:
- «HOLD» — функция фиксации результатов измерения на дисплее;
- «REL» — функция выполняющая измерение относительно базового значения;
- ●))) — функция тестирования электроцепей с подачей звукового сигнала.
Важно! Мультиметр обязан быть безопасным для пользования. Данные по его электробезопасности указывается в инструкции завода-изготовителя и наносятся на корпус прибора. Для тестирования термопары достаточно приборов класса CAT II / IIІ, соответствующим электробезопасности для внутридомовых распредсетей и локальных сетей питания.
Также можно проверить термопару авометром — это прибор комбинированного принципа действия. В основном измеряет постоянные характеристики тока, сопротивления и напряжения. В сущности, название «авометр» собрано из названий 3-х приборов, которые традиционно используют для замера отмеченных параметров: амперметра, вольтметра, омметра.