Точка росы в трубе

Точка росы в трубе Анемометр

Что такое точка росы сжатого воздуха

Выбор компрессорного оборудования, и модернизация компрессорного парка, подразумевает проработку методов борьбы с конденсатом. Большинство производителей оборудования оперируют понятием «точка росы сжатого воздуха», от которого зависит подбираемое оборудование.

При неправильном определении значения существуют риск образования конденсата в трубопроводах, по котором сжатый воздух поступает к потребителю. В зависимости от требуемой точки росы подбирается оборудование, что на прямую имеет влияние на первоначальные инвестиции и дальнейшие эксплуатационные затраты.

  • Что такое точка росы сжатого воздуха 1.1. От чего зависит точка росы 1.2. Методы измерений
  • Таблица содержания влаги в зависимости от точки росы

Под понятием точка росы сжатого воздуха подразумевают температуру газа, при которой водяной пар достигает насыщения и конденсируется переходя в жидкое агрегатное состояние.

Различают точку росы под давление (обозначение PDP) и атмосферную (PD).

С учетом того, что сжатый воздух находится под давлением, поэтому как правило оперирует значением — точка росы под давлением.

По своей сути, точка росы определяет минимальную температуру сжатого воздуха, при которой не будет выпадать конденсат и образовываться влага в трубопроводах.

1.1. От чего зависит точка росы

Параметр точки росы зависит от содержания влаги в сжатом воздухе.

Например, при содержании влаги 0.8835 мг/м3 соответствует точке росы — 20оС.

От конечного давления значение на зависит, так как при атмосферном давлении и давлении, например 10 бар, содержание частиц влаги одинаковое.

1.2. Методы измерений

Точку росы сжатого воздуха измеряют специальными датчиками, устанавливаемыми на магистраль либо в осушители сжатого воздуха.

Точка росы в трубе

Рисунок 1. — Прибор для измерения точки росы сжатого воздуха

Важным параметром при планировании компрессорной станции (подборе оборудования) является содержание влаги в сжатом воздухе. В зависимости от технологического процесса, производители оборудования указывают в данных требования к максимальному содержанию влаги. Так как большое количество содержания водяных частиц может повлиять на процесс, привести к коррозии элементов и выходу из строя оборудования.

В данном случае содержание влаги выражает параметр точка росы сжатого воздуха. Точка росы – это температура газа, при которой водяной пар достигает насыщения и начинает конденсироваться, иными словами это температура при которой выпадает конденсат. Наиболее распространенными значениями точки росы, которыми оперируют при проектировании систем снабжения сжатого воздуха, являются +3, -20, -40 и -70оС.

Различают атмосферную точку росы и точку росы под давлением, обозначаются PD и PDP соответственно. Необходимо учесть, что при уменьшении объема воздуха (сжатие) водяные пары могут конденсироваться, что несколько снижает содержание влаги в сжатом воздухе. При подборе оборудования ориентируются на точку росы под давлением (PDP), так как эти параметры отражают разные значения. Далее речь будет идти о точке росы под давлением. От чего зависит точка росы, точка росы зависит от температуры газа, но не зависит от давления. Содержание влаги в 1м3 атмосферного воздуха, и количество влаги в 1м3 при 8 бар одинаково, например для t=0оС параметр равен 4,487 г/м3, а при температуре -20оС уже 0,8835 г/м3.

Далее рассмотрим способы осушения сжатого воздуха, которые позволяют получить необходимую точку росы. Наиболее широко распространены три способа осушки: 1. Охлаждение с последующим нагреванием, данный способ реализован в рефрижераторных осушителях (холодильных). Данный способ позволяет получить точку росы +3оС. 2. Адсорбция, основанная на способности осушающего агента поглощать влагу, применяется в адсорбционных типах осушителей. Позволяет осушить сжатый газ до точки росы до -70оС 3. Мембранный.

Для определения количественного содержания влаги в сжатом воздухе, ниже приведена таблица содержания влаги в зависимости от температуры.

Про анемометры:  Причины возникновения пожаров | Администрация и Совет депутатов Павловского муниципального округа Нижегородской области

Воздушные осушители

Воздух, входящий в компрессор содержит водяной пар, примеси – пары масел, пыль, производственные газы. В сжатом воздухе их концентрация возрастает.

В компрессорных установках для отделения примесей используются воздушные осушители – фильтрация водного, маслянистого, жирного или агрессивного конденсата.

Объем конденсата на выходе из компрессора зависит от температуры всасываемого воздуха, влажности, его количества. Для образования 1м 3 сжатого воздуха (10 бар) установке требуется 11 м 3 воздуха атмосферы.

Причины конденсата в компрессоре

Степень влажности атмосферного воздуха повышается с ростом его температуры. Например, при температуре 10 °C, атмосферном давлении 0 бар в 1м 3 воздуха содержится 9,356 г влаги, при 20 °C — 17,148 г.

Точка росы в трубе

В таблице приведены максимальные значения влажности воздуха при давлении 0 бар в зависимости от температуры воздуха.

При сжатии в компрессоре воздуха его температура увеличивается примерно до 180 °C. После ее понижения в пневмомагистралях начинается конденсация влаги. Смешавшись с посторонними примесями (смазкой компрессора) воздух образует:

  • Агрессивные эмульсии – смесь воды с маслом, не отделяемые воздействием силы тяжести;
  • Диспергированные смеси – аэрозольная смесь конденсата воды и масла.

Процесс конденсации начинается при концентрации влаги с посторонними примесями (не способными сжиматься подобно воздуху) значением, превышающим точку росы. Количество влаги выпадет больше при высокой температуре входящего газа. Дальнейшее движение по магистрали охлаждает смесь, провоцируя конденсацию.

Попадая в пневматическую систему, влага порождает коррозию внутренних деталей, приводя оборудование в негодность. Зимой, в условиях низких температур влага замерзает, разрушая клапаны, уплотнители, прочие внутренние детали, узлы и агрегаты. Используемые для подготовки сжатого воздуха воздушные осушители являются обязательным условием сохранения целостности пневматических систем.

Точка росы в трубе

Влагоотделители разделяют воздух и влагу до попадания смеси в рабочее оборудование. Осушители бывают нескольких видов:

  • Мембранный;
  • Адсорбционный;
  • Рефрижераторный.

Осаждение конденсата в осушителе происходит при охлаждении воздуха до значения ниже точки росы.

Точка росы в сжатом воздухе

Влажность является одним из определяющих параметров при выборе компрессорного оборудования. Чрезмерное наличие влаги в атмосфере может привести к сбоям в технологическом процессе работы оборудования, коррозии, поломкам. Максимальные ее значения производитель указывает в паспорте таких машин.

Влажностью называют значение объема водяных паров в газе. Влажность воздуха характеризуется следующими параметрами:

  • Абсолютная влажность (г/м 3 ) – показывает количество влаги в единице объема воздуха;
  • Относительная влажность (%) – отношение фактической влажности к максимальному значению (значение насыщенности газа паром влаги). Показывает количество влаги, недостающее для конденсации. Зависима от температуры, давления;
  • Точка росы – значение температуры, необходимое для начала процесса конденсации. Показывает фактическое количество влаги в воздухе при определенной температуре.

Точка росы в трубе

Количество влаги в воздухе при постоянном значении температуры неизменно. Ввиду этого применительно к сжатому компрессорному воздуху точка росы — самый удобный, практически важный параметр. Например, объем влаги в 1 м 3 воздуха при t = 20 °C примерно равен 17,15 г.

Чаще всего при проектировании пневматических систем используется точка росы значением +3, -20, -40, -70 °C.

Точка росы (под давлением) в компрессоре

Различают две различных друг от друга характеристики влажности воздуха:

  • Точка росы атмосферная, °CтрА – обозначается PD. Это минимальная температура охлажденного воздуха атмосферы без появления конденсата;
  • Точка росы сжатого воздуха (под давлением), °Cтрд – обозначается PDP. Это минимальная температура, до которой может охладиться сжатый газ без выпадения конденсата. Значение ее температуры снижается при понижении давления.

Точка росы сжатого воздуха показывает порог выпадения конденсата, являющийся нежелательным для оборудования. Именно это значение используется для мониторинга пневматических систем.

Точка росы в трубе

Различие этих двух величин и зависимость точки росы сжатого воздуха от температуры можно рассмотреть на примере. Куб, содержащий 1м 3 воздуха при t = 20°C. Относительная влажность – 20%. Количество влаги при этом – 3 г. Максимальное значение влаги в этом объеме может достигать 15 г.

  • Давление в кубе не меняется – 1 бар. Воздух охлаждается. При температуре t = -3,2°C из него конденсируется 3г воды, т.к. при охлаждении возможность держать влагу уменьшается (табличное значения содержания влаги при -3 г/м 3 ). -3,2°Cтр – это значение атмосферной точки росы, т.к. процесс проходил в условиях атмосферы;
  • Объем куба уменьшается в 3 раза при увеличении давления до 3 бар. Масса водяного пара остается неизменной – 3 г (влага не впускалась и не выпускалась). Абсолютная влажность приобрела значение 9г/м 3 = 3г/(1/3 м 3 ). Температура не меняется (20°C) – максимальное количество влаги при этом около 15 г/м 3 . Относительная влажность такого воздуха равна 60% (9/15).
Про анемометры:  Каким прибором измеряется направление и скорость ветра

Следовательно, от начального объема куба воздух повысил относительную влажность в 3 раза.

Точка росы в трубе

Дальнейшее охлаждение этого закрытого объема приведет к образованию точки росы уже не при -3,2°C, а при +12 °Cтд. Таким образом, температура точки росы сжатого воздуха повышается с увеличением давления. Воздух на выходе из компрессора нужно охладить значительно меньше для его насыщения — конденсации влаги.

Последствия влаги в воздушной системе

Влага, попадая в пневматическую систему, со временем образует коррозию. Химические примеси в воздухе оседают на стенках трубопроводов, рабочих цилиндров, приводя к разъеданию металла, разрушению уплотнителей, повреждению клапанов. Существует целый ряд значительных отрицательных факторов влаги в системе:

  • Эмульгированный с маслом водный конденсат засоряет протоки пневмоинструмента;
  • Замерзание в трубопроводах с последующим разрывом;
  • Появление «кратеров» на окрашиваемой поверхности, способствующим коррозии (пневматические устройства покраски);
  • Повреждение электроники, разнообразных датчиков;
  • Нарушение технологического процесса при охлаждении воздухом литейных форм (для литья под давлением);
  • Расширение рабочего масла пневматических машин;
  • Коррозия воздуховодов пневмоинструмента с образованием пыли, твердых частиц;
  • Коррозия металла при пескоструйной обработке;
  • Изменение физического состояния сыпучих материалов при пневматической транспортировке;
  • Недопустимость конденсата при производстве продуктов питания лекарственных препаратов;
  • Влага неприемлема при производстве электроники.

Существует несколько классов очистки воздуха, определенных ГОСТ 17433-80 и стандартом ISO 8573-1:201(E). Кроме значения количества воды в сжатом воздухе они регламентируют содержание масла и твердых частиц.

Точка росы в трубе

Класс загрязненности характеризуют следующие параметры:

  • Точка росы;
  • Размер твердых частиц;
  • Количество масла в воздухе;
  • Содержание воды в воздухе;
  • Объем твердых частиц в воздухе.

Осушители сжатого воздуха

Сжатие воздуха в компрессорной установке сопровождается его нагревом с последующим образованием конденсата. Для отделения влаги перед пуском воздуха к потребителю стандартно используется сепаратор. Однако его в большинстве случаев недостаточно.

Дополнительно устанавливается специальное оборудование — воздушные осушители сжатого воздуха.

В зависимости от условий работы, назначения, производительности компрессора осушители сжатого воздуха используют 3 основных принципа осушения:

Ассимиляционный тип осушителя работает на основе свойства теплого воздуха содержать в себе больше пара воды относительно холодного. Обладают низким КПД одновременно с малой эффективностью, высокой энергетической емкостью. Результат работы такого типа зависит от температуры воздуха, влажности и т.д. (подверженность влиянию атмосферных условий). Работа такого оборудования в условиях высокой влажности затруднена или невозможна.

Конденсационный тип осушителя работает на основе явления перехода пара из состояния газа в жидкое. Основным элементом является холодильная конденсационная камера. Охлаждаясь в ней воздух достигает температуры точки росы, конденсируется на стенках камеры.

КПД конденсационного типа осушителя выше ассимиляционного. Недостатком является снижение эффективности при понижении температуры входящего воздуха.

Адсорбционный тип осушителя работает по принципу адсорбции – поглощение влаги веществом абсорбентом. Способны работать при низких температурах, высокой влажности воздуха.

Кроме этого может использоваться дополнительное сжатие. Воздух при этом сжимается еще больше, образуя конденсат. После этого происходит расширение воздуха до рабочих значений. Точка росы при таком методе может достигать -60°C. Главный минус такого метода – дороговизна.

Вихревой тип отделяет воду от воздуха образованием завихрений в камере. Воздух после прохождения через лопастную крыльчатку закручивается. Центробежная сила выталкивает частицы влаги на стенки корпуса. На нем влага конденсируется, стекает на дно, откуда удаляется через пробку.

Мембранные осушители сжатого воздуха

От других типов водоотделителей мембранные осушители сжатого воздуха отличаются принципом работы. Устройство снижает влажность воздуха без понижения температуры до точки росы.

Про анемометры:  Котлы на сжиженном газе купить в Москве с доставкой

Мембранный осушитель имеет в составе большой объем собранных в пучок волокон из фторосодержащей смолы Flemion. Размещаться волокна могут в:

  • Кассетный модуль двунаправленного действия;
  • Гибкую трубу;
  • Цилиндр.

Воздух проходит во входное отверстие, через пористую или монолитную структуру, оставляя на них молекулы воды или азота. Пары переходят через мембраны из области высокого давления в более разреженную среду. Для работы используется сухой и влажный воздух.

Точка росы в трубе

Количество паров внутри полости начинает превышать их количество с внешней стороны мембраны, после чего фтористое волокно выпускает пар наружу. Таким образом происходит уравновешивание концентрации пара.

Вышедшие молекулы воды уносятся потоком воздуха из выхода мембранной полости. Расширяясь во внешней полости мембраны, он создает поток, унося влагу из осушителя.

Мембранные осушители сжатого воздуха обладают следующими преимуществами:

  • Не нужна электроэнергия;
  • Относительно малые размеры;
  • Быстрая установка/замена;
  • Нет подвижных частей;
  • Могут работать в агрессивных, опасных средах;
  • Небольшое падение давления.
  • Малая пропускная способность;
  • Не используются для сильнозагрязненных газов.

Адсорбционные осушители сжатого воздуха

В условиях невозможности использования влагоотделителей с точкой росы +3°C применяются адсорбционные осушители сжатого воздуха. Диапазон температур точки росы таких установок – от -25°C до -70°C. Впитывающим влагу элементом служит адсорбент – вещества с большой площадью поверхности. Установка состоит из двух резервуаров – для осушки и регенерации соответственно.

Точка росы в трубе

Адсорбционные осушители бывают двух видов:

  • С холодной регенерацией;
  • С горячей регенерацией и охлаждением в вакууме.

В осушители холодной регенерации воздух попадает сквозь фильтр предварительного очищения – 0,01 мкм. Воздух проходит через емкость с адсорбентом (селикогель), освобождаясь от части влаги. В ней воздух охлаждается до определенной температуры точки росы. Около 15% осушенного воздуха переносится во вторую емкость (регенерирующую).

Накопленная адсорбентом влага выносится в атмосферу сухим воздухом. После «промокания» первого резервуара и «высыхании» второго происходит перенаправление сжатого воздуха между резервуарами. Процесс повторяется циклически.

Осушители горячей регенерации дешевле в эксплуатации при подготовке больших объемов газа низкой температуры точки росы (до -70°C). Пройдя первый резервуар, воздух нагревается до точки росы (-40/-70°C). Регенерация второго резервуара выполняется атмосферным воздухом, впускаемым вакуумным насосом и нагретым электрическим элементом.

В остальном принцип работы такого типа адсорбционного осушителя сжатого воздуха аналогичен первому типу.

Рефрижераторный осушитель сжатого воздуха

Благодаря стабильной температуре точки росы +3°C рефрижераторный осушитель сжатого воздуха применяется чаще остальных. Несколько плюсов такого влагоотделителя:

  • Простая эксплуатация;
  • Экологичность;
  • Надежность;
  • Регенеративный контур экономит общий расход электричества до50 %.

В конструкции рефрижераторного осушителя два контура – для воздуха и хладагента.

Принцип действия рефрижераторного осушителя:

  • Сжатый воздух поступает воздушный контур, соприкасаясь с холодным потоком и охлаждаясь, теряя часть влаги;
  • Далее воздух поступает в контур хладагента (фреон R404A, R134A), снижая температуру до точки росы, влага конденсируется;
  • В центробежном отделителе конденсата влага выталкивается на стенки сепаратора, стекает вниз, удаляется через электрический клапан;
  • Хладагент циркулирует с помощью холодильного компрессора;
  • Из компрессора нагретый хладагент идет в конденсатор (медные трубки в алюминиевых пластинах), охлаждается;
  • Для усиления охлаждения конденсатор оснащен осевым вентилятором;
  • Затем воздух проходит через узкую капиллярную трубку, снижая свое давление и охлаждаясь;
  • Хладагент поступает обратно в испарительный контур.

Это одна из нескольких конструкций рефрижераторного осушителя, применяемая наиболее часто. Общий принцип их работы одинаков.

Температура точки росы регулируется датчиком. Температура в испарителе не снижается ниже 0°C благодаря системе by-pass. Чрезмерно холодный хладагент выпускается электроклапаном в обход конденсатора, подавая в него хладагент горячий. Он восстанавливает температурный режим конденсатора.

После подготовки сжатого воздуха вести его через пневмотрассу, расположенную на холодном участке не рекомендуется. Пройдя через воздушные осушители, понизив свою температуру ниже точки росы, воздух может повторно выделить конденсат, навредив системе потребителя.

Оцените статью
Анемометры
Добавить комментарий