Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия Анемометр

Измерение
уровня жидкостей и сыпучих тел может
преследовать две цели: определение
количества вещества в емкости и
поддержание уровня в производственном
аппарате при осуществлении технологического
про­цесса.

В
большинство случаев и химической
промышленности наме­рение уровня
усложняется тем, что производственная
аппаратура работает в условиях высоких
температур и давлений, а также особыми
свойствами контролируемых сред (большая
вязкость, химическая агрессивность по
отношению к металлам, радиоактив­ность,
токсичность и т. д.).

Многообразие
требований к измерению уровня привело
к необходимости использования широкой
номенклатуры приборов, прин­ципы
действия которых основываются на самых
разнообразных физических законах. В
ряде химических производств до сего
времени не найдено вполне удовлетворительных
решений для измерения
уровня.

По
характеру работы уровнемеры могут быть
непрерывного и прерывистого
или релейного действия; в последнем
случае измерительное устройство
срабатывает при достижении опреде­ленного
уровня. Приборы второй группы используются
для сиг­нализации и поэтому называются
сигнализаторами уровня.

По
методу измерения уровнемеры можно
разделить на следу­ющие группы:
поплавковые, гидростатические,
электрические, тепловые,
уровнемеры, основанные
на изменении условий рас­пространения
колебаний (ультразвуковые, радиочастотные,
радиа­ционные), уровнемеры со щупом.

3.1
Классификация
датчиков уровня жидкости

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.1 – Классификация уровнемеров

3.1.1
Поплавковые
уровнемеры. Поплавковые
уровнемеры получили широкое распространение
для измерения
уровня жидкостей. В этих приборах
поплавок плавает на поверхности жидкости
и перемещается по вертикали вместе с
изменением уровня. Перемещения поплавка
передаются на указывающее устройство
или датчик для преобразования перемещения
в какую-либо электрическую, механическую
или другую величину и передачи ее на
вторичный прибор, который может
находиться на значительном
расстоянии от места
замера.

На
рисунке 3.2, а приведена
схема уровнемера с омическим дат­чиком.
Величина хода ползунка сопротивления
может быть зна­чительно уменьшена
при помощи уменьшающей рычажной или
шестеренчатой передачи.
В качестве вторичных приборов приме­няются
логометры и электронные мосты.

На
рисунке 3.2, б изображен
поплавковый уровнемер с сельсинным
датчиком, представляющим собой асинхронный
двигатель. При перемещении поплавка
барабаны 3, на
которые наматывается трос, поворачиваются
и заставляют поворачиваться ротор
сельсина-датчика 4. С
датчиком электрически связан
сель­син-приемник, ротор которого
повернется на такой же угол, как и у
сельсина-датчика 4.
В уровнемере, показанном
на рисунке 3.2, в,
применен индуктивный
датчик, сердечник которого связан с
поплавком. Вторичным
прибором может быть электронный
дифференциально-трансформаторный
прибор. Для измерения уровня в закрытых
сосудах под давлением может быть
рекомен­дован поплавковый уровнемер
с радиоактивным изотопом, пока­занный,
на рисунке 3.2, г.
Количество частиц,
попадающих на счет­чик 6,
есть функция расстояния
от поплавка до счетчика, т. е. оно зависит
от уровня. Такие уровнемеры применяются
для аппаратов, работающих при температурах
до 2800° К и давлениях 500-700 Мн/м2.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.2 – Схема поплавковых уровнемеров:

а
— с омическим датчиком; б
— с сельсинным датчиком;

в
и д
— с индуктивным датчиком; г
— с радиоактивным изотопом.

1
— поплавок; 2
— груз; 3
— барабан; 4
— сельсин; 5
— катушка с
сер-

дечником;
6 —
счетчик частиц излучения; 7
— катушка индуктивного
дат-

Схема
сигнализатора уровня с индуктивным
датчиком пока­зана на рисунке 3.2, д.
Поплавок этого
сигнализатора уровня (рисунок 3.3) сделан
из стекла или пластмассы. Внутри поплавка
впаяна алюминиевая или латунная фольга.
Поплавок помещен в
трубку диаметром 11—14 мм,
сообщающуюся с
резервуаром. На трубку
наматывается катушка
из изолированной проволоки (12 витков
провода марки ПЭ-0,8). Намотка, представляющая
собой катушку индуктивности L1,
и параллельно
присоединенный к ней конденсатор С1
(100 пф) образуют
вместе управляющий (сеточный) колебательный
контур L1C1
электронного генератора
четырехэлектродной лампы (тетрода) типа
6ПЗС.

Действие
сигнализатора основано па
следующем. При дости­жении
заданного уровня поплавок входит в
катушку, и в резуль­тате возникновения
в фольге вихревых токов, создающих
противодействующее электромагнитное
поле, величина индуктивности L1
уменьшится. При
этом сеточный L1C1
и анодный
L3C3
контуры лампы настроятся в резонанс,
что вызовет высокочастотные коле­бания
генератора (15-20 Мгц)
и уменьшение анодного тока, протекающего
по обмотке реле 3, с
25—30 до
5—6 ма.
Ток отпу­скания
реле равен 9—10 ма,
поэтому реле отпустит
свой сердеч­ник, контакты реле замкнутся
и сигнальная лампа загорится. При
понижении уровня жидкости поплавок
выходит из катушки, что вызовет срыв
высокочастотных колебаний и повышение
анод­ного тока до 25—30
ма. В
связи с тем, что ток срабатывания
элек­тромагнитного реле равен 14—16
ма,
реле 3
притянет свой
сердеч­ник, разомкнет контакты и
выключит сигнальную лампу.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.3 – Схема бесконтактного сигнализатора
уровня агрессивных

1
— стеклянный
поплавок с впаянной
латунной пли
алюми­ниевой фольгой;

2
— электронная
лампа типа 6ПЗС; 3 —
реле; 4 —
контакты реле;

5
— сигнальная
лампа;

L1
— ка­тушка
индуктивности (обмотка па трубке);
L1C1
и L3C3
— се­точный

и
анодный колебательные
контуры; L2,
L3,
L4,
C2,
C4,
C5,
C6,
C7
— дроссели

и
конденсаторы фильтров; R
— сопротивление утечки.

Схема
легко может быть использована для
сигнализации о минимальном, нормальном
и максимальном уровне, а также для
двухпозиционного регулирования уровня.

3.1.2
Гидростатические
уровнемеры.
Действие гидростатических
уровнемеров основано
на изме­рении давления
столба жидкости, находящегося над
нулевым уровнем.
Существуют гидростатические
уровнемеры с непосред­ственным
измерением столба жидкости, с
применением уравни­тельных
сосудов и
с продуванием воздухом
или другим инертным газом.

На
рисунке 3.4, а
приведена схема
измерения уровня
агрессивной или вязкой
жидкости в открытом
сосуде. Отсчет производится от
постоянного уровня в
уравнительном сосуде 3.
В качестве измерительного
прибора 1 используется
дифманометр любой конструкции.
Для предохранения дифманометра от
действия агрессивной жидкости, уровень
которой измеряется, предусмотрен
разделительный сосуд 2.
Разделительная
нейтральная жидкость, не смешивающаяся
и не вступающая в реакцию с агрессивной
жидкостью, заполняет до половины
разделительный сосуд 2,
соединительные трубки
и уравнительный сосуд 3.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.4 – Гидростатические уров­немеры:

а
— в сосуде без давления; б — в
со­суде под давлением.

1
— измерительные
приборы; 2, 4 —
разделительные сосуды; 3
— уравни-­

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.5 – Гидростатические уров­немеры с
непрерывной продувкой воз-

1
— измерительный прибор; 2
— пита­ющая
магистраль; 3 —
дроссель;

4
— трубка; 5
— ротаметр.

На
рисунке 3.4, б
показана схема уровнемера для измерения
уровня в закрытом сосуде под давлением.
Здесь также показания дифманометра
зависят только от уровня Н
жидкости в аппарате,
так как давление действует на жидкость
и в аппарате и в уравни­тельном сосуде
3. По
этой схеме при повышении уровня стрелка
дифманометра идет к нулю, а при понижении
— к верхнему пределу шкалы перепада
давлений. Это объясняется тем, что
урав­нительный сосуд установлен на
максимальном уровне. Для предохранения
от вредного воздействия контролируемой
жидкости на дифманометр здесь установлено
два разделительных сосуда 2
и
4.

Гидростатические
уровнемеры с непрерывной продувкой
воздуха (рисунок 3.5) применяются для
измерения уровня самых разнообразных,
в том числе агрессивных и вязких,
жидкостей в открытых резервуарах и в
сосудах под давлением. Измеритель
давления (манометр) 1
присоединяется к
трубке, по которой непрерывно протекает
небольшое количество воздуха. С начала
подачи воздуха давление будет повышаться
до тех пор, пока не станет равным давлению
столба жидкости от нижнего среза трубки
4 до
поверхности жидкости. В момент выравнивания
этих давле­ний из трубки в жидкость
начнет выходить воздух, расход которого
регулируют так, чтобы он только
пробулькивал отдельными пузырьками
(примерно один пузырёк
в секунду). Малый
расход воздуха
устанавливается с целью исключить
сильный напор его, а кон­троль и
регулирование рас­хода
необходимы потому, что колебания расхода
вносят искажение в измерения. Ве­личина
расхода устанавливается при помощи
регули­руемого дросселя 3
(диаме­тром 0,1 — 0,2
мм),
а кон­троль
осуществляется по ротаметру 5
пли путем под­счета
количества пузырьков, проходящих через
жидкость в контрольном стеклянном
сосуде. При измерении уровня раство­ров,
способных образовать пробку у отверстия
воздушной трубки 4,
последняя помещается
в другую
трубку, через кото­рую подается вода
или соответствующий слабый раствор.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.6 – Схема контактных сигнали­заторов
уровня сыпучих тел:

а
— с
маятниковым устройством;
б
— с мембранным
устройством.

На
применении датчиков, воспринимающих
давление контро­лируемого вещества,
основаны некоторые сигнализаторы уровня
сыпучих материалов, в которых под
действием давления мате­риала
замыкаются контакты. На различной высоте
(рисунок 3.6) в стенках бункера устанавливаются
диафрагмы или подвеши­ваются на
шарнирах маятники с пластинкой или
шаром на конце. Замыкание контактов
происходит при достаточном прогибе
диафрагмы или отклонении маятника при
повышении уровня мате­риала.

3.1.3
Электрические
уровнемеры. Действие
электрических уровнемеров основано на
том, что изменение уровня вызывает
соответствующее изменение
электро­проводности, магнитной или
диэлектрической проницаемости среды,
находящейся в магнитном или электрическом
поле дат­чика.

На
рисунке 3.7, а показана
схема контактного уровнемера, в котором
электрическая цепь замыкается при
достижении жид­костью подвижного
электрода.

Схема
может быть использована для непрерывного
измерения уровня электропроводной
жидкости. Один из электродов подви­жен
и управляется следящей системой, которая
передвигает также стрелку
и перо для записи. При подъеме уровня
жидкости электрическая цепь замыкается,
реле срабатывает и электро­двигатель
начинает вращаться, поднимая электрод.
Когда элек­трод выйдет из жидкости,
цепь размыкается и электрод опускается,
так как электродвига­тель начинает
вращаться в дру­гую сторону.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.7 – Схема электрических уровнемеров:

а
— с контактным датчиком; б
— с омическим датчиком; в
— с емкост-

В
схеме рисунка 3.7, б
исполь­зуются электрические свойства
жидкости. Жидкость (ртуть или расплавленный
металл) шунтирует сопротивление
воспринимающего элемента; вели­чина
его сопротивления одно­значно
определяет уровень жид­кости.

На
рисунке 3.7, в показан
уров­немер с емкостным датчиком.
Уровнемеры с емкостными датчиками, как
и уровне­меры с контактными датчиками,
обычно применяются для изме­рения
уровня жидкостей или сыпучих материалов.
Датчик емко­стного уровнемера для
токопроводящих сыпучих тел может
пред­ставлять собой пластмассовую
трубу, внутри которой находится медный
стержень — одна
из обкладок конденсатора. Второй
обкладкой служит материал в бункере. У
такого датчика при изменении уровня
меняется площадь обкладок.

Сигнализаторы
уровня часто выполняются с контактными
датчиками (рисунок 3.8). Контакт
осуществляется через жидкость (например,
серную кислоту). Сигнализатор состоит
из двух узлов: датчика 1
и блока питания. Датчик
1 представляет
собой два изолированных друг от друга
графитовых электрода, укреплен­ных
на фаолитовом основании и
имеющих клеммы для
присоеди­нения проводов. Блок питания
включает в себя понижающий трансформатор
2 напряжения
220/12 в
и реле 3 типа
МКУ-48.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.8 – Сигнализатор уровня агрессивных
электропроводных жид­-

1
— датчик; 2
— трансформатор; 3 —
реле; 4

сигнальная
лампа;

5
— контакты реле.

Прибор
работает следующим образом. Если уровень
жидкости ниже электродов, электрическая
цепь между электродами
разом­кнута, тока в цепи нет. При этом
на электродах датчика
напря­жение равно 12
в. Когда
уровень жидкости
повысился и жидкость
замкнула электроды, по цепи потечет
ток. Во вторичной обмотке трансформатора
2 индуцируется
напряжение, поэтому по катушке реле
3 потечет
ток и контакты 5
замкнут цепь сигнальной лампы. Контактов
может быть несколько пар —
для выполнения раз­личных
функций управления и сигнализации.

3.1.4
Уровнемеры,
основанные
на
изменении условий
распространения
колебаний
и
излучений. В настоящее
время применяются приборы
для измерения уровня,
действие которых основывается на
изменении условий
распространения различного вида
колебании (акустических,
элек­тромагнитных и др.) в различных
средах. В зависимости
от свойств различных
излучений для измерения уровня
используют те или иные
величины, характеризующие энергию
излучения (время
распространения, частоту колебаний,
ослабление в различных
средах и т. д.).

Про анемометры:  FUCHS MHL 360D

Ультразвуковые
уровнемеры.
На рисунке 3.9, а приведена
принципиальная схема ультразвукового
уровнемера. Излучатель 2
периодически посылает
импульсы колебаний уль­тразвуковой
частоты. Эти импульсы, отражаясь от
поверхности раздела двух сред, попадают
в приёмник 3
излучения. С помощью
электронного прибора 4
измеряется время
между посылкой импульса и приемом
отраженного импульса. При постоянной
скорости распространения ультразвука,
т. е. при неизменной среде, это время
пропорционально пути, который проходят
импульсы, и таким образом оно
характеризует высоту
уровня.

Радиочастотные
и
ультракоротковолновые
уровнемеры. В
радиочастотных уровнемерах (рисунок
3.9, б)
использована зависимость
собственной частоты колебаний
полого резонатора
от его объема. В качестве
полого резонатора
используется изменяющийся в зависимости
от уровня объем над
поверхностью жидкости.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.9 – Принципиальные схемы уровнемеров
жидкостей и сыпучих

тел,
основанных на изменении усло­вий
распространения ко-

а
— ультразвуковой
(акустический) уров­немер; б
— радиочастотный
уров-

немер;
в —
радиационный уровнемер.

1
— генератор
высокочастотных колеба­ний; 2
— излучатель колебаний;

3
— при­емник колебаний;
4 —
измеритель времени между подачей и

приемом
импуль­сов; 5 —
частотомер.

Резервуар,
который служит
задающим контуром, подключают к
радиочастотному генератору 1
с помощью волновода.
В качестве измерительного прибора
служит частотомер 5,
который подклю­чается
параллельно выходу генератора.
Этот уровнемер дает
удовлетворительные результаты
в случае измерения
уровня хорошо проводящих жидкостей. В
ультракоротковолновых
уров­немерах использовано
отраже­ние радиоволн от поверхности
жидкости. Величиной,
характе­ризующей
высоту уровня, является
сдвиг фаз
падающей на жидкость
и отраженной от нее
волны. На показания прибора влияет,
электропроводность,
однако это
влияние незначительно.

Радиационные
уров­немеры.
Принципиальная
схема радиационного уровне­мера
изображена на
рисунке 3.9, в. С
одной стороны резервуара
помещают источник
излуче­ния 2, а
с другой
— прием­ник 3. При
отклонении уровня в
любую сторону от линии,
соединяющей источник
с при­емником, часть
энергии излу­чения,
поглощаемая средой, уровень которой
измеряется, будет расти
или уменьшаться. Интенсивность излучения,
измеря­емая с помощью
приемника, является, таким
образом, функ­цией уровня.

В
качестве излучений используются
различные виды
электромагнитных
колебаний: инфракрасные, ультрафиолетовые
и гамма-лучи и лучи
видимой области спектра.

Гамма-лучи
обладают наибольшей проникающей
способностью. Это
позволяет устанавливать источник и
приемник снаружи
аппа­рата, исключая
таким образом
непосредственный контакт их со
средой. Поэтому уровнемеры, использующие
гамма-излучение (например,
кобальта-60), получили наибольшее
распространение.

Радиоактивные
уровнемеры применяются для
измерения уровня сыпучих
тел, а также жидкостей в тех случаях,
когда из-за слож­ности
технологических условий (высокое
давление, температура,
вязкая или
агрессивная среда и
т. д.) контроль необходимо
осуществлять без непосредственного
соприкосновения с контролируемой средой
и проникновения внутрь емкости.

Действие
таких уровнемеров основано на просвечивании
контролируемого объекта потоком
гамма-лучей; интенсивность потока
зависит от количества вещества па пути
пучка.

На
рисунке 3.10 приведена схема радиоактивного
уровнемера, которая реализована в
приборах типа УР-4 и УР-6A.
В основу их работы положен компенсационный
метод, осуществляемый следящей системой.

Прибор
состоит из колонки источника радиоактивного
кобальта и колонки счетчика ядерных
частиц. В колонках на
тросах закре­плены
каретка 1 с
источником и каретка 2
со счетчиком. Счетчик
фиксирует большее количество гамма-квантов,
если линия уровня находится ниже линии,
соединяющей каретки, и меньшее, если
уровень находится выше этой линии.
Каждый зафиксированный гамма-квант
создает импульс напряжения на нагрузке
счетчика. Эти импульсы поступают в
электронный усилитель 3.
Затем счет­чик
частоты импульсов подсчитывает их и
вырабатывается управляющее напряжение,
подаваемое на обмотку реверсивного
дви­гателя.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.10 – Принципиальная схема установки
радиоактивного уровнеме-

1
— каретка
с источником
гамма-излучений; 2 —
ка­ретка со счетчиком;

3
— усилитель; 4
— реверсивный
двигатель; 5 —
сельсин-датчик;

6
— сельсин-приемник;
7 —
индукционный датчик
дистанционной переда-

Двигатель
4 поворачивает
ротор сельсина-датчика 5,
с кото­рыми
электрически связаны сельсины-приемники
6,
управляющие перемещением кареток 1
и 2.

Когда
система «каретка
источника — каретка счетчика» нахо­дится
против линии уровня
материала в бункере,
реверсивный двигатель
не вращается; если
система находится выше
или ниже уровня, то
двигатель вращается в ту
или другую сторону, пока
система снова
не установится строго против уровня.
Одновременно с
передвижением системы
кареток реверсивный
двигатель пере­мещает
стрелку и датчик 7
дистанционной индукционной пере­дачи.
Электронный блок может
находиться от колонок
на рас­стоянии до 100
м.

Пределы
измерения до 2 м,
расстояние между
каретками от 0,2 до 2 м.
Погрешность измерения ±0,5% от
верхнего предела шкалы.

Для
имеющейся схемы автоматического
несвязанного регулирования ректификационной
колонны, на основе классификационного
анализа, выберем в качестве датчика
уровня жидкости – поплавковый уровнемер
ПК16. Выбираем этот расходомер исходя
из того, что он прост в использовании,
имеет приемлемые характеристики и
дешевые составные части.

3.2
Методы и приборы измерения уровня

3.2.1
Измерение
и указание уровня. При
транспортировке и хранении жидкостей
в резервуарах требуется определять
степень их заполненности, то есть
уровень, которого достигает находящийся
в них жидкий продукт. Получение информации
об уровне жидкости может осуществляться
двумя способами: в виде непрерывного
измерения и в виде указания предельных
величин.

При
непрерывном измерении датчик и
измерительная схема формируют сигнал,
амплитуда или частота которого несут
информацию о величине уровня жидкости
в резервуаре. При этом в каждый момент
времени оператор может точно знать
объем имеющегося продукта или располагаемый
свободный объем резервуара.

При
указании уровня указывающий прибор,
который состоит по существу лишь из
датчика, поставляет информацию только
о том, достигнут или не достигнут
определенный уровень. Указание верхнего
предельного уровня позволяет прекратить
наполнение и избежать перелива через
край; указание нижнего уровня дает
сигнал о необходимости прекратить
расходование продукта, что обеспечивает
минимальный резервный остаток продукта
в емкости и позволяет избежать, например,
холостой работы насосов. Сочетание двух
сигнализаторов предельного уровня —
верхнего и нижнего — позволяет
автоматизировать операции заполнения
и опорожнения емкостей.

Исходя
из различных принципов действия приборов,
применяемых для измерения или указания
уровня, можно дать следующую классификацию
наиболее употребительных методов:

а)
гидростатические методы с преобразованием
в электрический сигнал;

б)
методы, основанные на электрофизических
свойствах жидкости;

в)
методы, использующие взаимодействие
какого-либо излучения с жидкостью.

При
выборе соответствующего метода
принимаются во внимание физические и
химические свойства жидкости
(электропроводность, диэлектрическая
постоянная, плотность, вязкость,
ценообразование, корродирующие свойства)
и их возможное изменение; условия
хранения (температура, давление,
устройства стабилизации или перемешивания);
простота установки прибора.

Гидростатические
методы.
Сигнал, генерируемый
измерительным прибором, в этом случае
является непрерывной или дискретной
функцией высоты уровня жидкости. Он не
зависит от электрофизических свойств
жидкости, но зависит, кроме рода поплавка,
от плотности жидкости.

Поплавок
(рисунок 3.11, а),
который держится на поверхности жидкости,
жестко связан с помощью тросов и блоков
с аналоговым (круговой ленточный
потенциометр) или цифровым (градуированный
диск) датчиком положения, поставляющим
электрический сигнал, соответствующий
уровню жидкости.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.11 – Гидростатические методы измерения
уровня:

а
– поплавочный датчик уровня; б –
плунжерный датчик выталкивающей

силы;
в – дифференциальный датчик
перепада давления.

Плунжер
(рисунок 3.11, б)
представляет собой погруженный в
жидкость цилиндр, высота которого не
меньше максимальной высоты жидкости в
резервуаре. Плунжер подвешен к
динамометрическому датчику, находящемуся
под действием силы F
(кажущийся вес), зависящей от гидростатической
высоты h
жидкости:

где
Р — вес
плунжера;

S
— площадь его поперечного сечения;

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

gSh— архимедова
выталкивающая сила, действующая на
объем по-

g
— ускорение силы
тяжести.

Дифференциальный
датчик перепада давления располагается
у дна резервуара (рисунок 3.11, в),
где давление р равно:

где
p0
— давление в
свободной от жидкости верхней части
резервуара, которое

может
быть равным или не равным атмосферному
давлению;

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

gh— гидростатическое
давление на высоте hв жидкости, плотность
кото-

Чувствительным
элементом датчика является мембрана,
с одной стороны которой действует
давление р,
а с другой — давление р0.
Деформация мембраны,
преобразованная в электрический сигнал,
пропорциональна уровню А. Когда уровень
известен, измерение р
позволяет определить
плотность

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Этот
малогабаритный прибор создает меньше
проблем, связанных с его установкой,
чем два предыдущих, и он может применяться
при наличии мешалки.

Электрофизические
методы. Это
единственная группа методов, в которых
используются специальные датчики,
непосредственно преобразующие уровень
в электрический сигнал. Их преимущества
заключаются в простоте приборного
оборудования и в удобстве эксплуатации.

Датчик,
измеряющий электропроводность.
Он применяется
только в электропроводных жидкостях
(минимальная электрическая проводимость
порядка 50 мкСм), не коррозирующих и не
содержащих эмульсий или суспензий
(например, масел).

Зонд
образован двумя цилиндрическими
электродами, одним из них может служить
стенка резервуара, если он сделан из
металла. Зонд запитывается слабым
переменным (чтобы избежать поляризации
электродов) электрическим током с
напряжением — 10 В (рисунок 3.12).

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рисунок
3.12 – Определение уровня зондами,
измеряющими электропро-

а
– двумя электродами (емкость из
неэлектропроводного материала);

б
– одним электродом
(ёмкость из электропроводного материала);
в –
ука-

затель
уровня (емкость из электропроводного
материала).

При
непрерывном измерении зонд размещается
вертикально, и длина его охватывает
весь диапазон изменений уровня. Амплитуда
изменения циркулирующего электрического
тока пропорциональна длине погруженной
части электрода, а величина его зависит
от электропроводности жидкости.

Для
указания уровня можно, например, поместить
зонд горизонтально на высоте предельного
уровня. Появление электрического тока
постоянной амплитуды покажет, что
жидкость достигла зонда.

Емкостный
датчик.
В случае
неэлектропроводной жидкости можно
использовать конденсатор, образованный
либо двумя цилиндрическими электродами,
либо одним электродом и стенкой резервуара
(если он сделан из металла). Диэлектриками
являются жидкость, заполняющая часть
резервуара, и воздух над нею.

Электроды
для измерения текущего или для указания
предельного уровня устанавливаются
так же, как для датчика, измеряющего
электропроводность.

Измерение
или указание уровня сводится к определению
изменения емкости, причем это изменение
тем больше, чем больше диэлектрическая
постоянная контролируемой жидкости sr
превышает диэлектрическую постоянную
воздуха. Обычно условием применимости
метода считается

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Методы,
основанные
на
использовании излучений.
Преимущество этих
методов состоит в возможности выполнения
измерений без контакта с жидкостью,
поэтому они применимы и в жестких
условиях высокой температуры, высокого
давления, агрессивных веществ.

Измерение
поглощения f-излучения.
Источник и приемник
излучения размещены диаметрально
противоположно вне резервуара. Такое
расположение особенно удобно в случае
сильно корродирующих жидкостей или при
высоких давлении и температуре. В
качестве источника f-излучения
используется изотоп кобальта 60Со
(Т =
5,3 года) или цезия 137Cs
(Т =
33 года). Приемником является либо
ионизационная камера, либо несколько
трубок Гейгера— Мюллера.

При
указании уровня источник и приемник
размещены один напротив другого на
предельном уровне, достижение которого
необходимо указать. Источник, обычно
снабженный коллиматором, испускает в
направлении приемника узкий пучок
f-лучей.
Когда уровень жидкости достигает
предельного, происходит изменение
ослабления пучка f-излучения,
что преобразуется приемником в
соответствующий электрический сигнал.

При
непрерывном измерении источник излучения
экранируют таким образом, чтобы он
испускал пучок с углом раскрытия,
охватывающим, с одной стороны, полную
высоту резервуара и, с другой стороны,
положение приемника. Подъем жидкости
в резервуаре постепенно уменьшает
интенсивность дозы излучения, получаемой
приемником, и выходной ток приемника
уменьшается непрерывно по мере повышения
уровня жидкости.

Измерение
с помощью акустических волн. При
непрерывном измерении используют
преобразователь, работающий поочередно
в режиме излучателя и в режиме приемника.
Этот преобразователь, размещенный в
верхней части резервуара, излучает
последовательности акустических волн
в пределах конуса с небольшим углом
раскрытия. После отражения от поверхности
жидкости волны возвращаются к прибору,
который преобразует их в электрический
сигнал.

Про анемометры:  ГОСТ Р 52350.29.2-2010 Взрывоопасные среды. Часть 29-2. Газоанализаторы. Требования к выбору, монтажу, применению и техническому обслуживанию газоанализаторов горючих газов и кислорода

Промежуток
времени kt
между излучением и
приемом последовательности отраженных
волн пропорционален расстоянию от зонда
до поверхности жидкости и, следовательно,
зависит от ее уровня. Величина обратно
пропорциональна скорости звука, которая
зависит от температуры. Поэтому требуется
измерять температуру, чтобы иметь
возможность внести необходимую поправку.
Генератором ультразвуковых волн
(например, с частотой 40 кГц) может служить
керамический пьезоэлектрический
элемент; для излучения звуковых волн
применяют зонд электродинамического
типа. Звуковые волны, которые при
распространении ослабляются меньше,
находят применение при измерении больших
расстояний (от 10 до 30 м), а ультразвуковые
волны на коротких расстояниях обеспечивают
более высокую точность. Зонд для указания
предельного уровня состоит из
электромеханического осциллятора,
действие которого требует приведения
мембраны в колебательное движение.
Колебания мембраны возможны, пока она
соприкасается с воздухом; когда мембрана
входит в контакт с жидкостью, колебания
прекращаются из-за увеличения
демпфирования. Наличие или отсутствие
колебаний фиксируется соответствующей
электрической схемой.

Отметим,
что некоторые из описанных выше методов
измерения уровня жидкости применимы и
в случае сыпучих тел. К ним относятся,
в частности, емкостный метод, пригодный
для порошкообразных и непроводящих
веществ, а также методы, в которых
используется ядерное или акустическое
излучение.

1.
Принципы
и методы измерения физической какой?
величины.

1.1.10.
Уровнемеры для сыпучих материалов.

2.1.
Общие сведения о приборе.

3.
Приведение примера гидростатического
уровнемера.

3.1.
Структура условного обозначения.

3.2.
Конструкция и принцип действия.

3.3.
Общий вид, габаритные и установочные
размеры УГЦ-1.1.

3.4.
Общий вид, габаритные и установочные
размеры УГЦ-1.2.

Для
ведения технологических процессов
большое значение имеет контроль за
уровнем жидкостей и твердых сыпучих
материалов в производственных аппаратах.
Кроме того, зная площадь любой емкости,
по величине уровня можно определить
количество вещества в ней. Часто по
условиям технологического процесса
нет необходимости в измерении уровня
по всей высоте аппарата. В таких случаях
применяют узкопредельные, но более
точные уровнемеры. Особую группу
составляют уровнемеры, используемые
только для сигнализации предельных
значений уровня.

1.
Принципы и методы измерения физической
величины.

Уровнемеры,
приборы для измерения или контроля
уровня жидкостей
и сыпучих материалов в резервуарах,
хранилищах, технологических аппаратах
химических производств и т. п. Приборы
для определения количества жидкости
или сыпучего материала с целью их учета
и сигнализации о переполнении бункеров,
расходных баков и других сосудов называют
уровнемерами широкого диапазона
измерений. Последний определяется в
данном случае геометрическими размерами
сосудов. Эти приборы снабжены шкалами
с делениями, которые находятся по одну
сторону от нулевой отметки (расположена
в начале отсчета); шкалы градуируются
в см, дм и м. При необходимости поддержания
уровня на заданной высоте приборы
показывают величину его отклонения от
нормального положения и называют
уровнемерами узкого диапазона измерений
(100-150 мм). Шкалы данных приборов имеют
деления по обе стороны от нулевой отметки
(находится посередине) и градуируются
в мм и см.

По
принципу действия эти уровнемеры
разделяются на визуальные, поплавковые,
гидростатические, электрические,
ультразвуковые, радиоизотопные.

Визуальные уровнемеры.

Визуальные
уровнемеры (рис.
1) – простейшие измерители уровня жидкости.
К технологическому аппарату 1 через
запорные вентили 2 подсоединено
указательное стекло (трубка 3). Аппарат
и трубка представляют собой сообщающиеся
сосуды, поэтому уровень H
жидкости
в трубке всегда равен ее уровню в аппарате
и отсчитывается по шкале.

Поплавковые уровнемеры.

Поплавковые
уровнемеры. Чувствительный
элемент – поплавок, находящийся на
поверхности жидкости (рис. 2, а).
Поплавок
1 уравновешивается грузом 3, который
связан с поплавком гибким тросом 2.
Уровень жидкости определяется положением
груза относительно шкалы 4. Пределы
измерений устанавливают в соответствии
с принятыми значениями верхних (ВУ) и
нижних (НУ) уровней.

Значительно
надежнее тонущие поплавки – массивные
буйки (рис. 2, б).
При
изменении уровня жидкости по закону
Архимеда изменяется действующая на
конец рычага 2 выталкивающая сила (вес
буйка 1). Соотв. изменяющийся момент сил,
действующих на рычаг 2, от буйка передается
через вал 5, закрепленный в донышке 7, на
трубку 6 и уравновешивается моментом
ее скручивания. Изменение угла скручивания
трубки пропорционально величине уровня.

Рис.
2. Поплавковые уровнемеры: а – с плавающим
поплавком; б
– с тонущим
поплавком.

Гидростатические уровнемеры.

Гидростатические
уровнемеры. Их
действие основано на уравновешивании
давления столба жидкости p
в
аппарате (хранилище) давлением столба
жидкости, заполняющей измерит, прибор,
или пружинным механизмом (р
= Hr,
где r = const – плотность жидкости). При
достаточно больших значениях уровня Я
и в отсутствие избыточного давления
над жидкостью в качестве уровнемера
можно применять манометр с трубчатой
пружиной, устанавливаемый на отметке
так называемого нулевого уровня (рис.
3).

Дифманометрические уровнемеры.

Дифманометрические
уровнемеры
позволяют измерять уровень в открытых
(атм. давление) или закрытых (давление
либо разрежение) резервуарах (рис. 4).
Относительно постоянный уровень жидкости
в одном из колен измерит, прибора
(дифманометра), а следовательно, и в
контролируемом аппарате обеспечивается
уравнительным сосудом (наполнен до
определенного уровня той же жидкостью,
что и в аппарате). Высота столба жидкости
в другом колене дифманометра изменяется
с изменением уровня в аппарате. Каждому
значению уровня в нем отвечает некоторый
перепад давления, обусловленный
расстоянием по высоте между аппаратом
и прибором. Если аппарат работает при
атмосферном давлении, уравнительный
сосуд размещают на отметке нулевого
уровня (рис. 4, а), если под давлением – на
высоте максимального уровня (рис. 4, б).

Рис.
4. Дифманометрические уровнемеры:
измерение уровня в открытом резервуаре
(а)и
аппарате, работающем под давлением (б).

Пьезометрические уровнемеры.

Пьезометрические
уровнемеры
(рис. 5) основаны на принципе гидравлического
затвора (обычно водяного). Для измерения
уровня используют воздух или инертный
газ, который под давлением р
продувают
через слой жидкости (рх-
давление над ней). Кол-во воздуха
ограничивают диафрагмой 1 или регулирующими
вентилями 2 так, чтобы скорость движения
его в трубопроводе была минимальна (с
целью уменьшения потерь на трение). Для
контроля расхода воздуха устанавливают
специальные стаканчики 3 или ротаметры.
Уровень жидкости H=(р-рx)/pж,
где
рж

плотность замыкающей жидкости в
дифманометре. Перепад давления (р-рх)
определяется по высоте столба жидкости
h
в
манометре. В случае измерения уровня
агрессивных жидкостей
необходимо подводить воздух в обе линии,
подсоединяемые к дифманометру.
Пьезометрические приборы широко
применяются для измерения уровня
жидкости в подземных резервуарах.

Резервуары
представляют собой весьма многочисленную
группу технологических объектов, которые
являются принадлежностью нефтяных
промыслов, резервуарных парков,
раздаточных и перевалочных баз
разветвленной системы нефтеснаба.

В резервуарных
парках выполняются две основные задачи
– учет и хранение жидкости.

Принято измерять
количество нефти и нефтепродуктов в
единицах массы. Количество вещества в
единицах массы в резервуарах может быть
измерено двумя способами: измерением
уровня нефти и нефтепродуктов и плотности
с последующим вычислением общей массы
и непосредственным измерением массы
жидкости.

На нефтяных промыслах
ряд технологических процессов связан
с отстоем жидкости в емкостях открытого
и закрытого (герметичного) типа. Контроль
хода технологического процесса в этих
емкостях предполагает необходимость
измерения уровня жидкости и уровня
раздела фаз.

Измерение уровня
в скважинах выполняют для контроля
изменения пластового давления, для
исследования характера притока жидкости
из пласта и измерения давления в глубинно
насосных (не переливающих) скважинах.

Приборы для измерения
уровня можно классифицировать по
назначению и по принципу действия.

По назначению
приборы делят на три большие группы:
сигнализаторы, контролирующие предельные
значения уровня; уровнемеры, непрерывно
измеряющие значения уровня; измерители
раздела двух сред.

По принципу действия
приборы можно разделить на механические,
пьезометрические и электрические.
Принцип действия приборов в значительной
степени определяется свойствами
измеряемой среды, поэтому приборы в
указанных группах, в свою очередь,
подразделяются по устройству:

механические –
поплавковые с чувствительным элементом,
находящимся на поверхности измеряемой
жидкости и передающим значение уровня
указателю с помощью мерной ленты или
троса; буйковые (поплавки с отрицательной
плавучестью), имеющие в качестве
чувствительного элемента буек, связанный
с компенсационным устройством, реагирующим
на изменение веса буйка при изменении
уровня погружения его в жидкость;

пьезометрические
– барботажные, представляющие собой
пневматическую трубку, имеющую вход
для воздуха на фиксированном положении
от дна резервуара. Уровень определяется
по давлению воздуха, прокачиваемого по
трубке;

манометрические,
определяющие уровень по давлению
пьезометрического столба жидкости,
воспринимаемого манометром;

электрические
– кондуктометрические, основанные на
изменении уровня электропроводности
измеряемых сред. Применяется в основном
для контроля раздела сред; емкостные,
использующие различие диэлектрических
свойств воздуха и измеряемой жидкости;

радиоактивные,
использующие поглощение измеряемой
жидкостью γ – лучей, излучаемых
радиоактивным излучателей;

радиоинтерференционные,
использующие изменения частоты радиоволн
в зависимости от глубины погружения
антенны колебательного контура в
измеряемую жидкость;

ультразвуковые,
измеряющие уровень по времени
распространения ультразвуковых волн
в измеряемой среде.

По
способу передачи показаний различают
уровнемеры с местным отсчетом и
дистанционного действия.

Для определения скоростей и расходов жидкостей в промышленной практике обычно применяются дроссельные приборы и пневмометрические трубки.

Принцип работы пневмометрических трубок, например трубки Пито–Прандтля, мы рассматривали при выводе уравнения Бернулли (рис. 6-1). В каждом сечении разность уровней жидкости в трубках, изображенных на рисунке, выражает скоростной напор

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рис. 6-2. Измерение скорости жидкости пневмометрической трубкой.

Разность уровней рабочей жидкости в трубках удобнее измерять не посредством пьезометрических трубок, как показано на рис. 6-1, а при помощи дифференциального манометра (рис. 6-2). Его U-образная трубка заполнена жидкостью, которая не смешивается с рабочей и имеет значительно большую плотность, чем последняя (например, вода или спирт – при работе с газами или ртуть – при работе с капельными жидкостями). Это позволяет измерять перепады давлений в случае значительного избыточного давления (или вакуума) в трубопроводе при относительно небольшой высоте прибора.

По результатам измерений

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

находят максимальную скорость жидкости вдоль оси трубопровода. Для определения средней скорости жидкости либо снимают эпюру распределения скоростей по сечению трубопровода, передвигая пневмометрическую трубку в различные точки сечения, либо используют соотношения между средней и максимальной, скоростями при ламинарном и турбулентном режимах течения. Расход жидкости находят, умножая среднюю скорость на площадь поперечного сечения трубопровода.

Такой способ определения скорости и расхода жидкости прост, но недостаточно точен из-за трудности установки пневмометрических трубок строго вдоль оси трубопровода.

Более широко распространено определение скоростей и расходов жидкостей с помощью дроссельных приборов, принцип работы которых основан на измерении перепада давлений при изменении поперечного сечения трубопровода. При искусственном сужении сечения потока посредством дроссельного прибора скорость и, соответственно, кинетическая энергия потока в этом более узком сечении возрастают, что приводит к уменьшению потенциальной энергии давления в том же сечении. Поэтому, измерив дифференциальным манометром перепад давлений между сечением трубопровода до его сужения и сечением в самом сужении (или вблизи него), можно вычислить изменение скорости между сечениями, а по нему – скорость и расход жидкости.

Про анемометры:  Котел Е-1,0-0,9Г, Е-1/9Г, Е-1-9Г ЗПК "Энергетик"

В качестве дроссельных приборов используют мерные диафрагмы, сопла и трубы Вентури.

Мерная диафрагма (рис. II-17) представляет собой тонкий диск с отверстием круглого сечения, центр которого расположен на оси трубы. Мерное сопло (рис. 6-3) является насадком, имеющим плавно закругленный вход и цилиндрический выход. Дифманометры мерных сопел (а также диафрагм) присоединяют к трубопроводу через кольцевые камеры а, соединенные с внутренним пространством трубопровода отверстиями, равномерно расположенными по окружности, или двумя каналами.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рис. 6.3 – Мерная диафрагма

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рис. 6-4. Мерное сопло.

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Рис. 6.5 Труба Вентури

Труба Вентури (рис. 6-5) имеет постепенно сужающееся сечение, которое затем расширяется до первоначального размера. Вследствие такой формы трубы Вентури потеря давления в ней меньше, чем в диафрагмах или соплах. Вместе с тем длина трубы Вентури очень велика по сравнению с толщиной диафрагмы или сопла, которые могут быть установлены между фланцами трубопровода.

В трубе Вентури и в сопле площадь сечения сжатой струи

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

равна площади самого отверстия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

(см. рис. 6-4).

Считая трубопровод горизонтальным, запишем для двух сечений, перепад давлений между которыми измеряется дифференциальным манометром, уравнение Бернулли. В соответствии с обозначениями на рис. 6-4 и пренебрегая потерей напора, имеем

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Чтобы определить среднюю скорость и расход жидкости в трубопроводе, выразим скорость

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

в сечении трубы через скорость

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

в узком сечении струи за диафрагмой, в котором замеряется давление

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Объемный расход жидкости Q в сечении

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

– поправочный коэффициент (

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

); этим коэффициентом учитывается уменьшение скорости

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

по сравнению со скоростью

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

из-за сужения струи (

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

, определенные опытным путем, приводятся в специальной и справочной литературе.

Диаметр дроссельного устройства обычно в 3–4 раза меньше диаметра трубопровода, поэтому величиной (d 2/ d 1)i в уравнении (6-5) можно в первом приближении пренебречь и находить расход жидкости по уравнению

Среднюю скорость жидкости в трубопроводе определяют, разделив Q на площадь сечения трубопровода. Опуская индексы «1» у

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

Устройство для измерения уровня жидкости в цистернах и 10. Измерение уровня жидкости в цистернах и колодцах. Что такое нивелиры? Тип и принцип действия

В случае работы со сжимаемыми жидкостями (газом или паром) при больших перепадах давлений в уравнения (6-5) и (5-8) вводят еще один поправочный коэффициент, учитывающий изменение плотности газа (пара).

Для измерения скорости используют: приборы и приспособления как метки течения – поплавки поверхностные и глубинные, а также вносимы в поток жидкости; приборы, основанные на физических эффектах, создаваемых текущей водой – термогидрометры, ультразвуковые и электромагнитные измерители скорости; приборы, основанные на динамическом действии потока воды – гидрометрические вертушки.

Поплавки применяются для приближенного определения направления течения и поверхностных скоростей. Этот способ измерения скоростей воды поплавками применяется также, когда иные средства не могут быть использованы: при ледоходе, большой мутности воды, малых скоростях потока. Однако поплавки не могут использоваться при большом ветре.

Для измерения поверхностных скоростей выбирают прямой участок реки длиной не менее L = 50 Vmax и на нем разбивают четыре створа: пусковой, верхний, средний и низовой. На воду пускают одновременно два-три поплавка с пускового створа. Когда поплавок пе­ресекает верхний створ, включают секундомер, а на низовом створе секундомер останавливают, отмечая время t тогда скорость Vn = L / t.

Наиболее совершенным и распространенным инструментом для измерения скоростей течения в реке является гидрометрическая вертушка. Наибольшее распространение для измерения скорости течения получила вертушка Жестовского (рис. 6.2.2.1). Она состоит из лопастей, насаженных на ось, герметически закрытого корпуса со счетчиком оборотов внутри контактами и хвоста-руля. Вертушка крепится к штанге или тросу и опу­скается в ту точку потока, в которой нужно измерить скорость. Бла­годаря хвостовому оперению лопасти вертушки сами устанавливаются навстречу потоку и начинают вращаться, замыкая через определенное число оборотов электрические контакты. Сигналы замыкания поступа­ют наверх к наблюдателю и фиксируются им. В вертушках Жестовского импульсы поступают через 20 оборотов. Вертушка предваритель­но тарируется, т. е. находится связь между скоростью и потока и часто­той вращения лопастей. Наблюдатель с помощью секундомера ведет счет импульсов. Данные заносятся в полевую книжку.

Рис. 6.2.2.1. Гидрометрическая вертушка для измерения скорости течения

а) вертушка Жестовского; б) график зависимости скорости V от числа оборотов N

Для измерения скоростей вертушкой оборудуют обычно, так называемые, гидрометрические пере­правы, которые бывают в виде: а) мо­ста балочного или подвесного на тро­сах, б) люльки, перемещающейся по тросу над водой, в) парома (понтона), перемещающегося по тросу или свободно.

Измерения ско­ростей в выбранном гидрометрическом створе проводятся по вертикалям, которые намечаются через равные расстояния, при­нимаемые в зависимости от ширины реки от 0,5 м до 50 м.

При основном способе измерение скоростей вертушкой осуществляется на каждой на­меченной вертикали в 5 точках: у поверхно­сти – на глубине одного или полутора радиусов лопастей вертушки, на глубине 0,2h, 0,6h, 0,8h и у дна, если это позволяет конструкция. При наличии льда первая точка берется от поверхности льда.

Определение средней скорости по вертикали производится по изме­ренным в точках скоростям аналитическим либо графоаналитическим способом. При ускоренных измерениях средняя скорость обычно определяется на глубине 0,6h.

По измеренным скоростям можно построить эпюры скоростей, откладывая в определенных масштабах глубину по вертикали, а ско­рость течения – по горизонтали. Нанесенные на графике точки соеди­няют плавной кривой. Эта кривая есть эпюра скорости.

Общее представление о распределении скоростей по живому се­чению дают линии равных скоростей – изотахи.

Для измерения скорости в точках потока широко используется работающая на принципе уравнения Бернулли трубка Пито (рис.3.7), загнутый конец которой направлен навстречу потоку. Пусть требуется измерить скорость жидкости в какой-то точке потока. Поместив конец трубки в указанную точку и составив уравнение Бернулли для сечения 1-1 и сечения, проходящего на уровне жидкости в трубке Пито получим

где Н – столб жидкости в трубке Пито.

Рис. 3.7. Трубка Пито и pасходомер Вентури

Для измерения расхода жидкости в трубопроводах часто используют расходомер Вентури, действие которого основано так же на принципе уравнения Бернулли. Расходомер Вентури состоит из двух конических насадков с цилиндрической вставкой между ними (рис.3.7). Если в сечениях I-I и II-II поставить пьезометры, то разность уровней в них будет зависеть от расхода жидкости, протекающей по трубе.

Пренебрегая потерями напора и считая z1 = z2, напишем уравнение Бернулли для сечений I-I и II-II:

Используя уравнение неразрывности

Q = υ1ω1 = υ2ω2

сделаем замену в получено выражении:

Решая относительно Q, получим

Выражение, стоящее перед

, является постоянной величиной, носящей название постоянной водомера Вентури.

Из полученного уравнения видно, что h зависит от расхода Q. Часто эту зависимость строят в виде тарировочной кривой h от Q, которая имеет параболический характер.

Выяснили что объем жидкости в мензурке численного равен произведению количества делений от начала шкалы до уровня воды на цену деления этой шкалы.

Как определить объём тела в мензурке?

4. Объем опущенного тела в мензурку можно вычислить по формуле Vт1 = V2 – V1. Используя эту формулу, определите объем 1 тела.

Чем можно измерить объем жидкости?

Основное правило нахождение объема: это произведение высоты на площадь основания. Пример 2: До краев аквариума налита вода, каков ее объем, если размеры аквариума: 20 см, 30 см, 40см. Решение. Для нахождения объема воды, надо определить объем посуды: объем равен произведению высоты, длины и ширины сосуда.

Как определить цену деления шкалы мензурки?

F тяж . = m ⋅ g = ρ тела ⋅ V всего тела ⏟ ∥ m ⋅ g . Отношение объёма погруженной части тела к полному объёму тела равно отношению плотности тела к плотности жидкости. На иллюстрации бревно наполовину погружено в воду, потому что его плотность меньше плотности воды в 2 раза.

Как определить цену деления пример?

  • Чтобы найти цену деления нужно:
  • 1)Найти две ближайшие отметки с цифрами(например 5 и 10)
  • 2)Посчитать сколько между этими отметками маленьких делений(например их будет 10)
  • 3)Вычесть из большей отметки меньшую(например 10-5)и разделить получившейся ответ на количество делений(например 5:10)
  • Пример:
  • 1)10-5=5.
  • 2)5:10=0,5.

23 сент. 2013 г.

Чему равно одно деление амперметра?

Для определения цены деления амперметра нужно посмотреть на цифры, которые указаны на шкале прибора. Например, если шкала имеет такой вид: 0 l l l l 5 l l l l 10 , то необходимо от большего значения отнять меньшее и разделить на количество промежутков (палочек) между цифрами. Получим, что цена деления равна единице.

Как измерить объем воды в цилиндре?

V=S·L – расчет объема цилиндра, где S – площадь поперечного сечения цилиндра, L – длина цилиндрической части. Площадь поперечного сечения емкости в форме цилиндра рассчитывается по формуле: S=3,14·d2/4 – площадь круга с диаметром d.

Как называется прибор для измерения объёма жидкости?

Ксилометр — прибор для определения объёма предметов неправильной формы, основанный на измерении объёма жидкости, которая вытесняется данным предметом при его погружении.

Как узнать объем жидкости в стакане?

Можно определить объем и иных стаканов:

  • Если наполнять стакан до уровня каемки, то получится 200 мл.
  • При отсутствии каемки и наполнении до верха получается тоже 200 мл.
  • Если наполнить посуду с фигурными гранями, то емкость стакана в мл составит 200, и количество сыпучего продукта тоже 200 граммов.

Как найти объем с помощью воды?

Найдите объем, используя емкость прямоугольной формы.

Объем вытесненной воды найдите посредством перемножения длины и ширины емкости, а также расстояния между двумя метками (то есть вы вычисляете объем небольшого прямоугольного параллелепипеда). Вы получите объем тела. Не измеряйте высоту емкости с водой.

Как определить цену деления шкалы?

Цена деления – значение наименьшего деления шкалы прибора. Для определения цены деления шкалы нужно от большего числа, соответствующего какому-либо делению шкалы, вычесть меньшее и полученную разность поделить на число делений между цифрами. Получаем 0,1 сантиметра на деление.

Как определить цену деления шкалы вольтметра?

Отметьте на шкале проверяемого вольтметра положение, на котором остановилась его стрелка. Последовательно выполняя эту операцию с шагом в 1 Вольт, разметьте всю шкалу второго прибора. После этого сбросьте напряжение с блока питания до минимума и отключите его. Затем разметьте промежуточные значения шкалы вольтметра.

Как определить цену деления шкалы ваттметра?

Цена деления ваттметра определяется как частное от деления произведения номинального напряжения на номинальный ток (указывают на лицевой стороне прибора) на число делений шкалы. Пример. Номинальное напряжение ваттметра 120 В. Номинальный ток 5 А.

Где можно найти мир в зомби ферме?
Где можно построить дом в Скайриме?
Где можно услышать Соловьиное пение и в чём его особенности?
Где можно увидеть Млечный путь?
Где можно узнать результаты пробного Гиа?
Где на ноутбуке минус?
Где на Патриарших Аннушка разлила масло?
Где наибольшее количество высотных поясов?
Где найти Эксель на ноутбуке?
Где найти Избранное на Авито?

Прибор для определения объёма жидких и сыпучих тел

выберите длину слова

выберите первую букву слова

Оцените статью
Анемометры
Добавить комментарий