Роман Алексеевич Лалетин
Эксперт по предмету «Физика»
Задать вопрос автору статьи
Сопротивление (часто обозначается буквой или ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
— сопротивление;
— разность электрических потенциалов на концах проводника;
— сила тока, протекающего между концами проводника под действием разности потенциалов.
У этого термина существуют и другие значения, см. Потенциал.
Электростатический потенциа́л (см. также кулоновский потенциал) — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля. Единицей измерения потенциала является, таким образом, единица измерения работы, деленная на единицу измерения заряда (для любой системы единиц; подробнее о единицах измерения — см. ниже).
Электростатический потенциал — специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики — его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.
Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:
Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля
, легко увидеть, что электростатический потенциал удовлетворяет уравнению Пуассона. В единицах системы СИ:
— электростатический потенциал (в вольтах),
— объёмная плотность заряда (в кулонах на кубический метр), а
Проектирование и эксплуатация электрических приборов и установок во многом зависят от сопротивления материалов. В статье будет подробно рассказано, что из себя представляет величина электрического сопротивления 1 Ом.
Дополнительно будет дано описание обозначения этой единицы и правила замера сопротивления при помощи мультиметра.
Для того чтобы узнать, что такое за значение 1 Ом, необходимо знать определение электрического сопротивления. Электрическое сопротивление — это физическая величина, определяющая сопротивляемость проводника прохождению электрического тока.
Сопротивление измеряется в Омах. 1 Ом — это сопротивление участка электроцепи, между концами которой протекает электроток в один ампер, а напряжение на его концах при этом равняется одному вольту.
Данная величина обозначается в Омах.
Все существующие материалы имеют физическую способность к проводимости электрического тока. Эти материалы подразделяются на 2 основные группы:
- Изоляторы. Подобные материалы не проводят электрический ток. Из наиболее известных изоляторов можно выделить резину, дерево, стекло, пластик.
- Проводники. Эти материалы имеют сравнительно маленькое сопротивление, поэтому свободно пропускают через себя заряженные электроны. В электротехнике используется медь, алюминий, железо, золото.
Ом — это в системе СИ единица измерения электрического сопротивления. Эта способность материалов была открыта немецким физиком Георгом Симоном Омом. Параметр проводимости получил свое специальное обозначение — значок Ома или символ Омега «Ω».
Физика в качестве базовой величины сопротивления использует величину 1 Ом. Сила в 1000 Ом имеет сокращенное обозначение 1 кОм. В зависимости от типа проводника, сопротивление может иметь различные значения. В физике максимальное значение сопротивление — 1 Йоттаом (ИОм), которое равняется 10 в 24 степени Ом. Сколько существует различных производных единиц сопротивления, можно увидеть на рисунке ниже.
По причине часто возникающих ошибок при написании, было принято еще одно обозначение Ом для Европейской системы классификации. Во многих технических руководствах вы можете встретить обозначение «ohm».
Важно! В рукописном варианте для обозначения сопротивления используют само слово «Ом», а не греческую букву «Омега». Знак «Ω» используется в электронных технических руководствах и при обозначении параметров радиодеталей.
Параметр проводимости измеряется не только по системе СИ. Существует система СГС, которая определяет проводимость по параметрам длины, веса и времени. Параметр СГС или сантиметр, грамм, секунда. По данной классификации, электрическая проводимость для СГС имеет обозначение СГСR. Величина указывает сопротивление не всего проводника, а только его отдельного участка, с учетом длины и веса. Также учитывается время прохождения заряда в 1 вольт по этому участку.
СГС и обычная электрическая проводимость сильно отличаются. Так одна единица СГСR равняется 9*10 в 11 степени Ом. Данная система не имеет практического применения в радиоэлектронике, по причине того, что многие расчетные величины безмерны. Она используется при расчетах электромагнетизма в системе Гаусса, а также в электродинамике.
Расчет электрического сопротивления делается по специальной формуле. Она состоит из следующих значений:
- «I» — сила тока, воздействующая на проводник в амперах;
- «U» — величина электрического напряжения в вольтах;
- «R» — величина электрического сопротивления проводника в омах.
Формула выглядит следующим образом: I=U/R.
Зная рабочее напряжение и силу тока, можно легко вычислить рабочее сопротивление. Например, электрическая печь работает от напряжения 240 вольт, при силе тока 2 ампера.
Рабочее сопротивление — определяющий параметр при эксплуатации электрооборудования и его ремонте.
При повышении сопротивления значительно снижается проводимость, а значит и сила тока в цепи. При снижении сопротивления, сильно увеличивается сила тока.
Эти особенности проводников часто используются инженерами. Например, для получения высокой температуры, используется спираль с большим сопротивлением. И наоборот, для того, чтобы загорелась лампа накаливания, используется вольфрамовая спираль с очень низким сопротивлением.
Как известно любое физическое воздействие влечет за собой выделение тепловой энергии. При помощи значения проводимости можно легко рассчитать количество выделяемого тепла или Ватт. Делается это при помощи формулы: Вт=А×Ом.
Наиболее известная радиодеталь, обладающая стабильным рабочим сопротивлением — резистор. Этот элемент не имеет индуктивности и емкости, поэтому может без потери снижать выходящее сопротивление для стабильной работы других компонентов цепи.
Для того чтобы проверить сопротивление проводника, используется прибор омметр. Мерить также можно электронным мультиметром, оснащенным функцией омметра.
Далее будет описан процесс измерения на примере обычного резистора.
- Выставить на мультиметре режим омметра. На приборе есть свое обозначение значка ома — это символ «Ω».
- Красный измерительный щуп подключить к контакту резистора.
- Черный измерительный щуп подключить ко второму контакту элемента.
- Полученные на дисплее прибора омы надо сравнить с маркировкой на корпусе детали.
Резисторы получают специальное обозначение на корпусе, равное способности радиодетали проводить электрический ток. При измерении значения не должны сильно отклоняться от эталонных.
Важно! Мерить данный параметр можно только на обесточенной цепи. Перед замером на схеме стоит проверить напряжение на конденсаторах и разрядить их.
Параметр сопротивления можно использовать и для проверки целостности элементов электрической цепи. Для точного определения причины неисправности электрических приборов мастер должен знать рабочее сопротивление устройства или силу тока, при котором оно работает. Если в процессе измерения рабочий параметр увеличился, можно сделать вывод о наличии короткого замыкания в цепи, пригорании контактов или повреждении катушки индуктивности. При значительном снижении параметра увеличится значение силы тока, что станет причиной выгорания конденсаторов, части резисторов, увеличения общей рабочей температуры устройства.
Современные мультиметры имеют функцию «прозвонки» со звуковым оповещением. Этот режим можно легко заменить режимом омметра. При помощи омметра можно мерить целостность жил проводки, определять целостность обмотки электрических двигателей и катушек индуктивности.
Очень часто новички используют параметр электрической проводимости и рабочего напряжения для расчета силы тока для нормального функционирования прибора. Делать подобные расчеты можно только при проектировании, используя формулу: А=В/Ом. Имея уже функциональное устройство расчет может быть неверным, если рабочее сопротивление было завышено/занижено вышедшими из строя элементами цепи.
Сопротивление и его единица измерения Ом имеют основополагающее значение. Этот параметр помогает выявить неисправности электронных устройств, проектировать различную аппаратуру. Умея мерить этот параметр и зная, что он означает, мастер сможет выполнить ремонт оборудования любой сложности.
- Видео по теме
- Электрический ток в разных веществах
- Почему «сопротивляется» проводник
- В чем измеряется
- Зависимость сопротивления от температуры
- Использование термина
- Сопротивление
- Будьте внимательны!
- Единицы и размерности
- Закон Ома для полной цепи
- Что такое ЭДС и откуда она берется
- Сопротивление человека
- Единицы измерения
- Метрологические аспекты
- Средства воспроизведения сопротивления
- Государственный эталон сопротивления
- Сущность понятия «сопротивление»
- Параллельное и последовательное соединение
- Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?
- Кулоновский потенциал
- Закон Ома для участка цепи
- Когда «сопротивление бесполезно»
- Таблица удельных сопротивлений различных материалов
Видео по теме
Электрический ток — это однонаправленное перемещение заряженных частиц в электрическом поле. Способность проводника ограничивать величину электротока характеризуется физической величиной, именуемой электрическим сопротивлением. Расчёт конкретного сопротивления выполняется либо по формуле закона Ома, либо используются зависимости, в которых в качестве исходных данных выступают физические параметры проводника (геометрические размеры, удельное сопротивление или проводимость).
Электрический ток в разных веществах
На рисунке ниже схематично представлена модель возникновения электрического тока в двух разных случаях:
- Ток вызван перемещением отрицательных зарядов («минусов») в электрическом поле Е.
- Ток образован движением положительных зарядов («плюсов») в электрическом поле Е.
При этом направлением электротока считается в обоих случаях направление, в котором двигаются положительные заряды.
В зависимости от количества (концентрации) заряженных частиц и преимущественного типа проводимости (плюс или минус) вещества и среды делятся на:
- Проводники (металлы, электролиты).
- Диэлектрики.
- Полупроводники.
- Газы, плазму.
- Вакуум.
Далее речь будет идти о том, что такое сопротивление, и как найти его величину на примере металлических проводников.
Почему «сопротивляется» проводник
Структура металлов представляет собой жесткую кристаллическую решётку, в узлах которой расположены массивные, положительно заряженные ионы. В межузловом пространстве имеется большое количество свободных электронов, оторвавшихся с крайних, валентных орбит. В отсутствии электрического поля этот «электронный газ» пребывает в хаотическом движении. Как только к проводнику прикладывается напряжение (разность потенциалов) в металле возникает электрополе, которое создаёт однонаправленный поток электронов.
Электроны, набрав некоторую скорость в электрическом поле, начинают двигаться в одном направлении, но при этом они сталкиваются на своём пути с крупными препятствиями — заряженными и нейтральными атомами, хаотично колеблющимися в узлах решётки. После столкновений электроны теряют часть кинетической энергии, то есть «тормозятся». Такова физика электрического сопротивления проводника, величина которого зависит от массы атомов конкретного вещества, структуры решётки, температуры.
Выдающийся европейский учёный Георг Ом исследовал на разных металлах зависимость величины электротока от электронапряжения. В 1827 г. он сделал открытие, названное в его честь законом Ома, которое выражается формулой:
Из данной формулы можно вычислить омическое сопротивление:
Единица измерения сопротивления (Ом) была названа также в честь первооткрывателя закона.
Чтобы воспользоваться формулой, необходимо изначально провести измерения электронапряжения и электротока с помощью небольшой экспериментальной установки, показанной на рисунке.
В ХIХ веке многочисленные измерения исследователей разных стран, пытавшихся понять от чего зависит сопротивление проводника, нашли следующие закономерности:
- R увеличивается, когда возрастает длина экспериментального образца, т. е. R∼ L (прямо пропорционально).
- Сопротивление проводников уменьшается при увеличении поперечной площади S металлического образца, т. е. R∼1/S обратно пропорционально).
- Поскольку сопротивления идентичных по размерам образцов разных металлов существенно отличались друг от друга, учёные ввели дополнительную физическую величину, которая обозначается буквой ρ и называется удельным электрическим сопротивлением.
Полученные в ходе экспериментов данные корректно описывала итоговая формула для вычисления сопротивления:
Ниже приведена таблица удельных сопротивлений широко используемых металлов.
В чем измеряется
Общепринятая в системе СИ единица сопротивления — Ом. Он является производной от единиц напряжения (вольт, В) и тока (ампер, А). Определение единицы измерения электрического сопротивления следующее: сопротивлением 1 Ом обладает проводник, через который протекает ток величиной 1 А, а напряжение при этом равно 1 В:
В электро- и радиотехнике чаще используются кратные единицы омического сопротивления.
Из второй формулы электрического сопротивления можно найти чему равно ρ:
Для практики такая единица, равная сопротивлению провода длиной 1 м и площадью сечения 1 кв. м оказалась не очень востребованной из-за чрезмерно больших значений. Для электротехнических расчётов была введена внесистемная единица Ом*мм2/м, для которой S выражена в квадратных миллиметрах. Удобство такой единицы легко оценить, если учесть, что типичные сечения кабелей и проводов находятся в диапазоне 1.0-15.0 кв. мм.
Зависимость сопротивления от температуры
Удельное сопротивление металлов увеличивается с ростом температуры прямо пропорционально. Такая зависимость хорошо описывается линейной функцией:
В справочниках значение ТКС обычно указывается для комнатной температуры 20 градусов. Сопротивление с ростом тока меняется в связи с выделением джоулева тепла, приводящего к нагреву проводника.
При уменьшении температуры ρ плавно уменьшается, но при достижении сверхнизких показателей < 30°K некоторые металлы и сплавы переходят в сверхпроводящее состояние, то есть, их удельное сопротивление падает до нуля. Качественно физический эффект объясняется тем, что тепловое движение атомов «замораживается», и электроны начинают двигаться беспрепятственно. Теория, объясняющая, что такое нулевое сопротивление проводника, требует привлечения аппарата квантовой физики. На рисунке ниже представлена зависимость ρ(Т). Точка Ткр — переход в сверхпроводимость.
При проектировании и тиражировании электронных и электротехнических устройств в качестве пассивных элементов, способных предсказуемо ограничивать рабочий ток и рассеивать излишки электрической энергии, применяются произведённые заранее виды сопротивлений заданной величины, для которых используется термин «резистор» (от англ. resist — сопротивляться).
В качестве резистивной основы используют не чистые металлы, а сплавы, имеющие низкий ТКС, например, нихром — сплав никеля (Ni) и хрома (Cr). Кроме металлических (проволочных) производятся резисторы на базе других материалов:
- Углеродистые — состоят из смеси порошковой керамики с углеродом.
- Металлоплёночные — тонкая плёнка Ni-Cr размещается на керамике.
- Металлооксидные — на керамику наносится оксид олова (SnO2) с добавлением примеси оксида сурьмы (Sb2O5).
- Композиционные — на базе соединения графита с органическими или неорганическими добавками.
- Интегральные — формируются внутри монокристалла интегральной схемы с помощью слабого легирования.
Тип резистора можно узнать из маркировки, нанесённой на его поверхность.
Найти неизвестное сопротивление цепи можно без применения математических расчётов гораздо быстрее и точнее, если вооружиться современными приборами, на цифровом или стрелочном табло которых отобразится искомое значение R. Существуют омметры и мультиметры. Первые — узкоспециализированные приборы, ориентированные на измерение сопротивления. Имеются аналоговые и цифровые версии омметров. В зависимости от диапазона предполагаемых измерений различают:
- Микроомметры.
- Миллиомметры.
- Мегаоомметры.
- Гигаомметры.
- Тераомметры.
Мультиметры — комбинированные приборы, способные измерять не только электрическое сопротивление проводника, но и величину электронапряжений и электротоков.
Таким образом, с помощью приборов можно без особого труда найти сопротивление проводника и та формула, для которой требуются данные о геометрических размерах проводника и величине удельного сопротивления не понадобится. Можно также снять вольт-амперную характеристику и воспользоваться законом Ома. С помощью современных электро-измерительных приборов (омметров, мультиметров) достаточно просто определяется сопротивление, если его обозначение отсутствует на резисторах или других радиоэлементах.
В системе СИ сопротивление измеряется в Омах.
Единица измерения Ом названа в честь немецкого физика Георга Ома (1787 — 1854 гг.), внесшего большой вклад в развитие электротехники.
В систему СИ Ом был введен в 1960 году. В Российской Федерации действует ГОСТ 8.417-2002, в котором в качестве единицы измерения электрического сопротивления также указан Ом.
Ом – производная единица, равная сопротивлению проводника, по которому протекает ток силой 1 ампер вызывая падение напряжения на концах этого проводника 1 вольт. Вольт для СИ – внесистемная единица, поэтому Ом выражается через килограммы, секунды и амперы:
«Единица измерения сопротивления» 👇
В системе «Сантиметр, грамм, секунда» (СГС) единица сопротивления не
имеет собственного названия, равно как единицы силы тока и напряжения. Для пересчета сопротивления между системами СГС и СИ используется соотношение:
$1 ед. СГС = 9 cdot 10^11 Ом$.
В системе СГСЭ и системе Гаусса сопротивление измеряется в статах. Стат представляет собой частное от деления напряжения, выраженного в статвольтах, на силу тока, выраженную в статамперах.
$1 stat approx 8,99 cdot 10^11 Ом$.
В системе СГСМ сопротивление измеряется в абомах (напряжение – в абвольтах, сила тока – в абамперах):
Для измерения электрического сопротивления используют омметры – приборы, оснащенные собственными источниками тока. Современные приборы такого типа показывают результат измерения на электронных табло. Старые омметры показывали результат посредством механических стрелок, что менее практично, зато наглядно демонстрирует природу измеряемой величины.
Стрелка классического омметра прикреплена к вращающейся в постоянном магнитном поле токопроводящей подпружиненной рамке, при пропускании тока через которую возникает электромагнитная сила, взаимодействующая с магнитным полем. Чем больший течет ток через проводник, тем, сильнее отклоняется стрелка и, следовательно, меньше сопротивление. Поэтому показания на шкалах таких приборов часто отсчитывается не слева направо, а справа налево.
Рисунок 1. Шкала омметра (верхняя) с отсчетом величины справа налево. Автор24 — интернет-биржа студенческих работ
На практике часто используют кратные Ому единицы измерения – килоомы, мегаомы.
Для маркировки резисторов – электронных компонентов с заданным сопротивлением – применяется система цветных полосок, позволяющая не наносить на детали плохо читаемый мелкий текст.
Рисунок 2. Маркировка резисторов. Автор24 — интернет-биржа студенческих работ
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Использование термина
Широко используемые термины напряжение и электрический потенциал имеют несколько иной смысл, хотя нередко используются неточно как синонимы электростатического потенциала.
Сопротивление
Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.
Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.
Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.
Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.
Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.
Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.
Эту закономерность можно описать следующей формулой:
R = ρ · l/S
Единица измерения сопротивления — ом. Названа в честь физика Георга Ома.
Будьте внимательны!
Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм2. В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм2. При умножении мм2 сокращаются и мы получаем величину в СИ.
Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм2.
СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».
Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почтуПрактикующий детский психолог Екатерина МурашоваБесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
- Гальвани-потенциал
- Вольта-потенциал
- Векторный потенциал электромагнитного поля
- 4-потенциал
- Стандартный электродный потенциал
- Степень окисления
- Гравитационный потенциал
- Ядерный потенциал
Единицы и размерности
- статом (в СГСЭ и гауссовой системе, 1 statΩ = (109 −2) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·1011 Ом, равен сопротивлению проводника, через который под напряжением течёт ток );
- абом (в СГСМ, 1 abΩ = 1·10−9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением течёт ток ).
Закон Ома для полной цепи
Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.
В таком случае вводится закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.
Так, стоп. Слишком много незнакомых слов — разбираемся по порядку.
Что такое ЭДС и откуда она берется
ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.
ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.
Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.
Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.
В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:
Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.
Решим задачу на полную цепь.
Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом
Возьмем закон Ома для полной цепи:
Ответ: сила тока в цепи равна 1 А.
Сопротивление человека
Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.
Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.
По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:
Единицы измерения
В СИ за единицу разности потенциалов принимают вольт (В). Разность потенциалов между двумя точками поля равна одному вольту, если для перемещения между ними заряда в один кулон нужно совершить работу в один джоуль: 1В = 1 Дж/Кл (L²MT−3I−1). В СГС единица измерения потенциала не получила специального названия. Разность потенциалов между двумя точками равна одной единице потенциала СГСЭ, если для перемещения между ними заряда величиной одна единица заряда СГСЭ нужно совершить работу в один эрг. Приближенное соответствие между величинами: 1 В = 1/300 ед. потенциала СГСЭ
Метрологические аспекты
- Омметр
- Измерительный мост
- Комбинированные приборы (мультиметры, универсальные вольтметры и т. д.)
Средства воспроизведения сопротивления
- Магазин сопротивлений – набор резисторов
- Катушки электрического сопротивления
Государственный эталон сопротивления
Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.
В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:
где ρ — удельное сопротивление вещества проводника, l — длина проводника, а S — площадь сечения.
Сопротивление однородного проводника также зависит от температуры.
Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.
Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.
Сущность понятия «сопротивление»
Сопротивление – физическая величина, характеризующая среду (проводник), через которую протекает электрический ток.
С физической точки зрения сопротивление обусловлено тем, что заряженные частицы, перемещаясь от одного конца проводника к другому, сталкиваются с атомами его кристаллической решетки или другими элементарными частицами среды. Поэтому протекание тока в обычных условиях связано с выделением некоторого количества тепла за счет таких соударений, т.е. с потерями энергии.
При охлаждении проводников до сверхнизких температур в них возникает явление сверхпроводимости, когда сопротивление становится равным нулю.
Сделаем домашку
с вашим ребенком за 380 ₽
Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online
Сопротивление зависит от следующих факторов:
- материал (например, сопротивление у вольфрама выше, чем у меди);
- геометрическая форма (чем длиннее проводник и тоньше его сечение – тем больше сопротивление);
- температура (чем она выше, тем больше сопротивление) и т.д.
Из закона Ома сопротивление можно выразить как
где $U$ – напряжение, $I$ – сила тока.
Параллельное и последовательное соединение
Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.
Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?
Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.
Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.
Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.
Решим несколько задач на последовательное и параллельное соединение.
Найти общее сопротивление цепи.
R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.
Общее сопротивление при последовательном соединении рассчитывается по формуле:
R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом
Ответ: общее сопротивление цепи равно 10 Ом
R1 = 4 Ом, R2 = 2 Ом
Общее сопротивление при параллельном соединении рассчитывается по формуле:
Ответ: общее сопротивление цепи равно
Ом
Найти общее сопротивление цепи, состоящей из резистора и двух ламп.
Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.
В данном случае соединение является смешанным. Лампы соединены параллельно, а последовательно к ним подключен резистор.
Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:
R = R1 + Rламп = 1 + 1,2 = 2,2 Ом
Ответ: общее сопротивление цепи равно 2,2 Ом.
Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи 💪.
Задачка четыре со звездочкой
К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.
Найдем сначала сопротивление лампы.
Rлампы = R/2 = 10/2 = 5 Ом
Теперь найдем общее сопротивление двух параллельно соединенных резисторов.
И общее сопротивление цепи равно:
R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом
Выразим внутреннее сопротивление источника из закона Ома для полной цепи.
R + r = ε/I
r = ε/I − R
r = 12/0,5 − 10 = 14 Ом
Ответ: внутреннее сопротивление источника равно 14 Ом.
Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!
Кулоновский потенциал
Иногда термин кулоновский потенциал используется просто для обозначения электростатического потенциала, как полный синоним. Однако можно сказать, что в целом эти термины несколько различаются по оттенку и преимущественной области применения.
Чаще всего под кулоновским потенциалом имеют в виду электростатический потенциал одного точечного заряда (или нескольких точечных зарядов, полученный сложением кулоновского потенциала каждого из них). Зачастую даже в случае, когда имеется в виду потенциал, созданный непрерывно распределенными зарядами, если его называют кулоновским, это может подразумевать, что он выражен (или может быть выражен) всё же в виде суммы (интеграла) пусть и бесконечного числа элементов, на которые разбит заряженный объем, но всё же потенциал каждого рассчитан как потенциал точечного заряда. Однако, поскольку электростатический потенциал в принципе может быть выражен таким образом практически всегда (подробнее см. чуть ниже), то разграничение терминов всё же достаточно размывается.
Также под кулоновским могут понимать потенциал любой природы (то есть не обязательно электрический), который при точечном или сферически симметричном источнике имеет зависимость от расстояния 1/r (например, гравитационный потенциал в теории тяготения Ньютона, хотя последний чаще всё же называют ньютоновским, так как он был изучен в целом раньше), особенно если надо как-то обозначить весь этот класс потенциалов в отличие от потенциалов с другими зависимостями от расстояния.
Формула электростатического потенциала (кулоновского потенциала) точечного заряда:
(где K обозначен коэффициент, зависящий от системы единиц измерения — например в СИ K = 1/(4πε0), q — величина заряда, r — расстояние от заряда-источника до точки, для которой рассчитывается потенциал).
- Можно показать, что эта формула верна не только для точечных зарядов, но и для любого сферически симметричного заряда конечного размера, например, равномерно заряженного шара, правда, только в свободном от заряда пространстве — то есть например над поверхностью шара, а не внутри его.
- Кулоновский потенциал в виде приведенной выше формулы используется в формуле кулоновской потенциальной энергии (потенциальной энергии взаимодействия системы электростатически взаимодействующих зарядов):
Закон Ома для участка цепи
С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.
Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.
У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».
У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.
Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.
Математически его можно описать вот так:
Закон Ома для участка цепиI = U/R
Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.
Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье. 😇
Давайте решим несколько задач на закон Ома для участка цепи.
Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.
Возьмем закон Ома для участка цепи:
I = 220/880 = 0,25 А
Ответ: сила тока, проходящего через лампочку, равна 0,25 А
Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.
Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.
Сначала найдем сопротивление проводника.
Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.
Это значит, что все величины уже даны в СИ и перевод не требуется:
R = 1,05 · 0,5/0,01 = 52,5 Ом
Теперь возьмем закон Ома для участка цепи:
I = 220/52,5 ≃ 4,2 А
Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А
А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.
Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А
Возьмем закон Ома для участка цепи и выразим из него сопротивление:
R = U/I
Подставим значения и найдем сопротивление нити:
R = 220/8,8 = 25 Ом
Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:
ρ = RS/l
Подставим значения и получим:
ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м
Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.
Ответ: нить накаливания сделана из константана.
Когда «сопротивление бесполезно»
Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.
А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.
Ток идет по пути наименьшего сопротивления.
Теперь давайте посмотрим на закон Ома для участка цепи еще раз.
Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.
I = U/0 = ∞
Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.
Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.
Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.
Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.
Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.
Вот так резистор изображается на схемах:
В школьном курсе физики используют европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.
Вот так резистор выглядит в естественной среде обитания:
Полосочки на нем показывают его сопротивление.
На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:
О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.
Таблица удельных сопротивлений различных материалов
Поскольку потенциал (как и потенциальная энергия) может быть определён с точностью до произвольной постоянной (и все величины, которые можно измерить, а именно напряженности поля, силы, работы — не изменятся, если мы выберем эту постоянную так или по-другому), непосредственный физический смысл (по крайней мере, пока речь не идет о квантовых эффектах) имеет не сам потенциал, а разность потенциалов, которая определяется как:
— работа, совершаемая полем при переносе пробного заряда
из точки 1 в точку 2. При этом считается, что все остальные заряды при такой операции «заморожены» — то есть неподвижны во время этого перемещения (имеется в виду вообще говоря скорее воображаемое, а не реальное перемещение, хотя в случае, если остальные заряды действительно закреплены — или пробный заряд исчезающе мал по величине — чтобы не вносить заметного возмущения в положнения других — и переносится достаточно быстро, чтобы остальные заряды не успели заметно переместиться за это время, формула оказывается верной и для вполне реальной работы при реальном перемещении).
Впрочем, иногда для снятия неоднозначности используют какие-нибудь «естественные» условия. Например, часто потенциал определяют таким образом, чтобы он был равен нулю на бесконечности для любого точечного заряда — и тогда для любой конечной системы зарядов выполнится на бесконечности это же условие, а над произволом выбора константы можно не задумываться (конечно, можно было бы выбрать вместо нуля любое другое число, но ноль — «проще»).