Химическая формула углекислого газа в выдыхаемом воздухе

Процесс газообмена в легких и тканях

Состав поступающего и выходящего из дыхательных путей воздуха не меняется. Во вдыхаемом воздухе кислород составляет около 21%, углекислый газ — 0,03%. В выдыхаемом воздухе эти показатели уже другие: 16-17% кислорода и 4% углекислого газа.

В альвеолярном воздухе процент содержания кислорода достигает 14,4%, а углекислого газа — 5,6%. Во время выдоха происходит смешивание воздуха мертвого пространства и содержимого ацинусов.

Важно, что объем атмосферного азота, который вдыхается и выдыхается, остается неизменным.

При выдохе происходит вывод паров воды из организма.

При длительном вдыхании воздуха, содержащего значительную концентрацию кислорода, для организма могут наступить пагубные последствия. Тем не менее ингаляция 100-процентным кислородом — лечебное мероприятие при некоторых заболеваниях.

Диффузия газов

Разграничительная черта между кровью и воздухом альвеол называется легочной мембраной или аэрогематическим барьером.

Как происходит газообмен в легких?

Газообмен в легких осуществляется за счет:

  • диффузии кислорода из альвеол в кровь;
  • диффузии углекислого газа из крови в альвеолы.

Газы переходят через аэрогематический барьер за счет разности их концентраций.

Парциальным давлением газа выступает часть общего давления, принадлежащая данному газу.

Кислород в воздушной среде характеризуется парциальным давлением (напряжением), которое равно 160 мм. рт. ст. Углекислый газ, в свою очередь, обладает парциальным давлением, равным 0,2 мм. рт. ст.

Что касается альвеолярного воздуха, то парциальное давление для кислорода и двуокиси углерода отличаются другими значениями: давление кислорода равно 100 мм. рт. ст, а углекислого газа — 40 мм. рт. ст.

Газы находятся в крови в двух состояниях: в химическом связанном и в растворенном. При этом, в процессе диффузии могут участвовать только те молекулы газа, которые находятся в растворенном состоянии.

Есть несколько условий, от которых зависит способность газа быть растворенным в жидкостях. Это:

  • объем и давление газа над жидкостью;
  • состав жидкости;
  • природа газа;
  • температура жидкости.

При более низкой температуре и более высоком давлении газа обеспечивается большее растворение газа.

При условии температуры 38 градусов и давлении в 760 мм. рт. ст. в 1 мл. крови растворится 2,2% кислорода и 5,1% углекислого газа.

Между кровью и альвеолярным воздухом градиент давления для кислорода составляет 60 мм. рт. ст. Это обеспечивает диффузию кислорода в кровь. В крови происходит связывание кислорода с гемоглобином, который находится в эритроцитах, в результате чего происходит образование оксигемоглобина. Очень много оксигемоглобина содержится в артериальной крови.

У здорового человека гемоглобин может насыщаться кислородом на 96%.

Под кислородной емкостью крови понимают максимум кислорода, которое при глубоком насыщении гемоглобина кислородом может связываться с кровью.

Эффектом Холдейна называют повышенную способность крови в процессе перехода оксигемоглобина в гемоглобин связывать углекислый газ.

В 100 мл. крови содержится примерно 20 мл. кислорода — это в норме. В венозной крови в таком же объеме содержится от 13 до 15 мл. кислорода.

Образованный в тканях углекислый газ по градиенту концентрации поступает в кровь и объединяется с гемоглобином — таким образом происходит образование карбгемоглобин. Большая часть углекислого газа находится во взаимодействии с водой, и образует, в результате, карбоновую кислоту. Эта кислота имеет способность диссоциировать, что приводит к образованию ион водорода и бикорбонат-ион. Основная часть углекислого газа перемещается в виде бикарбоната.

Эритроциты крови содержат такой фермент как карбоангидраза. У него есть способность осуществлять катализацию расщепления карбоновой кислоты и ее образование. Процесс расщепления происходит в капиллярах легких.

Напряжение двуокиси углерода в венозной крови — около 46 мм. рт. ст. Парциальное давление двуокиси углерода в альвеолярном воздухе составляет 40 мм. рт. ст. Это значит, что градиент давления равен 6 мм. рт. ст. в пользу крови.

Из человеческого организма в состоянии покоя выходит примерно 230 мд. двуокиси углерода.

Диффузия газов осуществляется по разности концентрации: из среды, где отмечается большее напряжение, в среду, где отмечается меньшее напряжение.

Диффузионная способность легких — это способность газа превращаться из альвеол в эритроциты.

Особенности газообмена в тканях

В митохондриях обнаруживается минимальное напряжение кислорода. Все потому, что митохондрии — это места, где кислород используется для биологического окисления. Как результат расщепления оксигемоглобина — молекулы кислорода диффундируют в направлении меньших значений напряжения кислорода.

Факторы, влияющие на парциальное давление в тканях:

  • расстояние между кровеносными капиллярами и их геометрия;
  • скорость движения крови;
  • расположение клеток относительно капилляров;
  • окислительные процессы и др.

В тканевой жидкости вблизи капилляров напряжение кислорода меньше, чем в крови — оно составляет от 20 до 40 мм. рт. ст.

Интенсивные окислительные процессы в клетках способствуют тому, что напряжение кислорода может доходить до нулевого показателя. Однако при увеличении скорости кровотока напряжение кислорода мгновенно повысится.

Наивысший показатель давление углекислого газа в клетках достигается в случае его образования в митохондриях — оно равно 60 мм. рт. ст. Что касается давления углекислого газа, то в тканевой жидкости оно меняется (примерно 46 мм. рт. ст.), а в артериальной крови остается равным 40 мм. рт. ст.

Перемещение двуокиси углерода осуществляется по градиенту напряжений в капилляры крови, после чего кровь перемещает ее к легким.

Состав вдыхаемого и выдыхаемого воздуха. Газообмен в легких

Атмосферный воздух, поступающий в легкие во время вдоха, называется вдыхаемым воздухом; воздух, выделяемый наружу через дыхательные пути во время выдоха, – выдыхаемым. Выдыхаемый воздух – это смесь воздуха, заполнявшего альвеолы, – альвеолярного воздуха – с воздухом, находящимся в воздухоносных путях (в полости носа, гортани, трахеи и бронхов). Состав вдыхаемого, выдыхаемого и альвеолярного воздуха в нормальных условиях у здорового человека довольно постоянен и определяется следующими цифрами (табл. 3).

Про анемометры:  Детектор угарного газа - устройство, принцип работы и эксплуатация

Данные цифры могут несколько колебаться в зависимости от различных условий (состояние покоя или работы и др.). Но при всех условиях альвеолярный воздух отличается от вдыхаемого значительно меньшим содержанием кислорода и большим содержанием углекислого газа. Это происходит в результате того, что в легочных альвеолах из воздуха поступает в кровь кислород, а обратно выделяется углекислый газ.

Газообмен в легких обусловлен тем, что в легочных альвеолах и венозной крови, притекающей к легким, давление кислорода и углекислоты различно: давление кислорода в альвеолах выше, чем в крови, а давление углекислого газа, наоборот, в крови выше, чем в альвеолах. Поэтому в легких и осуществляется переход кислорода из воздуха в кровь, а углекислоты – из крови в воздух. Такой переход газов объясняется определенными физическими законами: если давление какого-нибудь газа, находящегося в жидкости и в окружающем ее воздухе, различно, то газ переходит из жидкости в воздух и наоборот, пока давление не уравновесится.

Содержание газов (в процентах)

В смеси газов, какой является воздух, давление каждого газа определяется процентным содержанием данного газа и называется парциальным давлением (от латинского слова pars – часть). Например, атмосферный воздух оказывает давление, равное 760 мм ртутного столба. Содержание кислорода в воздухе равно 20,94%. Парциальное давление кислорода атмосферного воздуха будет составлять 20,94% от общего давления воздуха, т. е. 760 мм, и равно 159 мм ртутного столба. Установлено, что парциальное давление кислорода в альвеолярном воздухе составляет 100 – 110 мм, а в венозной крови и капиллярах легких – 40 мм. Парциальное давление углекислого газа равняется в альвеолах 40 мм, а в крови – 47 мм. Разницей в парциальном давлении между газами крови и воздуха и объясняется газообмен в легких. В этом процессе активную роль играют клетки стенок легочных альвеол и кровеносных капилляров легких, через которые происходит переход газов.

Поможем с курсовой, контрольной, дипломной

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Альвеолярный
и выдыхаемый воздух по своему составу
значительно отличаются друг от дру­га.
Отличие их состава связано с тем, что
при выдохе к альвеолярному воздуху
примешивается воздух,
который находится в воздухоносных
путях, в так называемом вредном
пространстве. Сле­довательно,
выдыхаемый воздух представляет собой
смесь альвеолярного воздуха и воздуха
вред­ного
пространства. Если считать, что человек
в среднем выдыхает (при одном выдохе)
500 мл, то этот
воздух будет состоять из 360 мл альвеолярного
воздуха и 140 мл воздуха, находившегося
во вредном
пространстве.

Переход газов в
легких из воздуха в кровь и, наоборот,
поступление газов из крови в воздух
“одчиняется определенным физическим
законам, связанным с парциальным
давлением и коэф­фициентами растворимости
газов в жидкостях.

Каждый
газ растворяется в жидкости в зависимости
от своего парциального давления. Что
же называется парциальным давлением
газа? Если имеется смесь газов, то
парциальное давле­ние
каждого газа определяется процентным
содержанием данного газа в смеси газов.
Таким обра­зом,

парциальным
давлением называется та часть общего
давления, которая приходится на долю
каждого
газа в газовой смеси. Поясним это
примером. В состав атмосферного воздуха
входят кислород,
углекислый газ и азот, причем, как нам
известно, кислорода содержится 20,94%,
угле­кислого
газа 0,03% и азота 79,03%. Каково же будет
парциальное давление каждого из этих
газов? Атмосферное
давление равно 760 мм рт. ст. Следовательно,
если воздух оказывает давление, рав­ное
760 мм, то парциальное давление кислорода
будет равняться 20,94% от общего давления,
т. е. от
760 мм, и будет равно 159 мм рт. ст; парциальное
давление азота составит 79,03% атмосферного
давления
и будет равно 600,8 мм рт. ст. Углекислого
газа содержится очень мало — всего
0,03%. Поэтому
и парциальное давление углекислого
газа будет составлять приблизительно
0,2 мм рт. ст. Если
парциальное давление газа в окружающей
среде выше, чем давление (напряжение)
этого же газа
в жидкости, то газ растворяется в
жидкости, и между жидкостью и окружающим
ее газом устанавливается
определенное равновесие. Напряжение
газа измеряют парциальным давлением
газа над жидкостью, с которой он находится
в равновесии. Если, например, парциальное
давле­ние
кислорода в альвеолярном воздухе будет
выше, чем в притекающей венозной крови,
то кисло­род
из альвеолярного воздуха будет переходить
в кровь. Но в силу той же разницы газ из
жидко­сти
будет выходить в окружающий воздух,
когда напряжение газа в жидкости выше,
чем его пар­циальное
давление в окружающей среде. Если
напряжение углекислого газа в венозной
крови будет
выше, чем его парциальное давление в
альвеолярном воздухе, то этот газ будет
выходить из венозной
крови в альвеолярный воздух. Переход
газа из жидкости в окружающую смесь
газов будет
продолжаться до тех пор, пока не
установится равновесие. Таким образом,
газ растворяется

Про анемометры:  Как работает термометр? В чем его суть

в
жидкости или выходит из жидкости в
окружающую среду в зависимости от
величины парциаль­ного
давления этого же газа в воздухе и его
напряжения в жидкости, причем газ
переходит из среды,
где имеется высокое давление, в среду
с меньшим давлением. Этот переход
продолжается до
тех пор, пока не установится равновесие.

Кроме
парциального давления, при растворении
газов в жидкостях большое значение
имеют температура
жидкости и коэффициент растворимости
газа в жидкости. Между температурой
жидкости
и количеством растворенного в ней газа
существует определенная зависимость:
чем выше
температура жидкости, тем меньше газа
в ней растворяется. Общеизвестно, что
при кипяче­нии
воды из нее выделяются пузырьки
растворенного в ней воздуха. Коэффициентом
раствори­мости называется то количество
газа, которое может быть растворено в
1 мл воды при давлении 760 мм рт. ст. при
данной температуре. Коэффициент
растворимости меняется в зависимости
от температуры
раствора. Разные газы имеют разный
коэффициент растворимости, так же как
и в разных растворителях может раствориться
разное количество одного и того же газа.

Переход
газов в легких из воздуха в кровь и,
наоборот, поступление газов из крови в
воздух подчиняются
рассмотренным выше физическим законам.
Однако в легких имеется ряд особенно­стей.
Воздух, находящийся в альвеолах, и кровь,
протекающая по капиллярам, отделены
друг от друга
всего лишь двумя слоями клеток: стенкой
альвеолы и стенкой капилляра. Незначительная
толщина
перепонки, отделяющей газ от крови, не
мешает свободному переходу газа. Полный
газообмен
между альвеолярным воздухом и кровью
возможен в короткий срок протекания
крови по
легочным капиллярам в том случае, если
имеются условия для лучшего и быстрого
перехода газов.
Одним из таких условий является большая
площадь легких. Действительно, если
растя­нуть
легкие, то их поверхность равняется в
среднем 90 м2.
Вся огромная площадь легкого густо
покрыта
капиллярами, по которым кровь растекается
очень небольшим слоем. Огромная пло­щадь
соприкосновения крови и воздуха при
незначительной толщине слоя протекающей
в капил­лярах
крови способствует быстрому насыщению
крови кислородом и отдаче углекислоты.
Газо­обмен
совершается в легких между альвеолярным
воздухом и кровью. Обмен газов в легких
может протекать
совершенно нормально, так как имеется
вполне достаточная разность в напряжении
газов
в крови и их парциальном давлении в
воздухе. Эта разность видна из табл.
5.2.

Парциальное
давление кислорода, углекислого газа
и азота во вдыхаемом и
альвеолярном воздухе, а также их
напряжение в крови

Кислород
из альвеолярного воздуха в кровь, а
углекислый газ из крови в альвеолярный
воз­дух
переходят путем диффузии. Диффузия
возможна потому, что парциальное давление
кислоро­да
в альвеолярном воздухе составляет 110
мм рт. ст., а в венозной крови — 40 мм рт.
ст. Таким образом, создается
разность давления в 70 мм рт. ст., чего
вполне достаточно, чтобы обеспечить
переход кислорода. Потребность человека
в кислороде равна 350 мл в минуту; при
работе потребность в кислороде
возрастает и доходит до 5000 мл в минуту.
Разности в парциальном давлении в 1 мм
рт. ст.
достаточно, чтобы за минуту перешло в
кровь 250 мл кислорода, а между парциальным
давле­нием
крови в альвеолярном воздухе и его
напряжением в крови имеется разность
в 70
мм рт. ст. — разность, вполне достаточная
для обеспечения максимальных потребностей
орга­низма.
Что же касается углекислого газа, то и
здесь имеется достаточная разность
между напря­жением СО2
в крови и его парциальным давлением в
альвеолярном воздухе. Эта разность
равна 6—7
мм рт. ст., что обеспечивает переход
углекислого газа из крови в альвеолярный
воздух.

Связывание,
перенос и отдача кислорода, а также
связывание и перенос углекислоты в
орга­низме
человека осуществляются кровью. Кислород
и углекислый газ находятся в крови в
физи­чески
растворенном состоянии (растворение
газов в жидкости называется абсорбцией)
и в хими­чески
связанном виде. Из 100 мл крови можно
выделить только 20 мл кислорода; между
тем в физически
растворенном состоянии в 100 мл крови
может находиться только 0,3 мл кислорода.
Так как количество кислорода, содержащегося
в 100 мл крови, во много раз больше, чем
может находиться
в растворенном состоянии, то ясно, что
кислород в основном находится в химически
связанном
виде. Веществом, вступающим в химическую
связь с кислородом, является гемоглобин,
содержащийся
в эритроцитах (см. главу 6). Кислород из
воздуха диффундирует в плазму крови, а
из
плазмы поступает в эритроциты и вступает
в химическую связь с гемоглобином.
Гемоглобин при
этом превращается в оксигемоглобин; 1
г гемоглобина может связать 1,34 мл
кислорода. Пре­вращение
гемоглобина в оксигемоглобин, т. е
степень насыщения гемоглобина кислородом,
связа­но
с величиной парциального давления
кислорода, но зависимость эта не прямо
пропорциональ­ная.
Гемоглобин обладает особым свойством,
имеющим очень важное биологическое
значение: он может
энергично вступать в соединение с
кислородом даже при его незначительном
парциальном давлении.

Про анемометры:  Как почистить датчик мап гбо 4 поколения

Артериальная
кровь, насыщенная в легких кислородом,
идет в капиллярную сеть большого круга
кровообращения, где оксигемоглобин
отдает тканям кислород. Оксигемоглобин,
отдавший кислород,
называется восстановленным гемоглобином
(дезоксигемоглобином). В артериальной
крови
почти весь гемоглобин превращен в
оксигемоглобин, а в венозной крови,
оттекающей от капилляров
большого круга кровообращения (см. главу
6), преобладает дезоксигемоглобин. В
переходе кислорода из крови к тканям
решающее значение имеет разность
напряжений кисло­рода
в артериальной крови и в тканях. Кислород
из крови поступает в тканевую жидкость
и из нее в клетки, где принимает участие
в окислительных процессах. Это возможно
потому, что напряже­ние кислорода,
растворенного в артериальной крови,
протекающей через капилляры, равно 100—
НО
мм рт. ст., в тканевой жидкости — 20—40 мм
рт. ст., а в клетках свободного кислорода
нет. Разность
напряжения растворенного кислорода,
равная 70—80 мм рт. ст., обеспечивает
энергич­ный
переход кислорода из плазмы крови в
тканевую жидкость. Оксигемоглобин,
который являет­ся нестойким соединением,
отдает кислород в плазму; в силу разности
напряжения растворенный кислород
переходит в тканевую жидкость и оттуда
в клетку, где вступает в окислительные
про­цессы.
Помимо разности в напряжении растворенного
кислорода, на степень отдачи кислорода
оксигемоглобином
сильно влияет величина напряжения
углекислого газа, растворенного в
кро­ви.
Специальными исследованиями доказано,
что чем выше напряжение углекислого
газа, ра­створенного в крови, тем
слабее становится связь гемоглобина с
кислородом, т. е. тем больше кислорода
освобождается. В капиллярах большого
круга кровообращения наряду с переходом

кислорода
из крови в тканевую жидкость происходит
и переход углекислого газа из тканевой
жидкости
в кровь. Количество углекислого газа
растет и его напряжение в крови возрастает,
а это обстоятельство
вызывает ослабление связи гемоглобина
с кислородом и способствует большему
освобождению
кислорода. В легких же происходит отдача
углекислого газа; его напряжение в крови
падает и благодаря этому сродство
гемоглобина с кислородом повышается,
т. е. гемоглобин начинает
более энергично соединяться с кислородом
и превращаться в оксигемоглобин. На
проч­ность
связи гемоглобина с кислородом влияет
также температура. При повышенной
температуре связь ослабевает, при
пониженной — увеличивается.

Связывание
и перенос углекислоты также осуществляет
кровь. Углекислота находится в кро­ви
преимущественно в виде бикарбонатов
натрия и калия. Кроме этих солей, в
переносе углекис­лого
газа участвует и гемоглобин. Для
поступления углекислого газа в кровь
и перехода из крови в альвеолярный
воздух требуется наличие разности его
давления. В тканевой жидкости напряже­ние
углекислого газа составляет около 60 мм
рт. ст., а в артериальной крови 40 мм рт.
ст. Следова­тельно,
имеется достаточная разность, и углекислый
газ диффундирует в кровь. В венозной
крови его
напряжение составляет 47 мм рт. ст., а его
парциальное давление в альвеолярном
воздухе — 40
мм рт. ст. Такая разность давлений вполне
достаточна для перехода углекислого
газа в альве­олярный воздух, а оттуда
— в атмосферный воздух.

Итак,
мы кратко рассмотрели основы
функционирования дыхательной системы
человека, одной
из физиологических систем, изменения
динамики которых в ходе полиграфной
проверки регистрирует
и анализирует специалист-полиграфолог.

Мы
констатировали, что в регуляции
респираторной активности организма
человека при­нимают
участие нервная и сердечно-сосудистая
системы. Поэтому в следующей главе мы
изло­жим основы анатомии и физиологии
сердечно-сосудистой системы, еще одной
системы, актив­ность
которой регистрирует и анализирует
полиграфолог в ходе инструментальной
«детекции лжи».

ДВА  ФИЗИЧЕСКИХ  ОТКРЫТИЯ  В  ДЫХАНИИ ЧЕЛОВЕКА

Гомберг  Эрнст  Ильич / Gomberg  Ernst,  инженер / master,  теплоэнергетик,

пенсионер, город Иерусалим, Израиль

В  настоящей статье впервые  анализируются два  различных  исследования  в  процессах  дыхания  человека,  проведенные  инженером тепло энергетиком   с  использованием  физических  законов при  вдохе  и  выдохе  и два   термодинамических  цикла  дыхания человека  в  зависимости  от  температуры  вдыхаемого  атмосферного  воздуха.

Первое исследование решает законами физики медицинскую проблему самостоятельного повышения количества вдыхаемого воздуха с кислородом и количества выдыхаемого воздуха с углекислым газом без дополнительных приборов.

Второе исследование впервые объясняет законами термодинамики проблему различия в дыхании людей в зависимости от температуры атмосферного воздуха в разных климатических условиях.

Медицинские работники, заинтересованные этими физическими открытиями,  могут  продолжить  начатые исследования  в  лаборатории  и в  сотрудничестве  с  автором  предоставить  науке  практические  данные.

Ключевые слова: Физические законы (Бойля-Мариотта, Бернулли). Кислород. Углекислый газ. Термодинамика дыхания.

Оцените статью
Анемометры
Добавить комментарий