1.1. Магнитные величины | Электронная библиотека

1.1. Магнитные величины | Электронная библиотека Анемометр

Единицы измерения магнитных величин | 13. Магнетизм и электромагнетизм | Часть1 – DС

Единицы измерения магнитных величин

Благодаря раннемуотсутствию стандартизациив науке омагнетизме, мысталкиваемсяне менее чем c тремя системамиизмерениямагнитных величин.

Этих величин в магнетизме несколько больше чем в электричестве. В электричестве мы имели дело с четырьмя основными величинами: напряжением (U), силой тока (I), сопротивлением (R) и мощностью (P). Первые три из них связаны друг с другом Законом Ома (U=IR ; I=U/R ; R=U/I), а четвертая, с предыдущими тремя – Законом Джоуля (P =IU, P =I2R, Р =U2/ R).

В магнетизме мы будем иметь дело со следующими величинами:

Магнитодвижущая сила (МДС) — физическая величина, характеризующая способность электрических токов создавать магнитные потоки. Она аналогична электродвижущей силе (ЭДС) в электрических цепях.

Магнитный потокобщее количество поля или его эффект.Аналогичен току в электрических цепях.

Напряженность магнитного поля – количество магнитодвижущих сил, распределенных по длине электромагнита.

Магнитная индукция – общее количество магнитного потока, сконцентрированного в данной точке пространства.

Магнитное сопротивлениеСопротивление определенногообъема пространстваилиматериала .магнитному потоку.Аналогичноэлектрическому сопротивлению.

Магнитная проницаемость – величина, характеризующая реакцию среды (материала) на воздействие внешнего магнитного поля. Обратна удельному сопротивлению материала (большая проницаемость означает более легкое прохождение магнитного потока, в то время как большее удельное сопротивление означает более трудное прохождение электрического тока).

В настоящее время существует, как мы уже говорили, три системы измеренияэтих величин:

magnit11

Как вы ужедогадались, отношение между магнитодвижущей силой, магнитным потокоми магнитным сопротивлением аналогично отношению между напряжением(U), током (I) исопротивлением(R).Получаетсянечто похожее назаконОма длямагнитнойцепи:

magnit12

Уравнение для определения магнитного сопротивления материала очень похоже на уравнение для определения сопротивления проводника (учитывая что магнитная проницаемость обратна удельному сопротивлению):

magnit13

Из этих формул видно, что сопротивление более длинного материала в обоих случаях больше, а сопротивление материала с большей площадью поперечного сечения – меньше (при прочих равных условиях).

Главная загвоздка здесь состоит в том, что сопротивление материала магнитному потоку фактически изменяется при изменении концентрации самого потока. Это делает “Закон Ома” для магнитных цепей нелинейным, и работать с ним намного трудней, чем с электрической версией данного закона.

Единицы измерения магнитного потока

В СИединицей магнитного потока является вебер (Вб, размерность — Вб = В·с =
кг·м²·с-2·А-1
), в системе СГС — максвелл (Мкс, 1 Вб = 108 Мкс).

Измерение магнитного потока

Устройство, используемое для измерения магнитного потока, называется флюксметром. Принцип действия флюксметра основан на законе магнитной индукции в интегральной форме. Первые флюксметры были механическими. Классический флюксметр представлял собой разновидность баллистического гальванометра, в котором управляющий момент был очень мал, в то время как электродинамическое демпфирование — очень большим.

Подвеска измерительной рамки прибора была устроена таким образом, что возвращающая сила была равна нулю. Измерительная катушка помещалась в изменяющееся магнитное поле и флюксметр определял изменение напряжения в катушке, которое было пропорциональным скорости изменения магнитного потока.

Интегрирование осуществлялось механически за счет высокой инерционности прибора. Именно таким флюксметром пользовался Вильгельм Эдуард Вебер во время исследования направления магнитного поля Земли. Аналогичные флюксметры использовались и на флоте для измерения магнитного поля кораблей с целью контроля их размагничивания.

Современный флюксметр состоит из измерительных катушек и электроники, которая оценивает изменение напряжения в катушке с последующим его интегрированием, рассчитывая таким образом магнитный поток. Для измерения магнитного потока необходимо интегрирование напряжения измерительной катушки в течение времени измерения.

Такое интегрирование напряжения, снятого с измерительной катушки, осуществляется либо с помощью аналогового интегратора (обычно используется интегрирующий операционный усилитель), либо с помощью аналого-цифрового интегратора или микропроцессора, осуществляющего численное интегрирование.

Измерительная катушка флюксметра может быть стационарной или подвижной. Для получения надежных результатов важно, чтобы каркас катушки имел хорошую механическую жесткость и малый коэффициент теплового расширения. Высокую стабильность и повторяемость результатов обеспечивает правильная намотка катушки.

Используемые в электронных флюксметрах катушки бывают точечными, линейными, плоскостными и катушками для измерения гармонических составляющих. Все катушки должны быть откалиброваны, так как основной вклад в погрешность измерений вносят именно катушки с неправильно определенной чувствительностью. Для калибровки катушек применяют постоянные магниты с известными свойствами.

Точечные катушки используются для измерения магнитного потока в определенной точке пространства. Они обычно наматываются на небольшом сердечнике. Такие катушки часто имеют форму шара. Линейные катушки предназначены для измерения интегрированного магнитного потока вдоль прямой линии.

Их ширина намного меньше длины. Линейные катушки обычно охватывают лишь небольшую зону измеряемого пространства. Плоскостные катушки предназначены для измерения больших зон измеряемого пространства. Длинные прямоугольные катушки часто используются при измерениях в ускорителях элементарных частиц.

Для измерения изменения магнитного потока с помощью одной или нескольких измерительных катушек используют различные методы. При измерении катушку могут перемещать из зоны, где имеется поле, в зону, где поле нулевое. Другим методом является отключение поля в процессе измерения. При использовании еще одного метода катушку поворачивают и измерение повторяют.

Для измерения с помощью электронного флюксметра, например, магнитного потока постоянного магнита для контроля качества в процессе производства магнитов, выполняется приведенная ниже последовательность действий.

  • К входу флюксметра подключается измерительная катушка.
  • После включения прибора и выбора диапазона измерений выполняется контроль уровня дрейфа. Обычно из-за дрейфа нулевые показания поддерживаются не более нескольких минут, после чего нужно заново настраивать прибор.
  • Положительное измерение. При пустой измерительной катушке нажать кнопку сброса, затем поместить в катушку магнит так, чтобы его северный полюс был вверху. Записать измеренное значение.
  • Отрицательное измерение. Вначале поместить магнит в измерительную катушку северным полюсом вверх. Нажать кнопку сброса, извлечь магнит из катушки и отнести на достаточно большое расстояние от нее. Считать и записать измеренное значение.
  • Рассчитать среднее значение двух измерений.
  • Магнитная пленка-визуализатор позволяет наблюдать стационарные или медленно меняющиеся магнитные поля
Про анемометры:  Монтаж отопления в частном доме с газовыми баллонами

Измерительные приборы

Индукция магнитного поля

Магнитные потоки, определимые с помощью специальных приборов – флюксметров, измеряются и в лабораторных, и в полевых условиях. Приборы ещё называют веберметрами. Особенностью такого измерительного аппарата магнитоэлектрической системы (МЭС) является то, что ток подводится к перемещающейся бескаркасной рамке через спирали, не имеющие момента противодействия (безмоментные).

Внимание! В тот момент, когда ток отсутствует, указатель прибора не имеет фиксированного положения в пределах шкалы.

1.1. Магнитные величины | Электронная библиотека
Схема применения и устройства флюксметра

Прибор состоит из следующих деталей, отмеченных на рис. выше:

  • испытуемый постоянный магнит – 1;
  • рамка измерительная – 2;
  • рамка прибора – 3;
  • магнит прибора – 4;
  • рамка корректирующего устройства – 5;
  • головка регулировки корректирующей рамки – 6;
  • переключатель «работа – коррекция» – 7.

Флюксметр не может измерять слабые МП из-за низкой чувствительности.

Квантование магнитного потока

При рассмотрении ряда квантовых явлений, таких как эффект Ааронова — Бома или квантовый эффект Холла, используется квант магнитного потока:

Φ0=he{displaystyle Phi _{0}={frac {h}{e}}},

где h{displaystyle h} — постоянная Планка, e{displaystyle e} — элементарный заряд.

Опыты с неодносвязнымсверхпроводником (например, со сверхпроводящим кольцом) показывают, что магнитный поток через кольцо всегда кратен половине кванта магнитного потока, откуда следует, что носители тока в сверхпроводнике являются парами связанных элементарных зарядов. Это прямое подтверждение теории БКШ, согласно которой сверхпроводимость обусловлена электронными парами (куперовскими парами):

Φs=Φ02=h2e=2,067833758×10−15{displaystyle Phi _{s}={frac {Phi _{0}}{2}}={frac {h}{2e}}=2{,}067833758times 10^{-15}} Вб (в СИ);
Φs=hc2e=2,067833636×10−7{displaystyle Phi _{s}={frac {hc}{2e}}=2,067833636times 10^{-7}} Гаусс·см2 (в СГС), c{displaystyle c} — скорость света.

Экспериментально квантование магнитного потока было обнаружено в 1961 году.

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

Ввинчиваем по часовой стрелке – саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам – кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Определение магнитного потока

Магнитным потоком через бесконечно малый элемент поверхности dS{displaystyle {rm {d}}S} называется произведение

dΦ=BdScos⁡α=B⋅dS{displaystyle dPhi =B,{rm {d}}S,cos alpha =mathbf {B} cdot {rm {d}}mathbf {S} },

где α{displaystyle alpha } — угол между вектором магнитной индукции B{displaystyle mathbf {B} } и единичным вектором нормалиn{displaystyle mathbf {n} } к участку поверхности, а векторный элемент dS площади поверхности S определяется как

dS=dSn{displaystyle {rm {d}}mathbf {S} ={rm {d}}S,mathbf {n} }.

Магнитным потоком через поверхность конечной площади называется интеграл от dΦ{displaystyle dPhi } по поверхности:

Φ=∫dΦ=∬SB⋅dS{displaystyle Phi =int {rm {d}}Phi =iint limits _{S}mathbf {B} cdot {rm {d}}mathbf {S} }.

Направление вектора n{displaystyle mathbf {n} } в общем случае непостоянно (см. рис.), магнитное поле также может изменяться вдоль поверхности. Точка в произведениях означает скалярное умножение векторов. Интеграл понимается как предел суммы по малым участкам при стремлении их размеров к нулю. Поверхность может быть незамкнутой (как на рис.) или замкнутой.

В случае однородного поля и плоской поверхности магнитный поток рассчитывается как Φ=BScos⁡α{displaystyle Phi =B,S,cos alpha }.

Постоянные магниты

Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.

Постоянные магниты можно классифицировать по следующим критериям:

  • материал, из которого изготовлен магнит;
  • форма;
  • сфера использования.

Магниты с постоянными полюсами изготавливаются из различных материалов:

  • ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
  • редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).

Форма магнитов самая различная:

  • цилиндрическая (прямоугольная);
  • подковообразная;
  • кольцеобразная;
  • дискообразная.

Важно! В зависимости от формы изменяется месторасположение полюсов, соответственно, и направление магнитных линий у поля.

1.1. Магнитные величины | Электронная библиотека
Направление линий МП в зависимости от формы магнита

Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:

  • МРТ – медицинский прибор для диагностики человеческого организма;
  • приводы жёстких дисков в современных компьютерах;
  • в радиотехнике, при изготовлении динамиков;
  • производство декоративных украшений с применением магнитов на полимерной основе.

В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

Про анемометры:  Магнитное поле в физике - формулы и определения с примерами решения задач

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  – на ЮГ.

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

Проводящая рамка в магнитном поле

Явление электромагнитной индукции состоит в том, что при изменении поля, пронизывающего проводящую рамку или катушку, в ней возникает электродвижущая сила (ЭДС):

Рис. 1. Электромагнитная индукция, опыт Фарадея.

Энергия используемого в этом опыте магнитного поля характеризуется магнитной индукцией. Однако, при попытке описать наблюдаемое явление выяснилось, что одной этой величины мало.

Если выписать в таблицу значения ЭДС, наводимые магнитным полем, имеющим одну и ту же плотность магнитных линий, в разных условиях, то окажется, что ЭДС, возникающая в квадратной рамке, имеет гораздо большее значение, чем ЭДС в длинной узкой рамке (при одном периметре).

А наибольшая ЭДС возникает в круглом витке.

Причиной этого оказался разный «охват поля» рамкой. Площадь длинной узкой рамки невелика, она «охватывает» малое «количество поля», и ЭДС в ней также мала. У квадратной рамки площадь при одинаковом периметре больше, а у круглого витка – она наибольшая, в результате рамка «охватывает» большее «количество поля», и ЭДС в такой рамке тоже получается больше.

Не менее важной оказалась ориентация рамки по отношению к направлению магнитного поля. Наибольшая ЭДС возникает, если проводящая рамка перпендикулярна линиям магнитной индукции. Если плоскость рамки параллельна этим линиям – то независимо от ее площади и силы магнитного поля ЭДС в рамке не возникнет.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину.  У нас должно получится что-то типа этого.

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала – феррита.

Если в электрических цепях есть такое понятие, как ЭДС – электродвижущая сила, то и в магнитных цепях есть свой аналог  – МДС – магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

где

I – это сила тока в катушке, Амперы

N – количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Тема 9. “электродинамика. магнитное поле и электромагнитная индукция”.. физика, архив

МАГНИТНОЕ ПОЛЕ

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В – физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция – векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

1.1. Магнитные величины | Электронная библиотека

Единица магнитной индукции. В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

1.1. Магнитные величины | Электронная библиотека

СИЛА ЛОРЕНЦА

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера FА = IBlsin a , а сила Лоренца действует на движущийся заряд:

1.1. Магнитные величины | Электронная библиотека

где a – угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила1.1. Магнитные величины | Электронная библиотекам , постоянная по модулю и направленная перпендикулярно вектору скорости1.1. Магнитные величины | Электронная библиотека.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

1.1. Магнитные величины | Электронная библиотека

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условия1.1. Магнитные величины | Электронная библиотекаоткуда следует,

1.1. Магнитные величины | Электронная библиотека

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

1.1. Магнитные величины | Электронная библиотека

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца 1.1. Магнитные величины | Электронная библиотекал равна магнитной силе 1.1. Магнитные величины | Электронная библиотекам :

1.1. Магнитные величины | Электронная библиотека

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

МАГНИТНЫЙ ПОТОК

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S – величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором1.1. Магнитные величины | Электронная библиотека и нормалью 1.1. Магнитные величины | Электронная библиотека
к поверхности:

Про анемометры:  Магнитный поток ℹ️ определение, обозначение и единица измерения, формула, скорость изменения потока, направление вектора магнитной индукции, расчеты

Ф=BScos1.1. Магнитные величины | Электронная библиотека

В СИ единица магнитного потока 1 Вебер (Вб) – магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

1.1. Магнитные величины | Электронная библиотека

Электромагнитная индукция-явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока Ii в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции , пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

1.1. Магнитные величины | Электронная библиотека

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции εi.

По закону Ома для замкнутой цепи

1.1. Магнитные величины | Электронная библиотека

Так как R не зависит от1.1. Магнитные величины | Электронная библиотека , то

1.1. Магнитные величины | Электронная библиотека

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

1.1. Магнитные величины | Электронная библиотека

САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Ф = L*I .

Индуктивность контура L – коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция – явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция – частный случай электромагнитной индукции.

1.1. Магнитные величины | Электронная библиотека

Индуктивность – величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени.
В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

1.1. Магнитные величины | Электронная библиотека

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела 1.1. Магнитные величины | Электронная библиотека:

1.1. Магнитные величины | Электронная библиотека

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I – начальное значение тока, t – промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = Icpt . Так как Icp = (I 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

1.1. Магнитные величины | Электронная библиотека

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

1.1. Магнитные величины | Электронная библиотека

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

1.1. Магнитные величины | Электронная библиотека1.1. Магнитные величины | Электронная библиотека

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1. Следовательно,

1.1. Магнитные величины | Электронная библиотека

Ответ: энергия поля равна 8,6 Дж; при уменьшении тока вдвое она уменьшится в 4 раза.

Электрическая зависимость

Британский физик Майкл Фарадей не сомневался в единственной природе явлений магнетизма в своей теореме. Изменяющийся во времени фон создаёт электронный и магнитный вид. В 1831 году Фарадей обнаружил появление индукции, которая легла в основу устройства для генераторов, преобразующих механическую энергию в электронную. А в 1835 г. немецкий математик Карл Гаусс определил аксиому, описывающую обозначение и зависимость напряжённости поля от величины заряда.

Появление электрической индукции замечено в появлении тока в проводящей цепи, которая либо лежит на изменяющемся во времени фоне, либо движется на непременном участке таким образом, что фактически число магнитных витков проникает в контуры трансформаций.


Для своих многочисленных экспериментов Фарадей воспользовался двумя катушками, магнитом, переключателем постоянного тока и гальванометром. Электронный поток мог зависеть и намагничивать кусок железа.

В результате экспериментов Фарадея были заложены основные особенности возникновения электрической индукции, и ток появляется:

  • в одной из катушек во время замыкания или размыкания электронной цепи внутри другой части;
  • когда энергия протекает в одном из элементов с поддержкой реостата;
  • при перемещении катушек относительно друг друга;
  • когда неизменный магнит движется относительно.

В замкнутом проводящем контуре ток появляется, когда число линий магнитной индукции изменяется, создавая плоскость, ограниченную цепью. И чем раньше перевести количество рядов МИ, тем больше генерируется индукционный ток в рамке. Это является основной причиной конфигурации численности последовательностей индукции.

Явление позволяет содержать и изменять число линий МИ, делая плоскость площадки, ограниченной неподвижной проводящей цепью, из-за конфигурации тока в катушке, расположенной рядом. Происходит максимальное изменение количества последовательностей МИ из-за смещения схемы на неоднородном фоне, плотность линий которого может изменяться на месте.

Электромагниты

Следующей разновидностью устройства, предназначенного для создания МП, является электромагнит. При протекании через его обмотку электрического тока сердечник становится магнитом. Следственно, электромагнит состоит из следующих частей:

  • сердечник (магнитопровод);
  • обмотка.

Это своеобразная катушка индуктивности, называемая соленоидом.

Сердечник может быть выполнен из ферримагнитного материала или листового набора электротехнической стали.

Обмотка намотана проводом из алюминия или меди, покрытого изоляцией.

Электромагниты (ЭМ) можно классифицировать по следующим параметрам:

  • магниты постоянного тока – нейтральные;
  • магниты постоянного тока – поляризованные;
  • устройства переменного тока.

Нейтральные ЭМ – создание магнитного потока происходит так, что величина притяжения увеличивается с повышением силы тока и не подчиняется направлению движения электронов.

Поляризованные ЭМ в своём составе содержат:

  • рабочую обмотку – для создания рабочего Φ;
  • постоянный магнит – для наведения поляризующего Φ.

Обмотки ЭМ переменного тока питаются синусоидальным током, поэтому их Φ меняется по периодическому закону.

1.1. Магнитные величины | Электронная библиотека
Внешний вид простейшего ЭМ

Оцените статью
Анемометры
Добавить комментарий