Альтернативное отопление — биогаз

Альтернативное отопление — биогаз Анемометр

Биогазовая установка своими руками

Теплотворность биогаза, произведённого в биогазовых установках, примерно равна 5 500 ккал/м3, что немногим ниже калорийности природного газа (7 000 ккал/м3). Для отопления 50 м2 жилого дома и использования газовой плиты с четырьмя конфорками в течение часа потребуется в среднем 4 м3 биогаза.

Предлагаемые на рынке России промышленные установки по производству биогаза стоят от 200 000 руб. — при их внешне высокой стоимости стоит отметить, что эти установки точно рассчитаны по объёму загружаемого органического субстрата и на них распространяются гарантии производителей.

Если же вы хотите создать биогазовую установку самостоятельно, то дальнейшая информация — для вас!

Форма биореактора

Наилучшая форма для него будет овальной (яйцеобразной), однако соорудить такой реактор крайне сложно. Более лёгким для конструирования будет биореактор цилиндрической формы, верхняя и нижняя части которого выполнены в виде конуса или полукруга.

Реакторы квадратной или прямоугольной формы из кирпича или бетона будут малоэффективны, т. к. по углам в них со временем образуются трещины, вызванные давлением субстрата, в них также будут накапливаться затвердевшие фрагменты органики, мешающие процессу ферментации.

Стальные ёмкости биореакторов герметичны, устойчивы к высокому давлению, их не так сложно построить. Их минус — в слабой устойчивости к ржавчине, требуется нанесение на внутренние стенки защитного покрытия, к примеру, смолы. Снаружи поверхности стального биореактора необходимо тщательно зачистить и окрасить в два слоя.

Ёмкости биореакторов из бетона, кирпича или камня необходимо самым тщательным образом покрыть изнутри слоем смолы, способным обеспечить их эффективную водо- и газонепроницаемость, выдерживать температуру порядка 60 °С, агрессию сероводорода и органических кислот.

Помимо смолы для защиты внутренних поверхностей реактора можно использовать парафин, разбавленный 4% моторного масла (нового) или керосина и разогретый до 120–150 °С — поверхности биореактора перед нанесением на них парафинового слоя необходимо прогреть горелкой.

При создании биореактора можно воспользоваться не подверженными ржавчине ёмкостями из пластика, но только из жёсткого с достаточно прочными стенками. Мягкий пластик можно использовать только в тёплый сезон, т. к. с наступлением холодов на нём будет сложно закрепить утеплитель, к тому же стенки его недостаточно прочны. Пластиковые биореакторы можно применять только для психрофильной ферментации органики.

Место размещения биореактора

Его размещение планируют в зависимости от свободного места на участке, удалённости от жилых построек, места размещения отходов и животных и т. д. Планирование наземного, полностью или частично погруженного в землю биореактора зависит от уровня грунтовых вод, удобства ввода и вывода органического субстрата в ёмкость реактора.

Оптимальным будет размещение корпуса реактора ниже уровня земли — достигается экономия на оборудовании для введения органического субстрата, существенно повышается теплоизоляция, для обеспечения которой можно применить недорогие материалы (солому, глину).

Оснащение биореактора

Ёмкость реактора требуется оборудовать люком, с помощью которого можно выполнять ремонтные и профилактические работы. Между корпусом биореактора и крышкой люка необходимо проложить резиновую прокладку или слой герметика. Необязательным, но крайне удобным будет оснащение биореактора датчиком температуры, внутреннего давления и уровня органического субстрата.

Теплоизоляция биореактора

Её отсутствие не позволит эксплуатировать биогазовую установку круглый год, лишь в тёплое время. Для утепления заглубленного или полузаглубленного биореактора используется глина, солома, сухой навоз и шлак. Укладка утеплителя выполняется слоями — при установке заглубленного реактора котлован перекрывается слоем ПВХ-плёнки, препятствующей прямому контакту теплоизоляционного материала с почвой.

До установки биореактора на дно котлована насыпается солома, поверх неё слой глины, затем выставляется биореактор. После этого все свободные участки между ёмкостью реактора и проложенным ПВХ-плёнкой котлованом засыпаются соломой практически до торца ёмкости, сверху засыпается 300 мм слой глины вперемешку со шлаком.

Загрузка и выгрузка органического субстрата

Диаметр труб загрузки в биореактор и выгрузки из него должен быть не меньше 300 мм, иначе они забьются. Каждую из них в целях сохранениях анаэробных условий внутри реактора следует оснастить винтовыми или полуоборотными задвижками. Объём бункера для подачи органики, в зависимости от типа биогазовой установки, должен быть равным суточному объёму вводимого сырья.

Бункер подачи следует расположить на солнечной стороне биореактора, т. к. это будет способствовать повышению температуры во вводимом органическом субстрате, ускоряя процессы ферментации. Если же биогазовая установка связана непосредственно с фермой, то бункер следует разместить под её строением так, чтобы органический субстрат поступал в него под действием сил гравитации.

Трубопроводы загрузки и выгрузки органического субстрата следует расположить по противоположным сторонам биореактора — в этом случае вводимое сырьё будет распределено равномерно, а ферментированная органика будет легко извлекаться под воздействием гравитационных сил и массы свежего субстрата.

Отверстия и монтаж трубопровода под загрузку и выгрузку органики следует выполнить до монтажа биореактора на место установки и до размещения на нём слоёв теплоизоляции. Герметичность внутреннего объёма биореактора достигается тем, что вводы труб расположены под острым углом, при этом уровень жидкости внутри реактора выше точек ввода труб — гидравлический затвор блокирует доступ воздуха.

Про анемометры:  Газовые котлы в Барановичах. Купить газовый котел в Барановичах - каталог с фото, цены

Ввод нового и вывод прошедшего ферментацию органического материала проще всего проводить по принципу перелива, т. е. подъём уровня органики внутри реактора при вводе новой порции выведет через трубу выгрузки субстрат в объёме, равном объёму вводимого материала.

Если необходима быстрая загрузка органики, а эффективность ввода материала самотёком низка из-за недостатков рельефа, потребуется установка насосов. Способов два: сухой, при котором насос устанавливается внутрь загрузочной трубы и органика, поступая к насосу по вертикальной трубе, прокачивается им; влажный, при котором насос установлен в бункер загрузки, его привод осуществляется мотором, также установленным в бункер (в непроницаемом корпусе) либо через вал, мотор при этом установлен вне бункера.

Как собирать биогаз

Эта система включает в себя газовый трубопровод, распределяющий газ по потребителям, запорную арматуру, ёмкости для сбора конденсата, предохранительный клапан, ресивер, компрессор, газовый фильтр, газгольдер и приборы потребления газа. Монтаж системы выполняется лишь после полной установки биореактора в месте размещения.

Вывод для сбора биогаза выполняется в наиболее высшей точке реактора, к нему последовательно подключаются: герметичная ёмкость для сбора конденсата; предохранительный клапан и водяной затвор — ёмкость с водой, ввод газопровода в которую выполнен ниже уровня воды, вывод — выше (трубу газопровода перед водяным затвором следует изогнуть, чтобы вода не проникала в реактор), который не позволит двигаться газу в обратном направлении.

Образованный в ходе ферментации органического субстрата биогаз содержит в себе значительное количество паров воды, образующих конденсат по стенкам газопровода и в некоторых случаях блокирующих поступление газа к потребителям.

Поскольку сложно выстроить газопровод таким образом, чтобы по всей его длине существовал уклон по направлению к реактору, куда бы стекал конденсат, то в каждом его низком участке требуется установить водяные затворы в виде ёмкостей с водой.

Газопровод должен быть построен трубами одного диаметра и одного типа, все клапаны и элементы системы также должны иметь один и тот же диаметр. Стальные трубы диаметром от 12 до 18 мм применимы для биогазовых установок малой и средней мощности, расход биогаза, поступающего по трубам этих диаметров, не должен быть выше 1 м3/ч (при расходе 0,5 м3/ч не допускается использование труб диаметром 12 мм на длину свыше 60 м).

Это же условие действует при использовании в газопроводе пластиковых труб, кроме того, эти трубы необходимо закладывать ниже уровня земли на 250 мм, т. к. их пластик чувствителен к солнечному свету и теряет под воздействием солнечной радиации прочность.

При прокладке газопровода требуется самым тщательным образом убедиться в отсутствии протечек и газонепроницаемости мест соединений — проверка выполняется мыльным раствором.

Газовый фильтр

В биогазе содержится небольшое количество сероводорода, соединение которого с водой создаёт кислоту, активно коррозирующую металл — по этой причине нефильтрованный биогаз нельзя использовать для двигателей внутреннего сгорания. Между тем удалить сероводород из газа можно простым фильтром — 300 мм отрезком газовой трубы, наполненным сухой смесью металлической и деревянной стружки.

Через каждый 2 000 м3 биогаза, пройдённого через такой фильтр, необходимо извлечь его содержимое и выдержать около часа на отрытом воздухе — стружка будет полностью очищена от серы и её можно использовать повторно.

Запорная арматура и клапаны

В непосредственной близости от биореактора устанавливается основной газовый клапан, в магистраль газопровода следует врезать клапан, сбрасывающий биогаз при давлении более 0,5 кг/см2. Лучшими кранами для газовой системы будут шаровые клапаны с хромированным покрытием, использовать краны, предназначенные для водопроводных систем, в газовой нельзя. На каждом из потребителей газа установка шарового крана обязательна.

Механическое перемешивание

Для биореакторов небольшого объёма мешалки с ручным приводом подойдут лучше всего — они просты по своей конструкции и не требуют каких-то особых условий в процессе эксплуатации. Мешалка с механическим приводом устроена так — горизонтальный или вертикальный вал, размещённый внутри реактора по его центральной оси, на нём закреплены лопасти, при вращении перемещающие массы органики, богатую бактериями, от участка выгрузки ферментированного субстрата к месту загрузки свежей порции.

Будьте внимательны — мешалка должна вращаться только в направлении промешивания от участка выгрузки к участку загрузки, перемещение метанообразующих бактерий от созревшего субстрата к вновь поступившему ускорит созревание органики и выработку биогаза с высоким содержанием метана.

Как часто следует промешивать органический субстрат в биореакторе? Необходимо определить периодичность путём наблюдения, ориентируясь на выход биогаза — излишне частое промешивание нарушит ферментацию, т. к. помешает деятельности бактерий, кроме того, вызовет вывод непереработанной органики. В среднем промежуток времени между перемешиваниями должен составлять от 4-х до 6-ти часов.

Про анемометры:  Система охлаждения дизеля Д-245.7Е2, Д-245.9Е2, Д-245.30Е2

Обогрев органического субстрата в биореакторе

Без обогрева реактор может вырабатывать биогаз только в психрофильном режиме, в результате количество вырабатываемого газа будет меньше, а качество удобрений хуже, чем при более высокотемпературных мезофильном и термофильном рабочих режимах.

Нагрев субстрата может производиться двумя способами: подогрев паром; соединение органики с горячей водой или подогрев с помощью теплообменника, в котором циркулирует горячая вода (без смешивания с органическим материалом).

Серьёзный недостаток подогрева паром (прямого подогрева) заключается в потребности включения в биогазовую установку системы парогенерации, включающую в себя систему очистки воды от присутствующей в ней соли.

Парогенерационная установка выгодна только для действительно больших установок, перерабатывающих большие объёмы субстрата, к примеру, сточные воды. Кроме того, нагрев паром не позволит точно контролировать температуру нагрева органики, в результате возможен её перегрев.

Теплообменики, размещённые внутри или снаружи биореакторной установки, производят непрямой подогрев органики внутри реактора. Сразу стоит отбросить вариант с обогревом через пол (фундамент), т. к. скопление твёрдого осадка на дне биореактора ему препятствует.

Теплообменник большей площади лучше и однороднее обогреет органику, улучшая тем самым ферментационный процесс. Внешний обогрев, при его меньшей эффективности из-за теплопотери стенок, привлекателен тем, что ничто внутри биореактора не помешает движению субстрата.

Оптимальная температура в теплообменнике должна быть порядка 60 °С, сами теплообменники выполняются в виде радиаторных секций, змеевиков, параллельно сваренных труб. Поддержание температуры теплоносителя на уровне 60 °С снизит угрозу налипания на стенки теплообменника частиц взвесей, скопление которых существенно снизит теплопередачу.

Отопительный трубопровод биореактора выполняется и оснащается аналогично обычной системе отопления, т. е. должны соблюдаться условия возврата охлаждённой воды в наиболее низкую точку системы, требуются вентили спуска воздуха в её верхних точках.

Газогенераторные установки

Аппараты и устройства для получения пиролизного газа называют газогенераторными установками.

Они представляют собой герметичную печь с регулируемой подачей воздуха и возможностью перекрытия дымохода.

Чтобы снизить требования к дымоходу, воздух в них подают принудительно, используя для этого центробежные насосы.

Причем либо используют насос с изменяемой производительностью (это делают с помощью частотного преобразователя), либо устанавливают несколько насосов, чтобы обеспечить максимальную подачу воздуха в режиме розжига.

Когда содержимое установки разгорается, подачу воздуха сокращают, оставляя лишь минимум, необходимый для поддержки оптимальной температуры.

В результате из установки начинает выходить густой черный дым, который содержит несгоревший углерод (сажу) и пиролизные газы.

Сразу использовать этот газ нельзя из-за большого количества сажи, поэтому его очищают с помощью различных устройств, наиболее популярные из которых циклоны.

Собранную циклоном сажу можно или загружать вместе с отходами древесины в газогенераторную установку или продавать производителям шин. Ведь сажа – один из основных компонентов, доля которого доходит до 30 %.

Кроме того, из пиролизного газа удаляют водяной пар, что повышает температуру его сгорания. Для этого газ проводят через охладитель, где водяной пар конденсируется в виде капелек воды.

По мере накопления воды ее сливают через специальный кран, расположенный внизу охладителя.

После этого газ подают в фильтр тонкой очистки, в качестве которого используют электростатические устройства, картонные картриджи и емкость с водой.

Электростатические устройства работают за счет различной электрической емкости газа и любых твердых частиц.

Под воздействием статического электричества твердые частицы прилипают к положительному или отрицательному электроду (зависит от электрического потенциала частицы), а газ проходит без препятствий.

Электроды необходимо периодически очищать от налипшей на них сажи.

Картонные фильтры работают по принципу сетки – они пропускают через себя газы и твердые частицы, которые меньше размера пор, пронизывающих весь картридж, поэтому его приходится регулярно менять, что обходится недешево.

Вода в емкости не задерживает газ, но улавливает мельчайшие твердые частицы сажи. По мере загрязнения воду сливают и заливают новую. Слитую воду выпаривают, чтобы получить сажу, которую затем либо отправляют в газогенераторную установку, либо продают производителям покрышек.

История

Интерес к горючему газу, образующемуся на болотах в тёплый сезон года, возник ещё у наших далеких предков — передовые культуры Индии, Китая, Персии и Ассирии экспериментировали с биогазом свыше 3 тысячелетий назад.

В те же древние времена в родоплеменной Европе швабы-алеманны заметили, что выделяемый на болотах газ отлично горит — они использовали его в отоплении своих хижин, подводя к ним газ по кожаным трубам и сжигая в очагах. Швабы считали биогаз «дыханием драконов», которые, по их мнению, жили в болотах.

Спустя века и тысячелетия, биогаз пережил второе своё открытие — в 17-18 веках сразу два европейских учёных обратили на него внимание.

Известный химик своего времени Ян Баптиста ван Гельмонт установил, что при разложении любой биомассы образуется горючий газ, а прославленный физик и химик Алессандро Вольта установил прямую зависимость между количеством биомассы, в которой идут процессы разложения, и количеством выделяемого биогаза.

Про анемометры:  патрубок под датчик включения вентилятора газель

В 1804 году английский химик Джон Дальтон открыл формулу метана, а четырьмя годами позже англичанин Гемфри Дэви обнаружил его в составе болотного газа.

Слева: Ян Баптиста ван Гельмонт. Справа: Алессандро ВольтаАльтернативное отопление — биогаз

Интерес к практическому применению биогаза возник с развитием газового освещения улиц — в конце 19-го века улицы одного района английского города Эксетера освещались газом, полученным из коллектора со сточными водами.

Формула метанаАльтернативное отопление — биогаз

 В 20-м веке потребность в энергоносителях, вызванная Второй мировой войной, вынудила европейцев искать альтернативные источники энергии. Биогазовые установки, в которых газ вырабатывался из навоза, распространились в Германии и Франции, частично в Восточной Европе.

Однако после победы стран антигитлеровской коалиции о биогазе забыли — электроэнергия, природный газ и нефтепродукты полностью покрыли потребности производств и населения.

В СССР технология получения биогаза рассматривалась в основном с академической точки зрения и не считалась сколько-нибудь востребованной.

Сегодня отношение к альтернативным источникам энергии резко изменилось — они стали интересны, поскольку стоимость привычных энергоносителей возрастает год от года.

По своей сути биогаз — реальный способ уйти от тарифов и расходов на классические энергоносители, получить свой собственный источник топлива, причём на любые цели и в достаточном количестве.

Наибольшее количество биогазовых установок создано и эксплуатируется в Китае: 40 миллионов установок средней и малой мощности, объём производимого метана — около 27 млрд м3 за год.

Условия получения и энергетическая ценность биогаза

Для того что бы собрать малогабаритную установку необходимо знать из какого сырья и по какой технологии можно получить биогаз.

Газ получается в процессе разложения (ферментации) органических веществ без доступа воздуха (анаэробный процесс): помет домашних животных, солома, ботва, опавшие листья и др. органические отходы, образующиеся в индивидуальном хозяйстве. Отсюда следует, что биогаз можно получать из любых хозяйственно бытовых отходов которые могут разлагаться и бродить в жидком или влажном состоянии.

Процесс разложения (ферментации) проходит в две фазы:

  1. Разложение биомассы (гидротация);
  2. Газификация ( выделение биогаза).

Эти процессы происходят в ферментаторе (анаэробной биогазовой установке).

Ил полученный после разложения в биогазовых установках, повышает плодородие почв и урожайность повышается 10-50%. Таким образом, получается ценнейшее удобрение.

Биогаз состоит из смеси газов:

  • метан-55-75%;
  • углекислый газ-23-33%;
  • сероводород-7%.

Метановое брожение — это сложный процесс брожения органических веществ — бактериальный процесс. Главное условие протекания этого процесса, наличие тепла.

В процессе разложения биомассы образуется тепло, которого достаточно для протекания процесса, что бы сохранить это тепло ферментатор необходимо теплоизолировать. При понижении температуры в ферментаторе снижается интенсивность газовыделения, так как микробиологические процессы в органической массе замедляются.

Поэтому надежная теплоизоляция биогазовой установки (биоферментатора) одно из наиболее важных условий ее нормальной работы. При загрузке навоза в ферменттатор необходимо смешивать с горячей водой с температурой 35-40 оС. Это поможет обеспечить необходимый режим его работы.

При догрузке потери тепла нужно сводить к минимумуИнженерная помощь по биогазу

Для лучшего обогрева ферментатора можно использовать «тепличный эффекта». Для этого над куполом устанавливают деревянный или легкий металлический каркас и покрывают полиэтиленовой пленкой. Наилучшие результаты достигаются при температуре сырья, которое сбраживается 30-32°С и влажности 90-95 %.

Установки несложно соорудить в индивидуальных хозяйствах в виде специальных ферментаторов для сбраживания биомассы. Основным органическим сырьем для загрузки в ферментатор является навоз.

При первой загрузке навоза КРС процесс ферментации должен быть не менее 20 сут, свиного не менее 30 сут. Газа получить можно больше при загрузке смеси из различных компонентов по сравнению с загрузкой, например навоза КРС.

Например, смесь навоза КРС и птичьего помета при переработке дает до 70% метана в биогазе.

После того как процесс сбраживания стабилизировался, нужно загружать сырье каждый день не более 10% от количества перерабатываемой в ферментаторе массы.

Рекомендуемая влажность сырья летом 92-95 %, зимой — 88-90 %.

При ферментации помимо производства газа происходит обеззараживание органических веществ. Органические отходы избавляются от патогенной микрофлоры, дезодорация выделяемых неприятных запахов.

Образующийся ил нужно периодически выгружать из ферментатора, его используют как удобрение.

При первом наполнении биогазовой установки отбираемый газ не горит, это происходит, потому что первый полученный газ содержит большое количество углекислого газа, около 60%. Поэтому его необходимо выпустить в атмосферу, и через 1-3 дня работа биогазовой установки стабилизируется.

Таблица №1- количество газа получаемого получаемого за сутки при ферментации экскриментов одного животного

Животное

Живая масса животного, кг

Получаемый оббьем газа, м3/сут

КРС

500-600

1,5

Свиньи

80-100

0,2

Курица или кролик

1,5-5

0,015

По количеству выделяемой энергии 1 м3 биогаза эквивалентен:

  • 1,5 кг каменного угля;
  • 0,6 кг керосина;
  • 2 кВт/ч электроэнергии;
  • 3,5 кг дров;
  • 12 кг навозных брикетов.
Оцените статью
Анемометры
Добавить комментарий

Adblock
detector