Чем отличаются аналоговые и цифровые данные

Чем отличаются аналоговые и цифровые данные Анемометр

Основное различие между Аналоговым сигналом и Цифровым сигналом состоит в том, что Аналоговый сигнал является непрерывным сигналом во времени, в то время как Цифровой сигнал является дискретным (прерывистым) сигналом во времени.

Сигнал передает информацию от одного устройства к другому. В электротехнике сигнал — это фундаментальная величина, представляющая информацию. В контексте математики сигнал это функция, которая передает информацию. Аналоговый сигнал и Цифровой сигнал — это два вида сигналов.

  • Обзор и основные отличия
  • Что такое Аналоговый сигнал
  • Что такое Цифровой сигнал
  • Сходство между Аналоговым сигналом и Цифровым сигналом
  • В чем разница между Аналоговым сигналом и Цифровым сигналом

Что такое Аналоговый сигнал?

Аналоговый сигнал — это непрерывный сигнал, и он меняется со временем. Синусоидальная волна представляет этот сигнал, где амплитуда , период и частота являются некоторыми факторами, описывающими его поведение. Амплитуда — это максимальная высота сигнала. Частота (f) — это количество циклов в единицу времени. Период (T) — это время завершения одного цикла (T = 1 / f).

Пример графика Аналогового сигнала

Аналоговый сигнал сложно анализировать, поскольку он содержит огромное количество значений. Он может содержать как отрицательные так и положительные значения.

Кроме того, потребляемая мощность аналоговых приборов, как правило высокая. Обычно, аналоговые сигналы имеют свойство снижать качество передачи из-за искажения и помех. Типичным примером аналогового сигнала в нашей повседневной жизни является звук.

Что такое Цифровой сигнал?

Цифровой сигнал — это прерывистый (дискретный) сигнал во времени. На графике, он имеет форму прямоугольной волны и представляет информацию в двоичной форме, которая содержит единицы (1) и нули (0). На графике цифрового сигнала единицами являются вершины графика, тогда как нули это впадины графика. сигналы не имеют отрицательных значений, как в аналоговых сигналах.

Чем отличаются аналоговые и цифровые данные

В наше время всё больше используется цифровой сигнал и зачастую использование аналоговых сигналов в связи вместо цифровых вызывает сложности. Например, трудно осуществлять связь на большие расстояния из-за искажения сигнала и помех. Цифровые сигналы являются отличным решением этой проблемы. Они менее подвержены искажениям. Поэтому аналоговые сигналы преобразуются в цифровые сигналы для четкой и точной связи. Цифровые телефоны, компьютеры, современные телевизоры и другие электронные устройства используют цифровые сигналы.

Какова взаимосвязь между Аналоговым сигналом и Цифровым сигналом?

Разница между Аналоговым сигналом и Цифровым сигналом заключается в том, что Аналоговый сигнал является непрерывным сигналом во времени, а Цифровой сигнал является прерывистым сигналом во времени. Цифровые сигналы более надежны и передаются с более высокой скоростью, чем Аналоговые сигналы.

15 Март 2021

18 Март 2023

Чем отличаются аналоговые и цифровые данные

Чем отличаются аналоговые и цифровые данные

Аналоговый и цифровой сигналы используются для передачи информации, обычно с помощью электрических сигналов. В обеих этих технологиях информация, такая как любой звук или видео, преобразуется в электрические сигналы. В разница между аналоговым и цифровым технологиями заключается в том, что в аналоговой технике информация преобразуется в электрические импульсы различной амплитуды. В цифровых технологиях информация переводится в двоичный формат (ноль или единицу), где каждый бит представляет две различные амплитуды.

Сравнительная таблица

An Аналоговый сигнал представляет собой любой непрерывный сигнал, для которого изменяющаяся во времени характеристика (переменная) сигнала представляет собой представление некоторой другой изменяющейся во времени величины, то есть аналогично другому изменяющемуся во времени сигналу. Он отличается от цифрового сигнала небольшими значительными колебаниями сигнала.

А цифровой сигнал использует дискретные (прерывистые) значения. Напротив, нецифровые (или аналоговые) системы используют непрерывный диапазон значений для представления информации. Хотя цифровые представления являются дискретными, представляемая информация может быть дискретной, такой как числа или буквы, или непрерывной, такой как звуки, изображения и другие измерения непрерывных систем.

Свойства цифровых и аналоговых сигналов

Цифровая информация имеет определенные свойства, которые отличают ее от аналоговых методов связи. Это включает

  • Синхронизация – цифровая связь использует определенные последовательности синхронизации для определения синхронизации.
  • Язык – цифровая связь требует языка, которым должны владеть как отправитель, так и получателя, и должен определять значение последовательностей символов.
  • Ошибки – нарушения в аналоговой связи вызывают ошибки в реальной предполагаемой связи, но нарушения в цифровой связи не вызывают ошибок, обеспечивая безошибочную связь. Ошибки должны иметь возможность заменять, вставлять или удалять символы для выражения.
  • Копирование – копии для аналоговой связи по качеству уступают по качеству оригиналам, в то время как из-за безошибочной цифровой связи копии можно делать бесконечно.
  • Гранулярность – для непрерывно изменяемого аналогового значения, которое должно быть представлено в цифровой форме, возникает ошибка квантования, которая представляет собой разницу между фактическим аналоговым значением и цифровым представлением, и это свойство цифровой связи известно как гранулярность.

Различия в использовании оборудования

Многие устройства поставляются со встроенными средствами перевода из аналогового в цифровой. Микрофоны и динамик – прекрасные примеры аналоговых устройств. Аналоговая технология дешевле, но есть ограничение на размер данных, которые могут быть переданы в данный момент.

Цифровая технология произвела революцию в способах работы большей части оборудования. Данные преобразуются в двоичный код, а затем снова собираются в исходную форму в точке приема. Поскольку ими можно легко манипулировать, он предлагает более широкий спектр возможностей. Цифровое оборудование дороже аналогового.

Сравнение аналогового и цифрового качества

Цифровые устройства преобразуют и повторно собирают данные и при этом более склонны к потере качества по сравнению с аналоговыми устройствами. Развитие компьютеров позволило использовать методы обнаружения и исправления ошибок для искусственного удаления искажений из цифровых сигналов и повышения качества.

Различия в приложениях

Цифровые технологии оказались наиболее эффективными в индустрии сотовых телефонов. Аналоговые телефоны стали избыточными, хотя четкость и качество звука были хорошими.

Аналоговая технология состоит из естественных сигналов, таких как человеческая речь. С помощью цифровых технологий человеческая речь может быть сохранена и сохранена в компьютере. Таким образом, цифровые технологии открывают горизонты для бесконечных возможностей использования.

Аналоговая и цифровая музыка

В этом видео сравнивается аналоговая (виниловая) и цифровая версии песни Pink Floyd «Dark Side of the Moon».

10 Февраль 2021

19 Март 2023

Ключевое отличие: Аналог – это линейная передача сигнала. В цифровой форме передачи сигнал преобразуется в двоичный код (0 и 1) перед передачей.

Чем отличаются аналоговые и цифровые данные

Аналоговый и цифровой являются двумя видами процессов, используемых для передачи электрических сигналов, обычно аудио или видео. Аналог – это линейная передача сигнала, при которой амплитуда изменяется. В цифровом виде данные перед передачей преобразуются в двоичный код (0 и 1). Трансляция данных имеет две различные амплитуды, представляющие каждый бит.

Аналоговый используется на протяжении десятилетий и дешевле по сравнению с цифровым. Видеомагнитофоны, магнитофоны и проигрыватели являются аналоговыми устройствами всех типов. Они записывают данные в линейном формате, то есть из одной точки в другую. Устройства считывают носитель путем сканирования физических данных с носителя. Однако недостатком аналоговых сигналов является то, что они имеют ограничение по размеру данных, которые могут быть переданы в любой данный момент времени. Кроме того, они подвержены искажению сигнала из-за нежелательного шума.

Все естественные сигналы, такие как человеческая речь, считаются аналоговыми сигналами. Поэтому все аналоговые сигналы должны быть преобразованы в цифровые для работы на компьютере. Компьютеры являются цифровыми устройствами и, следовательно, выполняют все вычисления, используя двоичную систему 1 и 0. Все цифровые технологии используют двоичную систему.

Цифровые носители носят нелинейный характер, что означает, что их можно редактировать или воспроизводить из любой точки. Это одно из главных преимуществ цифровых технологий перед аналоговыми. Кроме того, цифровой дольше, чем аналоговый, так как он не изнашивается со временем.

Чем отличаются аналоговые и цифровые данные

Кроме того, цифровые носители, как правило, имеют лучшее качество по сравнению с аналоговыми, поскольку они могут сжимать больше данных в меньшем пространстве. CD имеют частоту дискретизации 44 000 сэмплов в секунду. Это означает, что в секунду хранится 44 000 номеров музыки. Термин «частота дискретизации» или «скорость передачи в битах» относится к тому, сколько раз в секунду дискретизируется цифровой сигнал. Однако недостатком является то, что он может потерять качество из-за перевода данных. Тем не менее, преимущества перевешивают недостатки. Для более подробного сравнения смотрите ниже:

Ключевое отличие: Аналоговый телефон интерпретирует звук как электронный импульс. Следовательно, звук преобразуется в электронные сигналы. Электронный импульс аналогичен интерпретируемому звуку. Затем сигнал передается по медным проводам в форме волн. С другой стороны, цифровой телефон сначала преобразует данные в двоичный код, то есть в 1 и 0. Это тот же способ, которым компьютеры хранят информацию.

Чем отличаются аналоговые и цифровые данные

Телефон или телефон – это телекоммуникационное устройство. Он преобразует звук в электронные сигналы и отправляет данные на большие расстояния. Затем данные преобразуются обратно в звук. Это позволяет двум людям на большие расстояния общаться друг с другом. Данные передаются через кабели или другие средства передачи.

Существует два основных способа передачи данных. Способ передачи данных говорит нам, является ли телефон аналоговым или цифровым телефоном.

Аналоговый телефон интерпретирует звук как электронный импульс. Следовательно, звук преобразуется в электронные сигналы. Электронный импульс аналогичен интерпретируемому звуку. Термин, аналог происходит от этого. Затем сигнал передается по медным проводам в форме волн. Другой способ сказать это с точки зрения небольших колебаний сигнала, которые имеют смысл.

С другой стороны, цифровой телефон сначала преобразует данные в двоичный код, то есть в 1 и 0. Это тот же способ, которым компьютеры хранят информацию. Данные в форме 1 и 0 затем передаются, где они реструктурируются в представление звука на другом конце. VOIP (передача голоса по интернет-протоколу) – это тип цифрового сигнала.

Аналоговый телефон ранее был наиболее часто используемой технологией для телефонов. Однако в последние годы ситуация постоянно меняется. Это в основном связано с различными преимуществами цифрового по сравнению с аналоговым.

Во-первых, цифровые сигналы занимают меньше места, чем аналоговые сигналы. Следовательно, больше информации может быть отправлено в той же емкости пространства. Кроме того, благодаря этому сигнал намного четче и имеет больший диапазон, чем аналоговые сигналы. Кроме того, цифровые сигналы легче шифровать, чтобы другие не могли подслушать разговоры.

Кроме того, цифровой сигнал использует дискретные, то есть дискретные значения. Следовательно, представленная информация может быть либо дискретной, такой как числа или буквы, либо непрерывной, такой как звуки, изображения и другие измерения непрерывных систем. Вот почему цифровой сигнал предпочтительнее для видеоконференций. Цифровые технологии также используются в индустрии сотовых телефонов.

Чем отличаются аналоговые и цифровые данные

Чтобы отличить аналоговый от цифрового, особенно для непрофессионала, стоит проверить заднюю часть телефона.Аналоговые телефоны должны иметь фразу «соответствует части 68, Правила FCC» на задней панели телефона. У них также будет номер эквивалентности звонка на спине.

Кроме того, цифровые телефоны, как правило, имеют гораздо больше доступных функций и, следовательно, обычно используются в корпоративном офисе или бизнес-среде. Это место, где все телефоны подключены к внутреннему коммутатору, причем каждый телефон имеет добавочный номер. Чтобы подключиться к номеру вне коммутатора, сначала необходимо ввести номер «9» или специальный код.

Про анемометры:  Купить Провод датчика скорости для автомобиля газель ЕВРО-3 3302-3724168-01 Газ | цена в интернет-магазине Автопитер

Если вы посмотрите на цифровые телефоны в этих офисах, они, как правило, имеют где-то между 12-40 кнопками, с красным мигающим индикатором. Аналоговые телефоны, с другой стороны, обычно имеют стандартную цифровую клавиатуру и иногда могут иметь несколько других клавиш.

Цифровые телефоны также, как правило, имеют кнопки программирования, громкую связь и идентификатор вызывающего абонента. Однако в наши дни даже аналоговый телефон может иметь громкую связь и идентификацию звонящего. Это беспроводные телефоны, в которых используются как цифровые, так и аналоговые технологии. Беспроводная трубка использует цифровую технологию для подключения к базе, которая, в свою очередь, использует аналоговую технологию для передачи звука.

Следовательно, можно с уверенностью предположить, что телефон, который большинство из нас использует дома, является аналоговым телефоном.

Отличия аналогового и цифрового сигналов

Простому потребителю совсем необязательно знать, какова природа сигналов. Но порой необходимо знать разницу между аналоговым и цифровым форматами, чтобы с открытыми глазами подходить к выбору того или иного варианта, ведь сегодня на слуху, что время аналоговых технологий прошло, на смену им приходят цифровые. Следует понять разницу, чтобы знать от чего уходим и чего ожидать.

Сигнал аналоговый –  это сигнал непрерывный, имеющий бесконечное число близких по значению данных в пределах максмальных, все параметры которого описываются временной зависимой переменной.

Сигнал цифровой – это раздельный сигнал,  описываемый раздельной функцией времени, соответственно в каждый момент времени, величина амплитуды сигнала имеет строго определенное значение.

Практика показала, что при аналоговых сигналах возможны помехи, устраняемые при цифровом сигнале. Кроме того, цифровой может восстановить изначальные данные. При непрерывном аналоговом сигнале проходит много информации, зачастую излишней. Вместо одного аналогового можно передать несколько цифровых.

На сегодняшний день потребителя интересует вопрос телевидения, так как именно в этом контексте чаще и произносится фраза “переход на цифровой сигнал”. В этом случае аналоговый можно считать пережитком прошлого, но ведь именно его принимает существующая техника, а для приема цифрового необходима специальная. Конечно, в связи с появлением и расширением использования “цифры”, аналоговые телевизоры теряют былую популярность.

Преимущества и недостатки видов сигналов

Немаловажную роль в оценке параметров того или иного сигнала имеет безопасность. Различного характера влияния, посторонние вторжения делают аналоговый сигнал беззащитным. При цифровом подобное исключается, так как он кодируется из радиоимпульсов. Для больших расстояний передача цифровых сигналов усложнена, приходится использовать схемы модуляции-демодуляции.

Чем отличаются аналоговые и цифровые данные

Поводя итог, можно сказать, что отличия аналогового и цифрового сигнала состоят:

  • В непрерывности аналогового и дискретности цифрового;
  • В большей вероятности помех при передаче аналогового;
  • В избыточности аналогового сигнала;
  • В способности цифрового фильтровать помехи и восстанавливать исходую информацию;
  • В передаче цифрового сигнала в закодированной форме. Один аналоговый сигнал замещается несколькими цифровыми.

Смотрите раздел “аренда проекторов”.

Чем отличаются аналоговые и цифровые данные

Когда имеешь дело с теле- и радиовещанием, а также современными видами связи, очень часто приходится сталкиваться с такими терминами, как «аналоговый сигнал» и «цифровой сигнал». Для специалистов в этих словах нет никакой тайны, но для людей несведущих разница между «цифрой» и «аналогом» может быть совсем неведомой. А между тем разница есть и весьма существенная.

Когда мы говорим о сигнале, то обычно подразумеваем электромагнитные колебания, наводящие ЭДС и вызывающие колебания тока в антенне приемника. По этим колебаниям приемное устройство – телевизор, радиоприемник, рация или сотовый телефон – составляет «представление» о том, какое изображение вывести на экран (при наличии видеосигнала) и какими звуками этот видеосигнал сопроводить.

В любом случае сигнал радиостанции или вышки мобильной связи может предстать как в цифровой, так и в аналоговой форме. Ведь, к примеру, сам по себе звук – это аналоговый сигнал. На радиостанции звук, воспринимаемый микрофоном, преобразуется в уже упоминавшиеся электромагнитные колебания. Чем выше частота звука – тем выше частота колебаний на выходе, а чем громче говорит диктор – тем больше амплитуда.

Получившиеся электромагнитные колебания, или волны, распространяются в пространстве с помощью передаточной антенны. Чтобы эфир не забивался низкочастотными помехами, и чтобы у разных радиостанций была возможность работать параллельно, не мешая друг другу, колебания, получившиеся от воздействия звука, суммируют, то есть «накладывают» на другие колебания, имеющие постоянную частоту. Последнюю частоту принято называть «несущей», и именно на ее восприятие мы настраиваем свой радиоприемник, чтобы «поймать» аналоговый сигнал радиостанции.

В приемнике происходит обратный процесс: несущая частота отделяется, а электромагнитные колебания, полученные антенной, преобразуются в колебания звука, и из динамика слышится знакомый голос диктора.

В процессе передачи звукового сигнала от радиостанции к приемнику может произойти всякое. Могут возникнуть сторонние помехи, частота и амплитуда могут измениться, что, конечно же, отразится на звуках, издаваемых радиоприемником. Наконец, и сами передатчик и приемник во время преобразования сигнала вносят некоторую погрешность. Поэтому звук, воспроизводимый аналоговым радиоприемником, всегда имеет некоторые искажения. Голос может вполне воспроизводиться, несмотря на изменения, но фоном будет шипение или даже какие-то хрипы, вызванные помехами. Чем менее уверенным будет прием, тем громче и отчетливее будут эти посторонние шумовые эффекты.

Вдобавок эфирный аналоговый сигнал имеет очень слабую степень защиты от постороннего доступа. Для общественных радиостанций это, конечно, не имеет никакого значения. Но во время пользования первыми мобильными телефонами был один неприятный момент, связанный с тем, что почти любой посторонний радиоприемник мог быть легко настроен на нужную волну для подслушивания вашего телефонного разговора.

Такие недостатки есть у аналогового эфирного вещания. Из-за них, к примеру, телевидение в относительно скором времени обещает стать полностью цифровым.

Чем отличаются аналоговые и цифровые данные

Цифровая связь и вещания считаются более защищенными от помех и от внешних воздействий. Все дело в том, что при использовании «цифры» аналоговый сигнал с микрофона на передающей станции зашифровывается в цифровой код. Нет, конечно, в окружающее пространство не распространяется поток цифр и чисел. Просто звуку определенной частоты и громкости присваивается код из радиоимпульсов. Продолжительность и частота импульсов задана заранее – она одна и у передатчика, и у приемника. Наличие импульса соответствует единице, отсутствие – нулю. Поэтому такая связь и получила название «цифровая».

Устройство, преобразующее аналоговый сигнал в цифровой код, называется аналого-цифровым преобразователем (АЦП). А устройство, установленное в приемнике, и преобразующее код в аналоговый сигнал, соответствующий голосу вашего знакомого в динамике сотового телефона стандарта GSM, называется «цифро-аналоговый преобразователь» (ЦАП).

Во время передачи цифрового сигнала ошибки и искажения практически исключены. Если импульс станет немного сильнее, продолжительнее, или наоборот, то он все равно будет распознан системой как единица. А нуль останется нулем, даже если на его месте возникнет какой-то случайный слабый сигнал. Для АЦП и ЦАП не существует других значений, как 0,2 или 0,9 – только нуль и единица. Поэтому помехи на цифровую связь и вещание почти не оказывают влияния.

Более того, «цифра» является и более защищенной от постороннего доступа. Ведь, чтобы ЦАП устройства смог расшифровать сигнал, необходимо, чтобы он «знал» код расшифровки. АЦП вместе с сигналом может передавать и цифровой адрес устройства, выбранного в качестве приемника. Таким образом, даже если радиосигнал и будет перехвачен, он не сможет быть распознан из-за отсутствия как минимум части кода. Это особенно актуально для мобильной сотовой связи.

Итак, вот отличия цифрового и аналогового сигналов:

1) Аналоговый сигнал может быть искажен помехами, а цифровой сигнал может быть или забит помехами совсем, или приходить без искажений. Цифровой сигнал или точно есть, или полностью отсутствует (или нуль, или единица).

2) Аналоговый сигнал доступен для восприятия всеми устройствами, работающими по тому же принципу, что и передатчик. Цифровой сигнал надежно защищен кодом, его трудно перехватить, если вам он не предназначается.

Чем отличаются аналоговые и цифровые данные

Сам термин «датчик» обозначает механизм, предназначенный для измерения какого-нибудь параметра с целью дальнейшей обработки результата измерения. Схема датчика генерирует сигнал в удобной для передачи форме, дальше сигнал преобразуется, обрабатывается или хранится. Без датчиков в некоторых современных сферах промышленности, да и во многом оборудовании разного рода, просто не обойтись.

Электроника позволяет сегодня изготавливать электронные датчики, способные контролировать процессы сразу по нескольким параметрам, что сильно расширяет возможности для построения сложных измерительных и исполнительных приборов.

Датчик обязательно содержит в своей конструкции чувствительный элемент и зачастую – преобразовательную часть. Главными же характеристиками электронных датчиков являются их чувствительность и погрешность измерения.

На сегодняшний день аналоговые и цифровые датчики используются всюду в научных и исследовательских целях, в телеметрии, в системах контроля качества и автоматизированного управления, да и во многих других областях, перечислять которые можно бесконечно. Так или иначе, это всегда те технические сферы, где необходимо получить информацию об измерении какой-нибудь величины.

Целью данной статьи будет дать читателю представление о том, чем принципиально отличаются между собой аналоговые и цифровые датчики. Мы рассмотрим на простом примере то, как одну и ту же величину можно отследить аналоговым и цифровым датчиком, и в каком случае целесообразно применение аналогового датчика, а в каком — цифрового.

Аналоговый датчик генерирует на выходе аналоговый сигнал, значение уровня которого получается функцией времени, и изменение такого сигнала происходит непрерывно, сигнал принимает постоянно какое-нибудь из множества возможных значений.

Так, аналоговые датчики подходят для отслеживания непрерывно изменяющихся физических величие, например напряжение на выводах термопары сигнализирует об изменении температуры, а напряжение на вторичной обмотке трансформатора тока оказывается в определенный период пропорционально току контролируемой цепи. Микрофон является датчиком изменения давления от звуковой волны и т.д.

Цифровые же датчики, в свою очередь, генерируют на выходе сигнал, который можно записать в форме последовательности цифровых значений, зачастую сигнал двоичный, то есть либо высокий уровень сигнала, либо низкий (нулевой). Когда сигнал цифрового датчика необходимо передать по аналоговому каналу, например по радио, прибегают к применению модуляции.

Цифровые датчики доминируют в системах связи, поскольку их выходные сигналы легко регенерировать в ретрансляторе, даже если присутствует шум. А аналоговый сигнал, в этом смысле, будет шумом искажен, и данные окажутся недостоверными. При передаче информации цифровые датчики более приемлемы.

Чем отличаются аналоговые и цифровые данные

Цифровые датчики: а – линии, б – температуры и влажности DHT11, в – движения HC-SR501, г – температуры DS18B20. Аналоговые датчики: а – громкости звука, б – света LXD5516 (фоторезистор), в – измерения расстояния SHARP-GP2Y0A02YK0F, г – регулировки сопротивления

Давайте же рассмотрим на конкретных простых примерах сначала аналоговый датчик, затем цифровой, причем измерять эти датчики в нашем примере будут один и тот же параметр — ток.

Аналоговый датчик тока

Чем отличаются аналоговые и цифровые данные

Аналоговый датчик тока на трансформаторе тока. Почему аналоговый? Потому что в данном случае ток может возрастать, например, от 0 до 5 ампер, при этом напряжение (сигнал) на выходе будет возрастать пропорционально от 0 до 1 вольта. Такой датчик позволить осуществлять контроль величины тока в измеряемой цепи непрерывно.

К примеру, будучи установленным в блок питания с ШИМ, аналоговый датчик тока сформирует аналоговый сигнал обратной связи, и чем выше будет его значение, тем значит больший ток в цепи нагрузки течет в данный момент, и схема регулировки длительности управляющего импульса, построенная на компараторе, станет уменьшать длительность управляющего импульса, приводя ток нагрузки к требуемому номинальному значению, дабы выходная мощность не возрастала неприемлемо высоко.

Про анемометры:  Проверка вентиляции: правила проверки, допустимые нормы, периодичность, способы -

Цифровой датчик тока

Теперь допустим, что мы имеем дело с резонансным преобразователем электроэнергии, где нужно отслеживать колебания тока в резонансном LC-контуре, и важным параметром будет уже не только и не столько величина тока, сколько его направление.

Чем отличаются аналоговые и цифровые данные

В этом случае можно использовать так же трансформатор тока, только выход трансформатора тока будет нагружен не на резистор, а на стабилитрон или на ограничительные диоды. Что это даст?

Когда ток течет в одну сторону, напряжение на вторичной обмотке трансформатора тока будет иметь определенное высокое значение, а когда в другую сторону — определенное низкое. Вот и получается «1» и «0» – цифровой сигнал, а промежуточные значения не нужны, их отслеживает другая схема, аналоговая.

Датчики направления тока могут быть реализованы и на базе эффекта Холла (цифровые датчики Холла), но в нашем примере целью было показать принципиальное различие аналогового и цифрового датчика, поэтому датчик Холла пока оставим в стороне.

В электронике сигналы делят на: аналоговые, дискретные и цифровые. Начнем с того, что все, что мы чувствуем, видим, слышим в большинстве своем является аналоговым сигналом, а то, что видит процессор компьютера – это цифровой сигнал. Звучит не совсем понятно, поэтому давайте разбираться с этими определениями и с тем как один вид сигналов преобразовывается в другой.

Чем отличаются аналоговые и цифровые данные

В электрическом представлении аналоговый сигнал, судя по его названию, является аналогом реальной величины. Например, вы чувствуете температуру окружающей среды постоянно, на протяжении всей жизни. Нет никаких перерывов. При этом вы чувствуете не только два уровня «горячо» и «холодно», а бесконечное число ощущений, которые описывают эту величину.

Для человека «холодно» может быть по разному, это и осенняя прохлада и зимний мороз, и легкие заморозки, но не всегда «холодно» это отрицательная температура, как и «тепло» – не всегда положительная температура.

Чем отличаются аналоговые и цифровые данные

Отсюда следует, что у аналогового сигнала две особенности:

1. Непрерывность во времени.

2. Число величин сигнала стремится к бесконечности, т.е. аналоговый сигнал нельзя точно поделить на части или проградуировать, разбив шкалу на конкретные участки. Способы измерения – основаны на единице измерений, и их точность зависит лишь от цены деления шкалы, чем она меньше, тем точнее измерение.

Дискретные сигналы – это сигналы, которые представляют собой последовательность отчетов или измерений какой-либо величины. Измерения таких сигналов не непрерывны, а периодичны.

Попытаюсь объяснить. Если вы установили термометр где-нибудь он измеряет аналоговую величину – это следует из вышеописанного. Но вы, фактически следя за его показаниями, получаете дискретную информацию. Дискретный – значит отдельный.

Например, вы проснулись и узнали, сколько градусов на термометре, в следующий раз вы на него посмотрели на градусник в полдень, и третий раз вечером. Вы не знаете, с какой скоростью изменялась температура, равномерно, или резким скачком, вы знаете только данные в тот момент времени, который наблюдали.

Цифровые сигналы – это набор уровней, типа 1 и 0, высокий и низкий, есть или нет. Глубина отражения информации в цифровом виде ограничена разрядностью цифрового устройства (набора логики, микроконтроллера, процессора etc.) Получается что для хранения булевых данных он подходит идеально. Пример, можно привести следующий, для хранений данных типа «День» и «Ночь», достаточно 1 бита информации.

Бит – это минимальная величина представления информации в цифровом виде, в нём может храниться только два типа значений 1 (логическая единица, высокий уровень), или 0 (логический ноль, низкий уровень).

В электронике бит информации представляется в виде низкого уровня напряжения (близкое к 0) и высокого уровня напряжения (зависит от конкретного устройства, часто совпадает с напряжением питания данного цифрового узла, типовые значения – 1.7, 3.3. 5В, 15В).

Чем отличаются аналоговые и цифровые данные

Все промежуточные значения между принятыми низким и высоким уровнем являются переходной областью и могут не обладать конкретным значением, в зависимости от схемотехники, как устройства в целом, так и внутренней схемы микроконтроллера (или любого другого цифрового устройства) могут иметь разный переходный уровень, например для 5-тивольтовой логики за ноль могут приниматься значения напряжения от 0 до 0.8В, а за единицу от 2В до 5В, при этом промежуток между 0.8 и 2В – это неопределенная зона, фактически с ее помощью отделяется ноль от единицы.

Чем более точные и ёмкие значения нужно хранить, тем больше нужно бит, приведем таблицу-пример с отображением в цифровом виде четырёх значений времени суток:

Ночь – Утро – День – Вечер

Для этого нам нужно уже 2 бита:

Чем отличаются аналоговые и цифровые данные

В общем случае аналогово-цифровым преобразованием называется процесс перевода физической величины в цифровое значение. Цифровым значением является набор единиц и нолей воспринятых обрабатывающим устройством.

Такое преобразование нужно для взаимодействия цифровой техники с окружающей средой.

Так как аналоговый электрический сигнал повторяет своей формой входной сигнал, он не может быть записан в цифровом виде «так как есть» поскольку он имеет бесконечное число значений. Примером можно привести процесс записи звука. Он в первичном виде выглядит так:

Чем отличаются аналоговые и цифровые данные

Он представляет собой сумму волн с различными частотами. Которые, при разложении по частотам (подробнее об этом смотрите преобразования Фурье), так или иначе, можно приблизить к похожей картинке:

Чем отличаются аналоговые и цифровые данные

Теперь попробуйте это представить в виде набора типа «111100101010100», довольно сложно, не так ли?

Другим примером необходимости преобразования аналоговой величины в цифровую, является её измерение: электронные термометры, вольтметры, амперметры и прочие измерительные приборы взаимодействую с аналоговыми величинами.

Как происходит преобразование?

Сначала посмотрите на схему типового преобразования аналогового сигнала в цифровой и обратно. Позже мы к ней вернемся.

Чем отличаются аналоговые и цифровые данные

Фактически это сложный процесс, который состоит из двух основных этапов:

1. Дискретизация сигнала.

2. Квантование по уровню.

Дискретизация сигнала это определения промежутков времени, на которых измеряется сигнал. Чем короче эти промежутки – тем точнее измерение. Периодом дискретизации (Т) называется отрезок времени от начала считывания данных до его конца. Частота дискретизации (f) – это обратная величина:

После считывания сигнала происходит его обработка и сохранение в память.

Получается, что за время, которое считываются и обрабатываются показания сигнала, он может измениться, таким образом, происходит искажение измеряемой величины. Есть такая теорема Котельникова и из нее вытекает такое правило:

Частота дискретизации должны быть как минимум в 2 раза больше чем частота дискретизируемого сигнала.

Это скриншот из википедии, с выдержкой из теоремы.

Чем отличаются аналоговые и цифровые данные

Для определения численного значение необходимо квантование по уровню. Квант – это определенный промежуток измеряемых значений, усреднено приведенный к определенному числу.

Т.е. сигналы величиной от X1 до X2, условно приравнивается к определенному значению Xy. Это напоминает цену деления стрелочного измерительного прибора. Когда вы снимаете показания, зачастую вы их равняете по ближайшей отметке на шкале прибора.

Так и с квантованием по уровню, чем больше квантов, тем более точные измерения и тем больше знаков после запятой (сотых, тысячных и так далее значений) они могут содержать.

Точнее сказать число знаков после запятой скорее определяется разрядностью АЦП.

Чем отличаются аналоговые и цифровые данные

На картинке изображен процесс квантования сигнала с помощью одного бита информации, как я описывал выше, когда при превышении определенного предела принимается значение высокого уровня.

Справа показано квантование сигнала, и запись в виде двух бит данных. Как видите, этот фрагмент сигнала разбит уже на четыре значения. Получается, что в результате плавный аналоговый сигнал превратился в цифровой «ступенчатый» сигнал.

Количество уровней квантования определяется по формуле:

Где n — количество разрядов, N — уровень квантования.

Вот пример сигнала разбитого на большее число квантов:

Чем отличаются аналоговые и цифровые данные

Отсюда очень хорошо видно, что чем чаще снимаются значения сигнала (больше частота дискретизации), тем точнее он измеряется.

Чем отличаются аналоговые и цифровые данные

На этой картинке изображено преобразование аналогового сигнала в цифровой вид, а слева от оси ординат (вертикальной оси) запись в цифровом 8-битном виде.

АЦП или Аналогово-цифровой преобразователь может выполняться в виде отдельного устройства или быть встроенным в микроконтроллер.

Ранее в микроконтроллеры, например семейства MCS-51, не содержали в своем составе АЦП, использовалась для этого внешняя микросхема и возникала необходимость писать подпрограмму обработки значений внешней ИМС.

Чем отличаются аналоговые и цифровые данные

Сейчас они есть в большинстве современных микроконтроллеров, например AVR AtMEGA328, который является основой большинства популярных плат Ардуино, он встроен в сам МК. На языке Arduino чтение аналоговых данных осуществляется просто – командой AnalogRead(). Хотя в микропроцессоре, который установлен в той же не менее популярной Raspberry PI его нет, так что не все так однозначно.

Фактически существует большое число вариантов аналогово-цифровых преобразователей, у каждого из которых есть свои недостатки и преимущества. Описывать которые в пределах этой статьи не имеет особого смысла, так как это большой объём материала. Рассмотрим лишь общую структуру некоторых из них.

Самым старым запатентованным вариантом АЦП, является патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Это 5-ти битный АЦП прямого преобразования. Из названия патента приходят мысли о том, что использование этого прибора было связано с передачей данных через телеграф.

Чем отличаются аналоговые и цифровые данные

Если говорить о современных АЦП прямого преобразования имеют следующую схему:

Чем отличаются аналоговые и цифровые данные

Отсюда видно, что вход представляет собой цепочку из компараторов, которые на выходе своем выдают сигнал при пересечении какого-то порогового сигнала. Это и есть разрядность и квантование. Кто хоть немного силен в схемотехнике, увидел этот очевидный факт.

Кто не силен, то входная цепь работает таким образом:

Аналоговый сигнал поступает на вход «+», на все сразу. На выходы с обозначением «-» поступает опорное напряжение, которое раскладывается с помощью цепочки резисторов (резистивного делителя) на ряд опорных напряжений. К примеру, ряд для этой цепи выглядит наподобие такого соотношения:

Urefi=(1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16)*Uref

В скобках через запятую указано, какую часть от общего опорного напряжения Uref подают на вход каждого входного напряжения.

Т.е. каждый из элементов имеет два входа, когда напряжение на входе со знаком «+» превышает напряжение на входе со знаком «-», то на его выходе появляется логическая единица. Когда на положительном (неинвертирующем) входе напряжение меньше, чем на отрицательно (инвертирующем), то на выходе – ноль.

Чем отличаются аналоговые и цифровые данные

Напряжение делиться таким образом, чтобы входное напряжение разбить на нужное количество разрядов. При достижении напряжения на входе на выходе соответствующего элемента появляется сигнал, схема обработки выводит «правильный» сигнал в цифровом виде.

Такой компаратор хорош скоростью обработки данных, все элементы входной цепи срабатывают параллельно, основная задержка этого вида АЦП формируется из задержки 1 компаратора (все же одновременно параллельно срабатывают) и задержки шифратор.

Однако есть огромный недостаток параллельных цепей – это необходимость большого числа компараторов, для получения АЦП высокой разрядности. Чтобы получить, например 8 разрядов, нужно 2^8 компараторов, а это целых 256 штук. Для десятиразрядного (в ардуино 10-разрядный АЦП, кстати, но другого типа) нужно 1024 компаратора. Судите сами о целесообразности такого варианта обработки, и где он может понадобиться.

Есть и другие виды АЦП:

Преобразование аналогового сигнала в цифровой нужно для считывания параметров с аналоговых датчиков. Есть отдельный вид цифровых датчиков, они представляют собой либо интегральные микросхемы, например DS18b20 – на его выходе уже цифровой сигнал и его можно обрабатывать любыми микроконтроллерами или микропроцессорами без необходимости применения АЦП, или аналоговый датчик на плате на которой уже размещен свой преобразователь. У каждого типа датчиков есть свои плюсы и минусы, такие как помехоустойчивость и погрешность измерений.

Про анемометры:  ТОП лучших напольных газовых котлов мощностью 20 кВт — рейтинг 2022 года

Знание принципов преобразование обязательно для всех кто работает с микроконтроллерами, ведь не в каждой даже современной системе встроены такие преобразователи, приходится использовать внешние микросхемы. Для примера можно привести такую плату, разработанную специально под GPIO-разъём Raspberry PI, с прецизионным АЦП на ADS1256.

Обучение программированию и созданию устройств на микроконтроллерах AVR

У электронщиков, специализирующихся на проектировании микроконтроллерных устройств, существует термин “быстрый старт. Относится он к случаю, когда надо в короткий срок опробовать и заставить его выполнять простейшие задачи.

Цель состоит в том, чтобы, не углубляясь в подробности, освоить технологию программирования и быстро получить конкретный результат. Полное представление, навыки и умения появятся позже в процессе работы.

Освоить работу с микроконтроллерами в режиме “быстрый старт”, научиться их программировать и создавать различные полезные умные электронные устройства можно легко с помощью обучающих видеокурсов Максима Селиванова в которых все основные моменты разложены по полочкам.

Методика быстрого изучения принципов работы с микроконтроллерами основывается на том, что достаточно освоить базовую микросхему, чтобы затем достаточно уверенно составлять программы к другим ее разновидностям. Благодаря этому первые опыты по программировании микроконтроллеров проходят без особых затруднений. Получив базовае знания можно приступать к разработке собственных конструкций.

На данный момент у Максима Селиванова есть 4 курса по созданию устройств на микроконтроллерах, построенные по принципу от простого к сложному.

Чем отличаются аналоговые и цифровые данные

1. Программирование микроконтроллеров для начинающих

Курс для тех, кто уже знаком с основами электроники и программирования, кто знает базовые электронные компоненты, собирает простые схемы, умеет держать паяльник и желает перейти на качественно новый уровень, но постоянно откладывает этот переход из-за сложностей в освоении нового материала.

Курс замечательно подойдет и тем, кто только недавно предпринял первые попытки изучить программирование микроконтроллеров, но уже готов все бросить от того, что у него ничего не работает или работает, но не так как ему нужно (знакомо?!).

Курс будет полезен и тем, кто уже собирает простенькие (а может и не очень) схемы на микроконтроллерах, но плохо понимает суть того как микроконтроллер работает и как взаимодействует с внешними устройствами.

2. Программирование микроконтроллеров на языке С

Курс посвящен обучению программирования микроконтроллеров на языке Си. Отличительная особенность курса – изучение языка на очень глубоком уровне. Обучение происходит на примере микроконтроллеров AVR. Но, в принципе, подойдет и для тех, кто использует другие микроконтроллеры.

Курс рассчитан на подготовленного слушателя. То есть, в курсе не рассматриваются базовые основы информатики и электроники и микроконтроллеров. Но, что бы освоить курс понадобятся минимальные знания по программированию микроконтроллеров AVR на любом языке. Знания электроники желательны, но не обязательны.

Курс идеально подойдет тем, кто только начал изучать программирование AVR микроконтроллеров на языке С и хочет углубить свои знания. Хорошо подойдет и тем, кто немного умеет программировать микроконтроллеры на других языках. И еще подойдет обычным программистам, которые хотят углубить знания в языке Си.

3. Создание устройств на микроконтроллерах на языке С

Этот курс для тех, кто не хочет ограничиваться в своем развитии простыми или готовыми примерами. Курс отлично подойдет тем, кому важно создание интересных устройств с полным пониманием того, как они работают. Курс хорошо подойдет и тем, кто уже знаком с программированием микроконтроллеров на языке Си и тем, кто уже давно программирует их.

Материал курса прежде всего ориентирован на практику использования. Рассматриваются следующие темы: радиочастотная идентификация, воспроизведение звука, беспроводной обмен данными, работа с цветными TFT дисплеями, сенсорным экраном, работа с файловой системой FAT SD-карты.

4. Программирование дисплеев NEXTION

Дисплеи NEXTION представляют собой программируемые дисплеи с тачскрином и UART для создания самых разных интерфейсов на экране. Для программирования используется очень удобная и простая среда разработки, которая позволяет создавать даже очень сложные интерфейсы для различной электроники буквально за пару вечеров! А все команды передаются через интерфейс UART на микроконтроллер или компьютер. Материал курса составлен по принципу от простого к сложному.

Этот курс рассчитан на тех, кто хотя бы немного имеет опыта в программировании микроконтроллеров или arduino. Курс отлично подойдет и для тех, кто уже пытался изучать дисплеи . Из курса вы узнаете много новой информации, даже если думаете, что хорошо изучили дисплей!

Чем отличаются аналоговые и цифровые данные

Приближается осень, а вместе с ней наступит День знаний! Это отличная пора для новых дел, идей и начинаний и самое время для обучения. Используйте это время с пользой для прокачки своих знаний!

Полный курс обучения программированию микроконтроллеров со скидкой: Все 4 курса со скидкой

Цифровое телевидение охватило уже практически территорию всей страны. Качественный цифровой сигнал новые телевизоры принимают самостоятельно, старые – с помощью специальной приставки. В чем разница между старым аналоговым и новым цифровым сигналом? Многим это непонятно и требует разъяснения.

  • Виды сигналов
  • Отличие дискретного сигнала от цифрового
  • Сравнение цифрового и аналогового сигналов
  • Преимущества и недостатки сигналов разных видов
  • Примеры передачи цифрового и аналогового сигналов Вычислительная техника Звукозапись и телефония Электрические измерения Аналоговое и цифровое телевидение
  • Вычислительная техника
  • Звукозапись и телефония
  • Электрические измерения
  • Аналоговое и цифровое телевидение

Виды сигналов

Чем отличаются аналоговые и цифровые данные

Сигнал это изменение физической величины во времени и пространстве. По сути это коды для обмена данными в информационной и управленческой средах. Графически любой сигнал можно представить в виде функции. По линии на графике можно определить тип и характеристики сигнала. Аналоговый будет выглядеть как непрерывная кривая, цифровой как ломаная прямоугольная линия, скачущая от ноля до единицы. Все, что мы видим глазами и слышим ушами поступает в виде аналогового сигнала.

Зрение, слух, вкус, запах и тактильные ощущения поступают нам в виде аналогового сигнала. Мозг командует органами и получает от них информацию в аналоговом виде. В природе вся информация передаётся только так.

Чем отличаются аналоговые и цифровые данные

В электронике аналоговый сигнал основан на передаче электричества. Определённым величинам напряжения соответствуют частота и амплитуда звука, цвет и яркость света изображения и так далее. То есть цвет, звук или информация являются аналогом электрического напряжения.

Например: Зададим передачу цветов определённым напряжением синий 2 В, красный 3 В, зелёный 4 В. Изменяя напряжение получим на экране картинку соответствующего цвета.

При этом неважно идёт сигнал по проводам или радио. Передатчик непрерывно отправляет, а приёмник обрабатывает аналоговый вид информации. Принимая непрерывный электрический сигнал по проводам или радиосигнал через эфир приёмник преобразует напряжение в соответствующий звук или цвет. Изображение появляется на экране или звук транслируется через динамик.

Вся суть кроется в названии. Дискретный от латинского discretus, что означает прерывистый (разделённый). Можно сказать, что дискретный повторяет амплитуду аналогового, но плавная кривая превращается в ступенчатую. Изменяясь либо во времени, оставаясь непрерывной по величине, или по уровню, не прерываясь по времени.

Чем отличаются аналоговые и цифровые данные

Так, в определенный период времени (например миллисекунду или секунду) дискретный сигнал будет какой-то установленной величины. По окончании этого времени он резко изменится в большую или меньшую сторону и останется таким ещё миллисекунду или секунду. И так беспрерывно. Поэтому дискретный это преобразованный аналоговый. То есть полпути до цифрового.

После дискретного следующим шагом преобразования аналогового стал цифровой сигнал. Главная особенность – либо он есть, или его нет. Вся информация преобразуется в сигналы ограниченные по времени и по величине. Сигналы цифровой технологии передачи данных кодируются нолем и единицей в разных вариантах. А основой является бит, принимающий одно из этих значений. Бит от английского binarydigit или двоичный разряд.

Чем отличаются аналоговые и цифровые данные

Но один бит имеет ограниченную возможность для передачи информации, поэтому их объединили в блоки. Чем больше битов в одном блоке, тем больше информации он несёт. В цифровых технологиях используют биты объединенные в блоки кратные 8. Восьмибитовый блок назвали байтом. Один байт небольшая величина, но уже может хранить зашифрованную информацию о всех буквах алфавита. Однако при добавлении всего одного бита число комбинаций ноля и единицы удваивается. И если 8 битов делает возможным 256 вариантов кодировки, то 16 уже 65536. А килобайт или 1024 байт и вовсе немаленькая величина.

ВНИМАНИЕ! Ошибки в том, что 1 КБ равен 1024 байт нет. Так принято в двоичной компьютерной среде. Но в мире широко используется десятичная система исчисления, где кило это 1000. Поэтому существуют еще и десятичный кБ равный 1000 байт.

В большом количестве объединённых байтов хранится много информации, чем больше комбинаций 1 и 0 тем больше закодировано. Поэтому в 5 – 10 МБ (5000 – 10000 кБ) имеем данные музыкального трека хорошего качества. Идём дальше, и в 1000 МБ закодирован уже фильм.

Но так как вся окружающая людей информация аналоговая, то для её приведения в цифровой вид нужны усилия и какое-либо устройство. Для этих целей был создан DSP (digital signal processor) или ЦПОС (цифровой процессор обработки сигналов). Такой процессор есть в каждом цифровом устройстве. Первые появились еще в 70-е годы прошлого века. Методы и алгоритмы меняются и совершенствуются, но принцип остаётся постоянным – преобразование аналоговых данных в цифровые.

Чем отличаются аналоговые и цифровые данные

Обработка и передача цифрового сигнала зависит от характеристик процессора — разрядности и скорости. Чем они выше, тем качественней получится сигнал. Скорость указывается в миллионах инструкций в секунду (MIPS), и у хороших процессоров достигает нескольких десятков MIPS. Скорость определяет сколько единиц и нолей сможет устройство «запихнуть» в одну секунду и качественно передать непрерывную кривую аналогового сигнала. От этого зависит реалистичность картинки в телевизоре и звука из динамиков.

Отличие дискретного сигнала от цифрового

Про Азбуку Морзе наверное слышали все. Придумал художник Самуэль Морзе, другие новаторы усовершенствовали, а использовали все. Это способ передачи текста, где точками и тире закодированы буквы. Упрощенно, кодировка называется морзянкой. Её долго использовали на телеграфе и для передачи информации по радио. Кроме того, сигналить можно с помощью прожектора или фонарика.

Чем отличаются аналоговые и цифровые данные

Код морзянки зависит только от самого знака. А не от его продолжительности или громкости (силы). Как ни ударь ключом (моргни фонариком), воспринимаются только два варианта– точка и тире. Можно только увеличить скорость передачи. Ни громкость, ни продолжительность в расчёт ни принимаются. Главное, что бы сигнал дошёл.

Так же и цифровой сигнал. Важно закодировать данные с помощью 0 и 1. Получатель должен только разобрать, комбинацию нолей и единиц. Неважно с какой громкостью и какой продолжительностью будет каждый сигнал. Важно получить нолики и единички. Это суть цифровой технологии.

Дискретный сигнал получится если закодировать ещё громкость (яркость) и продолжительность каждой точки и тире, или 0 и 1. В этом случае вариантов кодировки больше, но и путаницы тоже. Громкость и продолжительность можно не разобрать. В этом и разница между цифровым и дискретным сигналами. Цифровой генерируется и воспринимается однозначно, дискретный с вариациями.

Оцените статью
Анемометры
Добавить комментарий