Что измеряют: Термометр, осадкомер, флюгер, барометр, гигрометр, анимометр,облакомер,…

Что измеряют: Термометр, осадкомер, флюгер, барометр, гигрометр, анимометр,облакомер,... Анемометр

Основные виды

Первый анемометр, описанный в 1450 году, представлял из себя колеблющуюся от порывов ветра деревянную доску. Современные приборы гораздо точнее и проще в использовании.

Наиболее популярными разновидностями считаются:

  • чашечный, изобретённый в 1846 году. Состоит из четырёх полусферических «чашек», насаженных на спицы ротора, который вращается вокруг своей оси. Воздушный поток наполняет чаши и приводит к их вращению. Скорость потока подсчитывается в табло ниже: оно может быть механическим, напоминающим табло весов, и цифровым;
  • крыльчатый, он же лопастной или мельничный, напоминает флюгер, который вращается по направлению ветра. Как и флюгер, он может менять направление. От чашечного его отличает только форма лопастей, в остальном принцип работы схож. Высчитывать скорость воздушного потока оба эти анемометра могут только в одной плоскости;
  • термоанемометр, или тепловой анемометр, основывается на увеличении теплопотери тела при усилении скорости ветра. Это нить накаливания из нихрома, вольфрама и других металлов с положительным температурным коэффициентом сопротивления, которая подключается к питанию и нагревается выше комнатной температуры. Проволока подводится к электросхеме, где и происходит расчёт изменения числа Нуссельта;
  • ультразвуковой анемометр (перейти к товарам) определяет изменения скорости звука, наблюдаемые при усилении или ослаблении ветра. Поскольку показатель напрямую зависит и от температуры, в такие устройства обязательно встраивается термометр. Опционально могут быть ещё и такие функции как определение влажности воздуха, давления, объёмного расхода.

Наиболее распространены сейчас многофункциональные устройства, представляющие из себя практически метеостанцию в миниатюре.

С помощью какого прибора можно определить скорость ветра? 1. Барометр 2. Флюгер 3….

1. С помощью какого прибора можно определить скорость ветра?

1. Барометр
2. Флюгер
3. Сейсмограф
4. Эхолот
2. Чем вызвана смена времён года на Земле?
1. Вращением Земли вокруг своей оси
2. Вращением Земли вокруг Солнца
3. Вращением Земли вокруг Солнца и постоянным наклоном оси к плоскости орбиты.
4. Влиянием Луны
3. Какое из утверждений о значении атмосферы верно?
1. Воздух необходим для обеспечения процессов жизнедеятельности
2. В верхних слоях атмосферы сгорают метеоритные тела
3. Атмосфера прдохраняет Землю от сильного нагревания и охлаждения
4. Все перечисленные ответы верны
4.Летними месяцами в Южном полушарии являются:
1. Декабрь, январь, февраль
2. Март, апрель, май
3. Июнь, июль, август
4. Сентябрь, октябрь, ноябрь
5.Какова высота горы, если атмосферное давление у её подножия равно 740 мм.рт.ст. а на вершине — 340 мм.рт.ст.
1. 100 м.
2. 400 м.
3. 4200 м.
4. 5000 м.
6. Если на высоте 3 км температура воздуха равна -18 °С чему она равна у поверхности Земли?
1. 30
2. 5
3.0
4.-4
7.Определите среднюю суточную температуру воздуха, используя данные таблицы.
Время суток 1 ч, 7 ч, 13 ч, 19 ч
Температура воздуха 1С, 3 С, 8 С, 8 С
8. Какой газ преобладает в атмосфере?
1. Кислород
2. Азот
3. Водород
4. Углекислый
9. Установите соответствие.
Прибор Что измеряет
1.Термометр
2.Барометр
3.Гигрометр
4.Флюгер
5.Осадкомер
А. Осадки
Б. Атмосферное давление
В. Направление ветра
Г. Влажность воздуха
Д. Температуру воздуха
10.Вставьте пропущенные слова.
Атмосфера защищает Землю от падения_____________, от резких перепадов ______________________________.
11.Какова температура воздуха за бортом самолета, если он летит на высоте 9 км., а у земной поверхности температура составляет 24С.
12. От чего происходит нагревание воздуха?
1. От солнечных лучей
2. От поверхности Земли
3. От поверхности океана
4. От поверхности суши
13.Какое явление происходит при охлаждении насыщенного воздуха?
1. Конденсация
2. Испарение
3. Таяние
4. Замерзание
14. Чем дальше от экватора, тем….?
1. Меньше угол падения солнечных лучей
2. Сильнее ветер
3. Больше нагревается поверхность Земли
4. Больше нагревается воздух.
15. К главным климатообразующим факторам относят:
1. Географическую широту местности и океанические течения.
2. Направление господствующих ветров и рельеф.
3. Близость к морям и океанам и высота местности над уровнем моря.
4. Все ответы верны.
16. Многолетний режим погоды, характерный для какой-либо местности, называется:
1. Погода.
2. Климат.
3. Воздушная масса.
4. Атмосфера.
17. Какой тип облаков находится ниже всех?
1. Кучевые.
2. Слоистые.
3. Перистые.
4. Перламутровые.
18. Где 22 декабря Солнце находится в зените?
1. На Южном тропике.
2. На Северном тропике.
3. В любое время года.
4. Равномерного освещения не бывает никогда.
19. Где на Земле день равен ночи круглый год?
1. В районе Северного тропика.
2. В районе Южного тропика.
3. В районе экватора.
4. В районе Южного полярного круга.
20.Приведите примеры осадков, выпадающих:
1. Из облаков — _____________
2. Из воздуха — _____________
Ребята помогите срочно !!!:)

Измеряем силу ветра. домашняя метеостанция

Грандиозно! ))) И просто одновременно! Уедем на море, постараюсь тоже воплотить этот проект в жизнь! )) Ох лэпбук какой новый хороший! Красота! ))

Ужасно рада, Лена, что вам понравилось и пригодится Лёвушке! Желаю вам хорошо и с пользой отдохнуть на каникулах! Кстати, все забываю вам написать! Я же уже давно как получила ваш приз за Финдуса. Спасибо огромнейшее. Такие милые и закладочка, и открыточка – просто оооочень понравились!

))) Очень приятно, что вам понравилось )))

Спасибо! Наконец-то что-то интересное придумано! А то скукотища обычно была с этими наблюдениями.

Ой, я в школе просто ненавидела заполнять дневник наблюдений! А потом оказалось, что наблюдать погоду так интересно!))) Столько всего можно сделать, измерить и проверить!

Круто! И можно с дочкой такое сделать!

Буду рада, если вашей доченьке понравится

Спасибо, Татьяна. за колдуна! Мы с детьми наблюдали такой в аэроклубе, тогда родилась мысль создать уменьшенную копию, тоже думала о пакетах для мусора), теперь, благодаря вашему опыту, примерно представляю, как это осуществить))).

О, как здорово, что вы тоже будете делать! Надеюсь, потом покажете в “Катиной коллекции”? ,)

Обязательно покажем))). Сейчас собираю коллекцию занятий и игр с ветром и воздухом. Люблю делать все скопом))).

О, тема какая богатая – там столько всего интересного!

Замечательный флюгер получился!

Спасибо Жалко вот полосочек нет на нем – но может быть еще раз сделаем, тогда и добавим.

Занятная идея. Очень понравилась. Спасибо.

Буду рада, если пригодится:)

Как выбрать анемометр с поверкой?

Если вы решили анемометр купить, осуществляя выбор конкретной модели необходимо руководствоваться следующими основными критериями:

  1. точностью. Для выполнения измерений при наладке систем ОВК необходимо использовать приборы повышенной точности. Более дешевые модели служат для оценочных измерений (например, при инспекторских проверках).
  2. диапазоном измеряемых скоростей. Для измерения в медленных потоках (0 — 5 м/с) используются анемометры с обогреваемым зондом, для среднескоростных (до 40 м/с) – крыльчатые, для быстрых (более 40 м/с) потоков – трубки Пито. Ультразвуковые зонды могут выполнять измерения как на малых, так и на средних скоростях. Следует учитывать, что зонды с обогреваемой струной и трубки Пито чувствительны к чистоте воздушного потока и подвержены влиянию турбулентности, снижающей точность измерений.
  3. размером зонда. Для выполнения измерений внутри воздуховодов могут использоваться зонды всех четырех типов, при этом, чем меньше их диаметр, тем меньшее технологическое отверстие можно использовать для «погружения» измерителя в воздушный канал. Для измерений у диффузоров, воздушных решеток и т.п. необходимо применять анемометр крыльчатый с большим диаметром зонда. При высоком расположении воздуховодов более удобно использовать зонды с раздвижной рукояткой (с большой длиной в рабочем положении).
  4. функциональностью. Когда требуется только определить скорость воздушного потока или расход воздуха, то вполне подойдет одноканальный анемометр. Многоканальные модели позволяют отказаться от использования дополнительных измерительных инструментов.
Про анемометры:  Купить М-49М | Метеостанция

При решении сложных задач следует обращать внимание на вычислительные возможности анемометра – способность рассчитывать усредненные значения по времени и по результатам серии замеров. Для длительных наблюдений (например, при настройке систем вентиляции и кондиционирования на санитарный эффект) наиболее подходят анемометры с функцией регистратора, способные запоминать результаты измерений (при покупке следует обращать внимание на объем памяти прибора).

Как выбрать подходящую модель

Критерии выбора у всех разные. Многое зависит от сферы применения прибора и предъявляемых требований, а также ожидаемых результатов. На что стоит обратить особое внимание, чтобы не допустить ошибки при выборе? По мнению покупателей большую роль играют такие параметры:

  • максимально допустимые показатели измеряемых воздушных потоков (от 30 до 60 м/сек);
  • минимальное значение для лопастных устройств (0,3 м/сек);
  • количество лопастей (от 6 до 8).

Обзор отзывов показывает, что самой комфортной и практичной в бытовом использовании считается карманная модель. Ее достаточно для домашнего применения. Если сравнить, что сколько стоит, то это самый оптимальный вариант.

К выбору прибора нужно относиться со всей ответственностью. От точности показаний порой зависит безопасность и жизнь людей, приемлемые условия труда на предприятиях, качество сырья, продукции, услуг. Есть основные параметры, которые нельзя упускать из вида. Перечень выглядит следующим образом:

ПараметрыОписание
Диапазон измерения скорости воздушных массПри необходимости использования инструмента в системе кондиционирования, значения должны составлять от 0 до 10 метров в секунду. Если речь идет о крупных промышленных предприятиях, торговых гипермаркетах и офисных центрах, то диапазон должен составлять от 0 до 20 м/сек.
Определение показателя и точность измерения температурыДополнительная опция делает устройство более функциональным и привлекательным. Могут показать как минусовые, так и плюсовые значения. Первые пользуются огромной популярностью в строительных компаниях, которые осуществляют свою деятельность в местностях с суровым климатом.
Точность измеренийПоказатель оказывает непосредственное влияние на погрешность. Можно допустить значительную погрешность только там, где она не играет большой роли и не причинит вреда жизни и здоровью людей. Чтобы получить высокоточные значения, нужно не только правильно подобрать модель, но и научиться ею профессионально пользоваться. Мало определить подходящие технические характеристики, нужно разобраться в нюансах функционирования изделия.
Анемометры с крыльчаткой располагаются по направлению к воздушным потокам. Так достигается их наибольшая эффективность. Воздух должен охватывать весь объем лопастей. В противном случае реальных результатов достичь не получится. Высокую точность получить не представляется возможным, если будут задействована только часть вращающегося элемента. На точность показаний оказывает негативное влияние пыль, грязь, различные примеси, которые накапливаются на поверхности лопастей, и не дают им свободно вращаться.
Что касается термоанемометра, то его категорически запрещено эксплуатировать под прямыми солнечными лучами. При перегревании корпуса погрешность увеличивается многократно.
Источник питанияАнемометры функционируют от пальчиковых или аккумуляторных батареек. Вопрос, где их купить, не стоит. Они продаются в любом магазине по доступной цене. Подзарядка и замена не вызывает особых сложностей. Однако, присутствуют нюансы, которые производитель обозначает в прилагаемой инструкции к товару. Если неправильно зарядить аккумуляторные источники питания, то устройство выдаст неправдивую информацию.
Специалисты советуют отключать инструмент сразу после окончания манипуляций. Энергия не должна расходоваться напрасно. В противном случае может произойти остановка прибора в самый неподходящий момент.
ПроизводительКакой фирмы лучше приобрести изделие, зависит от личных предпочтений человека. На рынке присутствуют дорогостоящие модели от иностранных компаний и недорогие отечественного производства. Большим доверием пользуются товары европейского происхождения.
Однако, наличие логотипа еще не говорит о том, что продукция изготовлена на европейских производственных мощностях. Многие китайские компании производят разнообразную продукцию именитых брендов. Это касается и анемометров.
Между тем стоит отметить, что не все китайское – плохого качества. Можно на полках магазинов встретить товар, который заслуживает внимания и уважения. Некоторые изделия не только подходят под понятие «европейское качество», но порой и превосходят его по функционалу и характеристикам. Желательно прежде, чем заказать товар онлайн в интернет – магазине, проверить поставщика на порядочность и ознакомиться с отзывами пользователей.

Отличительные особенности анемометров

Сегодня вся техника должна быть удобной и практичной. Ручные анемометры – исключение из правил. Помимо определенных неудобств, возникающих в процессе эксплуатации, изделия обладают рядом серьезных недостатков:

  • ограничениями при исследовании воздушных масс (диапазон составляет от 1 до 20 метров в секунду), электронные чашечные модели могут снять показания до 50 метров в секунду;
  • минимальные колебания ветра не улавливаются;
  • необходим персональный флюгерный детектор.

Электронные приспособления отличаются функционалом и простотой использования. В состоянии проконтролировать несколько показаний. Отличаются надежностью, точностью, практичностью и долговечностью. Пневмо приспособление обладает отличной точностью проводимых исследований.

Главное отличие приборов – возможность их эксплуатации на объектах с сильно разреженными воздушными массами. Какой лучше купить товар, зависит от многих факторов. Специалисты советуют отдавать предпочтение компактным и портативным ультразвуковым или крыльчатым изделиям.

Ультразвуковые — самые точные. Пластина не задействуется. Эксплуатируются в незначительных продувках. Использование специального выносного приспособления не требуется. Для получения точного результата замирание не нужно. Средняя цена продукции высоковата. Ежегодно выпускаются новинки.

Порядок определения анемометром скорости воздушных масс

Перед проведением всех необходимых замеров, необходимо, чтобы начальное значение при «полном штиле» равнялось нулю.

  1. Далее анемометр помещается в воздушный поток. Очень важно установить анемометр правильно. Он должен находится в пространстве, где нет никаких преград для движения воздуха.
  2. Анемометр держится в таком положении примерно минуту или меньше (здесь все зависит от модели и типа аппарата);
  3. Результаты фиксируются.

Лучше всего провести измерения три раза и более. Для получения правильных показателей, профессионалы ведут специальную отчетность, оформленную в виде таблицы, включающей в себя следующие разделы:

  • отчеты по шкалам анемометра (начальный, конечный, разность);
  • продолжительность замера (измеряется в секундах);
  • число делений в одной секунде (для этого необходимо поделить разность второго и первого замера на время, в течение которого они производились);
  • измеренная скорость;
  • средняя скорость;
  • поправочный коэффициент и так далее.

Многие специалисты проводят исследования, используя анемометр не только в положении «перед собой», но и в сечении. Лучше всего сделать по три замера на каждый из данных способов. Только так можно получить достоверный результат.

Некоторые современные приспособления в состояние самостоятельно анализировать все собранные данные и выдают лишь конечный результат. Безусловно, такие аппараты стоят дороже, но они того стоят. Представьте только, сколько замеров необходимо проводить обычным анемометром и сколько времени на это уйдет. А современная модель сама сразу же сделает несколько замеров и это займет всего 1 минуту.

Приборы для определения направления и скорости движения воздуха

Флюгер Вильде (рисунок 19). Данный прибор предназначен для использования на метеорологических станциях с целью многолетних постоянных наблюдений в различных регионах за направлениями и скорости ветров. Следует учитывать, что фиксируемые данные на метеорологических станциях, расположенных в различных местностях, должны быть сравнимыми. Это условие предполагает использование только серийно выпускаемых флюгеров, имеющих строго однотипное устройство.

Рис. 19. Флюгер ВильдеУстройство серийного флюгера представлено на рисунке. Как видно из рисунка, направление движения воздушных потоков определяется с помощью флюгарки – пластинки клиновидной формы с противовесом. Направление ветра фиксируется с помощью муфты с жестко закрепленными прутиками (штифтиками) – указателями румбов. При вращении флюгарки доска для определения скорости ветра всегда принимает положение, перпендикулярное направлению ветра, и под давлением последнего отклоняется от отвесного положения на тот или иной угол. По положению отклонения доски, пользуясь отградуированными штифтиками-указателями, определяют скорость ветра. В приборе имеются две доски: легкая (200 г) для измерения скоростей, не превышающих 20 м/с и тяжелая (800 г) для скоростей до 40 м/с. Приближенную скорость ветра можно определить, помножив размер штифтика на 2 (при пользовании легкой доской) или на 4 (при пользовании тяжелой доской). Флюгер для наблюдений устанавливают в открытом месте на столбе высотой 8 – 10 м. штифтик с буквой С (N) должен быть установлен на север по компасу или полуденной линии, то есть по меридиану данного места. На основании многолетних наблюдений выводятся закономерности направлений и скоростей воздушных потоков, составляющие особенности климато-погодных условий в той или иной местности. Эти справочные данные широко используются для различных, частью указанных выше целей, в том числе и в гигиенической практике, в частности, когда имеет место необходимость гигиенического контроля за планировкой и застройкой населенных мест.
Про анемометры:  Анемометр это прибор для измерения...? - Инструмент Мастер

Анемометры. В санитарно-гигиенической практике наиболее широко используются портативные анемометры – чашечный анемометр

икрыльчатый анемометр(рисунок 20). Воспринимающая часть чашечного анемометра представляет собой вертушку из 4 полых полушарий (чашечек), закрепленную на металлической оси, нижний конец которой связан со счетным механизмом (тахометром).

Стрелки на циферблате прибора показывают число оборотов полушарий вокруг оси: большая – число единиц и десятков, а две маленькие – число сотен и тысяч. Для включения и выключения счетчика оборотов на коробке прибора имеются рычаг и два кольца. В случае, если имеет место необходимость измерение движения воздуха на какой-либо высоте, прибор можно закрепить на шесте с помощью винта в нижней части.

Эта величина приблизительно соответствует искомой скорости движения воздушного потока. Для получения более точной величины пользуются таблицей или графиком перевода числа оборотов в скорость. Таблица или график прилагаются к прибору.

Чашечный анемометр служит для определения средних скоростей ветра в пределах 1,0 – 2,0 м/с. с помощью данного прибора можно производить не только метеорологические наблюдения в открытой атмосфере, но и определять скорость движения воздушных потоков в вентиляционных системах, в частности, с целью гигиенической оценки эффективности вентиляции в помещениях и устройствах различного назначения.

Крыльчатый анемометр

по принципу работы идентичен предыдущему прибору. Однако в данном приборе имеются некоторые конструктивные особенности, повышающие его чувствительность и нижние пределы определения скорости движения воздушных потоков. Воспринимающей частью в крыльчатом анемометре служит мельничка (крыльчатка) из легких металлических лопастей, посаженных на соединенную со счетчиком оборотов горизонтальную ось.

При работе прибор ориентируется по потоку так, чтобы счетный механизм был позади потока относительно крыльчатки. Для преодоления инерции сопротивления прибора крыльчатке достаточно вращаться в холостую всего 0,5 минуты. Продолжительность наблюдения ограничивается 2 минутами.

Пример определения скорости движения воздуха чашечного анемометра.

На открытой рабочей площадке с целью изучения условий труда рабочих-строителей проведено одно из исследований скорости ветра в ряду намеченных программой многочисленных регулярных наблюдений. Снимаем исходные показания счетчика прибора. При этом стрелка, указывающая тысячи, находилась между цифрами 3 и 4 соответствующего циферблата.

То есть, в данном случае записываем число целых тысяч – 3. Стрелка, показывающая сотни, находилась между цифрами соответствующего циферблата 5 и 6. Записываем за цифрой 3 следующую цифру, обозначающую число целых сотен, — 5. Большая стрелка показывала 76 делений.

Далее в течение 10 минут производилось определение скорости ветра с одновременным включением счетчика прибора и секундомера. Через указанное время счетчик и секундомер были выключены. С помощью указанной выше методики снимаем новые показания прибора, которые составили 6123. время наблюдения в секундах – 10´60 = 600 с. таким образом, за 600 секунд ось прибора сделала 6123 оборота.

Для определения количества оборотов за 1 с делим разность показаний счетчика на 600 : (6123 – 3576) : 600 = 2547 : 600 = 4,245 об./с. Если в исследованиях нет необходимости в чрезвычайной точности исследования, что имеет место в большинстве случаев, то найденную величину принимают за скорость движения воздуха в м/с.

Кататермометр. Данный прибор представляет собой особый спиртовый термометр со шкалой 35-38°С или 33-40°С. Поначалу кататермометр был сконструирован для измерения охлаждающего влияния температуры воздуха на тело человека. В дальнейшем было показано, что кататермометр не производит потери тепла с поверхности кожи человека, не учитывает влияния теплового излучения, которое оказывает значительное действие на тепловой обмен организма.

В настоящее время применяется практически исключительно для измерения малых скоростей движения воздуха, хотя, пользуясь кататермометром, можно ориентировочно определить, с какими его показаниями при различных условиях производственной деятельности совпадает оптимальное самочувствие людей, и оценить охлаждающую способность метеорологических факторов (температуры и скорости движения воздуха).

Рис. 21. Кататермометры шаровой (а
) и цилиндрический (кататермометр Хилла) (
б
)
В зависимости от конструкции кататермометры бывают цилиндрические (кататермометр Хилла) или шаровые (рисунок 21), представляют собой термометр, в котором верхний конец капиллярной трубки имеет расширение, которое частично заполняется спиртом при нагревании. Принцип того и другого кататермометров заключается в том, что скорость снижения температуры приборов зависит кроме температуры воздуха от скорости его движения. При работе с цилиндрическим кататермометром измеряют время снижения температуры с 38 до 35°С, с шаровым – с 38 до 35°С, 39 до 34°С, 40 до 38°С. причем нетрудно заметить, что средне значение указанных температурных перепадов всегда равно 36,5°С, то есть средней температуре человека. Это позволяло при первоначальном назначении приборов в какой-то степени имитировать охлаждающее воздействие воздуха на организм человека («охлаждающая способность воздуха»). В процессе охлаждения с 1 см2 поверхности резервуара кататермометров теряется постоянное количество тепла. Эта величина (катафактор) является константой (постоянной величиной) прибора и обозначается на каждом кататермометре в виде его постоянного фактора, выраженного в мкал/см2. Порядок работы с кататермометрами.
Перед измерением кататермометр опускают в воду при температуре 65–80°С и держат, пока спирт заполнит не менее половины расширения капилляра. После этого кататермометр тщательно вытирают, вешают на штатив в точке измерения и по секундомеру устанавливают время охлаждения в указанных выше интервалах температур. Очень важно, чтобы кататермометр в период наблюдения находился в неподвижном состоянии, в противном случае будет имитироваться дополнительное движение воздуха. Измерения в одной точке повторяют несколько раз, отбрасывают первый результат, а из последующих выводят среднее значение величины охлаждения (
Н
). Вычисление величины охлаждения по цилиндрическому кататермометру производит по формуле:

где (6)

– искомая величина охлаждения, мкал;

– катафактор, мкал/см2;

– число секунд, в течение которых столбик спирта опустился с 38 до 35°С.

При работе с шаровым кататермометром, если наблюдения проводятся в температурном интервале 38-35°С, вычисление величины Н

производят по той же формуле, что и для цилиндрического кататермометра. При наблюдениях в других интервалах для вычисленияНпользуются формулой:

где (7)

– искомая величина охлаждения, мкал;

– константа, мкал/см2´град.);

1 –Т2 – интервалы температур в °С (40-33 или 39-34);

– число секунд, в течение которых столбик спирта опустился в соответствующих температурных интервалах. с 38 до 35°С.

По величине охлаждения (Н

) и значению температуры воздуха в период исследования скорость движения воздуха вычисляют по формулам:

для скорости движения воздуха < 1 м/с (до 0,6)

(8)

для скорости движения воздуха > 1 м/с (> 0,6)

(9)

В приведенных формулах приняты следующие условные обозначения:

– искомая скорость движения воздуха, м/с;

– величина охлаждения сухого кататермометра, мкал;

– разность между средней температурой тела (36,5°С) и температурой окружающего воздуха, °С;

0,20 и 0,40; 0,13 и 0,47 – эмпирические коэффициенты.

Пример определения скорости движения воздуха с помощью шарового кататермометра.

Исследователем проводилось определение скорости движения воздуха в учебной аудитории №2 кафедры гигиены ГОУ ВПО «ВГМУ Росздрава» с помощью шарового кататермометра при температуре воздуха в период наблюдения 20°С. катафактор (F) прибора – 573 мкал/см2.

Первый результат измерения времени падения температуры прибора с 40 до 33°С, как указывалось выше, был отброшен. Последующие три измерения показали соответственно время 210, 221 и 205 секунд. При расчете среднего времени получается результат: (210 221 205) : 3 = 636 : 3 = 212 с.

Про анемометры:  Чем отличается Зиверт от Рентгена и в чем еще измеряют радиацию? | ВОПРОС-ОТВЕТ | АиФ Самара

Далее, подставляя в формулу для шарового кататермометра соответствующие значения, определяем величину охлаждения H

мкал.

Находим величину , которая будет равна:

Скорость движения воздуха в учебной аудитории < 1 м/с, так как H/Q < 0,6. Подставляем найденные величины в соответствующую, указанную выше формулу, и рассчитываем скорость движения воздуха:

м/с.

Для ускоренных и приближенных расчетов скорости движения воздуха можно пользоваться специальными таблицами (таблицы 10 и 11). Если исследования проводились в условиях, представленных в предыдущем примере, где величина H/Q

была равной 0,38, то на пересечении горизонтальной прямой, соответствующей указанной величине, с колонкой, соответствующей 20°С, находим результат по таблице – 0,239 м/с.

Таблица 10

Сила ветра: измерение и использование

Ветер как явление природы известен каждому еще с раннего детства. Он радует свежим дуновением в знойный день, гоняет корабли по морю, а может и гнуть деревья, и ломать крыши на домах. Основным характеристиками, которые определяют ветер, являются его скорость и направление.

сила ветра
Что такое ветер?
С научной точки зрения, ветром называется передвижение воздушных масс в горизонтальной плоскости. Такое движение возникает потому, что имеет место разность атмосферного давления и тепла между двумя точками. Воздух передвигается из областей высокого давления в те области, где уровень давления ниже. В результате и возникает ветер.

Характеристики ветра

Для того чтобы охарактеризовать ветер, используют два основных параметра: направление и скорость (силу). Направление определяется стороной горизонта, с которой он дует. Оно может указываться в румбах, в соответствии с 16-румбовой шкалой. Согласно ей, ветер может быть северным, юго-восточным, северо-северо-западным и так далее.

Направление ветра может также измеряться в градусах, относительно линии меридиана. По этой шкале север определяется как 0 или 360 градусов, восток – 90 градусов, запад – 270 градусов, а юг – 180 градусов. В свою очередь, скорость ветра измеряют в метрах в секунду или в узлах. Узел равен приблизительно 0,5 километра в час. Сила ветра измеряется также в баллах, в соответствии со шкалой Бофорта.

Шкала Бофорта, в соответствии с которой определяется сила ветраЭта шкала была введена в обращение в 1805 году. А в 1963 году Всемирная метеорологическая ассоциация приняла градацию, которая действует по сей день. В ее рамках 0 баллов соответствует штилю, при котором дым будет подниматься вертикально вверх, а листья на деревьях остаются неподвижными.

Сила ветра в 4 балла соответствует умеренному ветру, при котором на поверхности воды образуются небольшие волны, могут колыхаться тонкие ветви и листья на деревьях. 9 баллов соответствуют штормовому ветру, при котором могут гнуться даже большие деревья, срываться черепица с крыш, подниматься высокие волны на море.

Использование силы ветраСила ветра достаточно широко используется в энергетике как один из восполнимых природных источников. С незапамятных времен человечество использовало этот ресурс. Достаточно вспомнить ветряные мельницы или парусные суда.

Ветряки, с помощью которых сила давления ветра преобразуется для дальнейшего использования, широко применяются в тех местах, для которых характерны постоянные сильные ветры. Из различных областей применения такого явления как сила ветра, стоит упомянуть также аэродинамическую трубу.

Ветер – природное явление, которое может приносить удовольствие или разрушения, а также быть полезным для человечества. А конкретное действие его зависит от того, насколько большой окажется сила (или скорость) ветра.

Советы по выбору

шкала скорости ветра
На что следует обращать внимание при выборе прибора для измерения скорости и направления перемещения воздушных потоков? Определяющее значение здесь имеет перечень задач, что поставлены перед пользователем. В зависимости от этого, значение имеют такие технические характеристики прибора:

  • максимальный измерительный диапазон;
  • величина погрешностей;
  • возможность применения в тех или иных температурных условиях;
  • уровень безопасности для пользователя при воздействии на устройство агрессивных факторов окружающей среды;
  • тип: стационарный либо переносной прибор;
  • степень защищенности механизма от воздействий атмосферных осадков;
  • характер питания устройства и способ формирования данных;
  • габариты прибора;
  • возможность вычисления показателей в ночное время суток (наличие подсветки).

В настоящее время для работы в условиях крайне пониженных температур возможно использование метеорологических приборов с подогревателями. Для рудников и шахт применяют специализированные анемометры, что способны исправно функционировать при высокой запыленности окружающего пространства и во взрывоопасной среде.

Чашечные анемометры

В качестве чувствительного органа служат 3 или 4 полусферических чашки, посаженных на ось с помощью соединительных спиц. Поток воздуха действует на чашки с разной силой (выпуклая часть обтекается, а вогнутая оказывает сопротивление), в результате система получает вращательный импульс.

Ручной механический анемометр оснащён несколькими чашками. Циферблат представляет собой счётчик оборотов с тремя шкалами: единицы, сотни и тысячи. Линейная скорость чашек не совпадает со скоростью воздушного потока. Коэффициент анемометра (величина, обратная отношению скоростей потока и чашек) находится в интервале от двух до трёх единиц.

Кроме того, характеристика устройства — нелинейная. В связи с этим для использования прибора требуется градуировочный график и секундомер. Порядок измерения: фиксируют количество оборотов за некоторый временной интервал, по графику находят пройденное воздушным потоком расстояние и делят его на время измерения.

Ручной индукционный анемометр имеет 3 чашки, что увеличивает крутящий элемент устройства и повышает быстроту отклика на изменение скорости ветра. Дополнительных графиков у этого прибора нет, и засекать время тоже не требуется, поскольку измерение производится в реальном масштабе времени.

Чашечный анемометр [ править | править код ]

Наиболее распространённый тип анемометра — это чашечный анемометр. Изобретён доктором Джоном Томасом Ромни Робинсоном, работавшим в Арманской обсерватории, в 1846 году. Состоит из четырёх полусферических чашек, симметрично насаженных на крестообразные спицы ротора, вращающегося на вертикальной оси.

Ветер любого направления вращает ротор со скоростью, пропорциональной скорости ветра.

Робинсон предполагал, что для такого анемометра линейная скорость кругового вращения чашек составляет одну треть от скорости ветра, и не зависит от размера чашек и длины спиц. Проделанные в то время эксперименты это подтверждали. Более поздние измерения показали, что это неверно, т. н. «коэффициент анемометра» (величина обратная отношению линейной скорости к скорости ветра) для простейшей конструкции Робинсона зависит от размеров чашек и длины спиц и лежит в пределах от двух до чуть более трёх.

Трёхчашечный ротор, предложенный канадцем Джоном Паттерсоном в 1926 году, и последующие усовершенствования формы чашек Бревортом и Джойнером в 1935-м году сделали чашечный анемометр линейным в диапазоне до 100 км/ч (27 м/с) с погрешностью около 3 %. Паттерсон обнаружил, что каждая чашка даёт максимальный вращающий момент, будучи повёрнутой на 45° к направлению ветра. Трёхчашечный анемометр отличается бóльшим вращающим моментом и быстрее отрабатывает порывы, чем четырёхчашечный.

Оригинальное усовершенствование чашечной конструкции, предложенное австралийцем Дереком Вестоном (в 1991 г.), позволяет с помощью того же ротора определять не только скорость, но и направление ветра. Оно заключается в установке на одну из чашек флажка, из-за которого скорость ротора неравномерна в течение одного оборота (половину оборота флажок движется по ветру, половину оборота — против).

Вращение ротора в простейших анемометрах передаётся на механический счётчик числа оборотов. Скорость подсчитывается по числу оборотов за заданное время, например, минуту, таковы ручные анемометры [5] .

В более совершенных анемометрах ротор связан с тахогенератором, выходной сигнал которого (напряжение) подаётся на вторичный измерительный прибор (вольтметр), или используются тахометры, основанные на иных принципах. Такие анемометры сразу показывают мгновенную скорость ветра, без дополнительных вычислений, и позволяют следить за изменениями скорости ветра в реальном времени.

Самые распространённые модели современности среди чашечных анемометров это МС 13, М 95ЦМ, анемометр АРЭ

Помимо метеорологических измерений, чашечные анемометры применяются и на башенных подъёмных кранах, для сигнализации об опасном превышении скорости ветра.

Оцените статью
Анемометры
Добавить комментарий