Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы. Анемометр
Содержание
  1. Что представляет собой «умный» расходомер?
  2. Вариант #1 — расходомеры «metrix»
  3. Вариант #3 — счетчик газа под смарт-карту
  4. Вихревые устройства
  5. Тахометрические приборы
  6. Расходомеры перепада давления
  7. Кориолисовые расходомеры
  8. Электромагнитные конструкции
  9. Ультразвуковой расходомер газа
  10. Что такое ультразвук?
  11. Ультразвуковой метод измерения
  12. Классификация расходомеров
  13. Бытовые
  14. Коммунально-бытовые
  15. Промышленные расходомеры-счетчики
  16. Достоинства, недостатки расходомеров
  17. Ультразвуковой расходомер газа: сферы применения
  18. Достоинства, недостатки расходомеров
  19. Как работает микротермальный счетчик?
  20. Какие величины могут быть измерены при помощи означенного счётчика?
  21. Классификация расходомеров–счётчиков газа по их пропускной способности
  22. Конструкция прибора и принцип работы
  23. Подготовка к эксплуатации и запуск
  24. Правила установки новых счетчиков
  25. Принцип работы ультразвукового расходомера
  26. Электромагнитные конструкции
  27. Энергетическая подпитка умного измерителя
  28. Выводы и полезное видео по теме

Что представляет собой «умный» расходомер?

Попробуем вместе разобраться, что такое новый умный газовый счетчик и как он работает. Так, термин «умный», применительно к новому измерительному прибору, следует рассматривать попросту как функционал современной электроники на базе микропроцессора.

Микропроцессорное (по сути, компьютерное) управление техникой разного типа — явление, которое уже стало обыденным делом. Теперь вот, очередь дошла и непосредственно до газовых приборов учета, которые до последнего времени в большинстве своем все еще остаются механическими. Но если совместить умное управление с функцией учета, то получим умный счетчик.

Если реализовать идею установки полностью умных счетчиков на газ, получим серьезный прорыв в области учета расхода газа населением. Рекомендуем также ознакомиться с нормами потребления газа.

В случае с установкой умных приборов учета обеспечивается:

  • высокая точность измерений;
  • высокая степень надёжности устройств;
  • надежная защита от несанкционированного доступа;
  • универсальность монтажа;
  • автоматическая передача сведений.

Новый интеллектуальный прибор действительно можно считать «умным», учитывая способности выполнять измерения объёма газа, независимые от давления, проводить самодиагностику, дистанционно определять и фиксировать внешние воздействия.

Интеллектуальный газовый счетчик самостоятельно определяет характеристики бытового газа, поступающего к нам в квартиры, ведёт архив сведений по измерениям и техническим событиям.

Вариант #1 — расходомеры «metrix»

Примером умного счетчика газа импортного производства, пожалуй, уже могут выступать некоторые новые продукты компании «Apator» из серии изделий «Metrix».

В частности, внимания заслуживают две разработки: интеллектуальный модуль «UniSmart» и гибрид-система «GybridSmart».

Первая разработка «UniSmart» представлена как вспомогательный модуль, которым дополняется существующий прибор учета, например, серии «UG». Модулем поддерживается протокол (WMB) стандарта EN13757-4, чем гарантируется возможность подключения к оборудованию других производителей.

Модуль подключается непосредственно к счетчику газа и функционально действует подобно геркону (датчику импульсов). Одному обороту барабана механического счетчика соответствует один импульс датчика – так осуществляется функция считывания данных модулем «UniSmart».

Под передачу считанных данных на сервер организуется работа радиоканала – электроники, встроенной в модуле. Все необходимые параметры работы модуля предварительно запрограммированы и сохранены в «прошивке» устройства (микросхема памяти). Данные прошивки допустимо менять при необходимости, в том числе дистанционно.

Вторая разработка — «GybridSmart». Прибор, по сути, представляет аналог первого устройства «UniSmart», с той лишь разницей, что в этом варианте используется цельная конструкция «два в одном». То есть счетчик газа и функциональный интеллектуальный модуль составляют единую сборку.

Вариант #3 — счетчик газа под смарт-карту

На примере продукта компании «Actaris» рассмотрим еще одно вполне современное устройство, представляющее диафрагменный газовый счетчик, дополненный контролем исполнения платежей.

Особенность этой конструкции – наличие в конструкции прибора запорного клапана, которым автоматически перекрывается подача газа, к примеру, в момент аварийной ситуации.

Однако этот же элемент конструкции успешно используется для блокировки в случае неуплаты потребителем за выборку газа.

Такой расходомер имеет в составе конструкции устройство считывания данных с карты. Имеется в виду пластиковая смарт-карта абонента, которая идет как дополнение к установленному пользователем счетчику.

Несмотря на то, что фактически имеет место механическая система контроля потребления газа, благодаря установке модуля считывания смарт-карт, прибор превратили в полуавтоматическую систему.

Пользователю достаточно вставить кредитную смарт-карту в соответствующее гнездо. Прибор автоматически читает требуемую информацию и снимает средства в счет оплаты за потребление бытового газа. Если же средства закончились и пользователь своевременно не позаботился о пополнении счета, то умный счетчик сразу же перекрывает подачу газа конкретному абоненту.

Вихревые устройства

Данные конструкции измеряют частоту колебаний, возникающих в потоке газа или жидкости, вынужденной обтекать препятствия на их пути. Эту специальную помеху называют телом обтекания. Во время затрудненного движения создается вихрь, благодаря которому приборам дали такое название. Преимущества данных моделей — полное отсутствие движущихся элементов, которые могут стать причиной поломки конструкции.

  • характеристики, которые могут меняться, если на теле обтекания появляется осадок;
  • механические препятствия, располагающиеся в сечении трубопровода;
  • неточные результаты измерений из-за возникающих вибраций;
  • высокая чувствительность к изменению температур.

    Еще один минус — небольшой динамический диапазон. Используют такие расходомеры для измерения газа, насыщенного пара, технического воздуха и воды.

    Тахометрические приборы

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Второе их название — турбинные. Они измеряют количество оборотов, а также скорость вращения турбины или крыльчатки. Она пропорциональна величине расхода. Достоинства конструкций — невысокая цена, отсутствие необходимости обеспечивать питание от сети.

  • механические препятствия, находящиеся в сечение прибора;
  • влияние примесей в воде на точность показаний;
  • неустойчивость измерений, ненадежность;
  • малый динамический диапазон.

    Поскольку внутри расходомера находятся движущиеся элементы, они становятся причиной ограниченного срока службы тахометрических расходомеров. Турбинные устройства используют для измерения расхода воды, жидкого топлива, охлаждающих жидкостей, горюче-смазочных материалов и т. д.

    Расходомеры перепада давления

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Ротаметр — счетчик постоянного перепада давления — еще один, относительно простой вид измерительного оборудования. Его принцип работы основывается на измерении перепадов давления, которые возникают при прохождении газа либо жидкости через сужающееся устройство (сопло, диафрагма) внутри расходомера. На этом участке скорость потока уменьшается, а давление увеличивается. Замеры производятся с помощью дифференциального датчика давления. Недостаток приборов — некоторая потеря потоком энергии.

  • независимость от температуры и давления среды;
  • универсальность расходомеров, их удобство;
  • относительно высокая точность измерений.

    Простота изготовления расходомеров перепадов давления, отсутствие движущихся частей — причины популярности этих приборов. Диаметр трубопроводов для таких расходомеров составляет 50-1600 мм.

    Кориолисовые расходомеры

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Это сложный электронные устройства, принцип работы которых основан на измерении колебания (вверх-вниз) трубок, расположенных перпендикулярно движению потока. Такие воздействия называют силой Кориолиса, она пропорциональна массовому расходу рабочего вещества. Недостатки данных расходомеров — сложность конструкции, подразумевающая строгое следование технологии изготовления, высокая цена.

  • возможность измерения не только расхода, но и ряда других параметров — температуры, плотности и т. д.;
  • универсальность: приборы способны работать с неоднородными средами — с включениями песка, газа, с бензином/нефтью;
  • высокая точность результатов, такая же надежность.

    Кориолисовым приборам не требуются прямые участки трубопроводов. Минусом их является высокая цена, однако если правильно эксплуатировать прибор, то можно гарантировать, что он вскоре окупится.

    Электромагнитные конструкции

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Данные приборы используются для измерения потока электропроводящих жидкостей. Работают электромагнитные устройства по закону электромагнитной индукции (Фарадея). В проводнике, пересекающем линию электромагнитного поля, появляется электродвижущая сила. Ее значение пропорционально скорости движения потока. Направление тока — перпендикулярно движению проводника. Прибор измеряет расход, фиксируя напряжение, возникающее между двумя электродами. Недостаток — повышенные требования к жидкости: она не должна иметь токопроводящие, магнитные включения.

  • отсутствие в поперечном сечении устройства неподвижных или движущихся элементов, это дает возможность сохранить скорость потока;
  • возможность использования для трубопроводов большого диаметра, эксплуатация в большом динамическом диапазоне:
  • точная работа при минимальных длинах участков для измерения;
  • использование в напорных и безнапорных системах.
    Про анемометры:  Расходомеры-счетчики газа турбинные, ротационные, вихревые, мембранные, ультразвуковые || ГК "Теплоприбор"

    Стабильная работа этих устройств — одна из важнейших характеристик, благодаря которой электромагнитные расходомеры относятся к одному из самых популярных видов измерительных приборов.

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Это только главные конкуренты, которые есть у ультразвуковых приборов. Еще существует оптическое, поршневое, парциальное, тепловое, мембранное (диафрагменное), струйное, калориметрическое, ионизационное, винтовое и поплавковое (расходомеры переменного перепада давления) измерительное оборудование.

    Список этот неполный, его можно, но не очень нужно, продолжать: многие из приведенных конструкций предназначаются не для бытового использования.

    Ультразвуковой расходомер газа

    Поскольку он главный герой, на ультразвуковом приборе-счетчике необходимо остановиться отдельно. Это позволит познакомиться с элементами устройства, с принципом его работы, оценить достоинства и слабые сторону кандидата.

    Что такое ультразвук?

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Из названия приборов понятно, что ультразвуковое устройство для работы использует ультразвук, который человеческим ухом не воспринимается, зато его слышат некоторые виды животных. К ним относятся дельфины, некоторые киты, летучие мыши, отдельные виды жуков и бабочек, которые могут спасаться на земле при приближении «летучих грызунов», издающих эти сигналы.

    Звук появляется благодаря вибрациям, распространяющимся в виде волн. Однако для того чтобы колебания возникли, необходимо обеспечить несколько условий. Нужен:

  • источник, посылающий сигналы;
  • подходящая (воздушная или жидкая) среда, способствующая их распространению;
  • и определенный объект, который в состоянии улавливать или принимать звуковые волны.

    Количество волн, создаваемых вибрирующим объектом в некоторый (заданный) отрезок времени, называют частотой звуковых волн. Она зависит от скорости вибрирования: чем быстрее происходят колебания, тем выше частота. И наоборот, медленная скорость вибраций становится причиной низкой частоты.

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Ультразвук — звук, частота которого выше того уровня, что может восприниматься человеческим ухом. Для определения движения рабочей среды используют ультразвуковые расходомеры газа или жидкости. Их предназначение — измерение изменений ультразвуковых частот.

    Ультразвуковой метод измерения

    Ультразвуковой расходомер газа или жидкости имеет принцип работы, основанный на прохождении через поток ультразвуковой волны. Работают такие приборы в широком частотном диапазоне — от 20 кГц до 1000 МГц. Устройства измеряют скорость распространения звуковых колебаний в рабочей среде: это может быть как газ, так и жидкость (вода, канализационные стоки и т. п.).

    Принцип их функционирования построен на эффекте Доплера, его можно назвать примером естественного феномена. Это сдвиг по частоте, который происходит между переданными и принятыми волнами. Причина — препятствия, возникающие на пути ультразвука в среде. Это могут быть твердые частица или воздушные пузырьки. Те и другие объекты способны отражать от себя звуковые волны, которые начинают движение в обратном направлении.

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Уровень частоты волн изменяется (сдвигается) благодаря изменению скорости движения потока. При ее увеличении сдвиг по частоте также увеличивается. Если скорость потока среды уменьшается, то сдвиг по частоте тоже становится меньше. Именно эта взаимосвязь используется в ультразвуковых расходомерах: после измерения параметра величина скорости потока преобразуется в величину его расхода.

    На участок трубы устанавливают 2 датчика, оснастка для их монтажа присутствует в комплекте расходомера. Каждый из приборов выполняет сразу две роли: он одновременно является приемником и передатчиком сигнала. При измерениях ультразвук отправляется по течению рабочей среды, затем против него: сначала от первого ко второму сенсору, затем наоборот.

    Так как сигнал неминуемо «сносится» потоком газа или жидкости, скорость его прохождения в обе стороны будет различной. Благодаря этой разнице величин устройство вычисляет скорость потока, а так как геометрические параметры трубопровода известны, оно выдает объемный расход топлива или теплоносителя.

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    В этом случае нужно знать плотность рабочей среды. Если требуется произвести пересчет из рабочих кубов в нормальные единицы (массу), то в устройство необходимо ввести дополнительные показатели — давление и температуру, причем могут быть использованы или константы, или информация, получаемая с других, внешних измерительных приборов.

    Классификация расходомеров

    Такие приборы для измерения расхода газов классифицируются по пропускной способности. Это понятие означает диапазон расходов, при которых погрешность показаний не выходит за рамки, заявленные производителем этого вида газового оборудования. Есть и еще два важных показателя:

    1. Максимальный расход — Qмакс. Большинство производителей использует такие значения — 1, 2,5, 4 и 6 (6,5) с множителем 10n (м3/ч).
    2. Минимальный расход — Qмин. Это значение используется для определения ширины диапазона измерений прибора: ее определяют как соотношение второго и первого значения — Qмин/Qмакс. Ширина диапазона у моделей, выпускаемых сейчас, составляет от 1:10 до 1:4000.

    Чувствительность механических приборов — минимальный расход, при котором счетчик в состоянии проводить измерения, но погрешность их не соответствует нормативам. Главным показателем считается максимальная пропускная способность, по которой все расходомеры условно делятся на промышленные, коммунально-бытовые и бытовые.

    Бытовые

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Максимальная пропускная способность этих устройств составляет 1-6 м3/ч. Данные расходомеры используют в квартирах, частных домах, в небольших котельных и офисах. В этом случае ультразвуковые устройства пока используют редко.

    Коммунально-бытовые

    У таких расходомеров пропускная способность намного выше — 10-40 м3/ч. Их также используют для учета газа в котельных, в технологических установках. Коммунально-бытовые устройства отличаются более крупными размерами, чаще используются мембранные, струйные, ротационные приборы, реже — ультразвуковые устройства.

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Промышленные расходомеры-счетчики

    В этом случае минимальная пропускная способность составляет 40 м3/ч, а максимальная величина не ограничивается. Такое ультразвуковое оборудование приобретают для очень крупных потребителей. К их числу относят промышленные, сельскохозяйственные предприятия, газовые котельные, узлы учета распределительных сетей, магистрали. Виды наиболее часто используемого оборудования — ультразвуковое, турбинное, струйное, ротационное, вихревое. На участках трасс нередко монтируют расходомеры перепада давления.

    Достоинства, недостатки расходомеров

    Не так давно ультразвуковой расходомер газа использовался только для коммерческого учета природного топлива, для технологического контроля. Теперь ситуация немного изменилась: появились небольшие, удобные бытовые приборы, которые имеют несколько преимуществ перед другими видами измерительного оборудования. Однако они также не лишены некоторых недостатков.

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    К плюсам ультразвуковых расходомеров относится:

  • стабильность показаний;
  • длительный срок эксплуатации;
  • устойчивость к вибрациям, ударам;
  • высочайшая точность измерения (0,3-1%);
  • независимость от малого давления, скорости;
  • невысокий уровень потребления электричества;
  • отсутствие подвижных частей, требующих замены;
  • возможность работы с загрязненной газовой средой;
  • довольно широкий диапазон измерений (от 1:200 до 1:400);
  • возможность контроль расхода газообразных веществ, жидкостей;
  • разные условия эксплуатации: диапазон температур от -50 до 50°;
  • возможность измерения скорости потока сразу в двух направлениях;
  • универсальность: ультразвуковые приборы могут измерять разные виды топлива: природный газ, биогаз, промышленные газы;
  • отсутствие для потока любых препятствий, которые могут спровоцировать внезапное падение давления или повреждение оборудования.

    Есть модели приборов, в которых предусмотрено питание от аккумулятора. Ультразвуковой расходомер газа может устанавливаться на трубопроводы любого диаметра, начиная от 10 мм.

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Минусы у данных расходомеров есть. Это:

  • сложность ультразвуковых устройств, их высокая цена, превышающая стоимость электромагнитных и тахометрических моделей в 3-4 раза;
  • необходимость обеспечить относительно длинные участки перед и после прибора;
  • потенциальное влияние на измерительное оборудование пузырьков воздуха;
  • контроль отложений, его необходимо обеспечить на рабочем участке;
  • ограничения, касающиеся минимальной скорости потока;
  • необходимость грамотной настройки оборудования;
  • зависимость от температуры воды.

    Несмотря на то, что недостатки у ультразвукового оборудования есть, достоинств у него все же больше, поэтому популярность таких приборов постепенно растет.

    Ультразвуковой расходомер газа: сферы применения

    Измерение расхода жидкостей и газов в технике. Расходомеры и газоанализаторы.

    Эти устройства применяют для научных исследований, а также используют в различных отраслях промышленности. Примеры:

    Про анемометры:  Газовый котел Baxi Fourtech — купить по низкой цене в Перми
  • измерение скорости подземных источников;
  • нефтедобыча, переработка сырья;
  • электро- и теплогенерация;
  • противопожарные системы;
  • Достоинства, недостатки расходомеров

    Не так давно ультразвуковой расходомер газа использовался только для коммерческого учета природного топлива, для технологического контроля. Теперь ситуация немного изменилась: появились небольшие, удобные бытовые приборы, которые имеют несколько преимуществ перед другими видами измерительного оборудования. Однако они также не лишены некоторых недостатков.

    К плюсам ультразвуковых расходомеров относится:

  • стабильность показаний;
  • длительный срок эксплуатации;
  • устойчивость к вибрациям, ударам;
  • высочайшая точность измерения (0,3-1%);
  • независимость от малого давления, скорости;
  • невысокий уровень потребления электричества;
  • отсутствие подвижных частей, требующих замены;
  • возможность работы с загрязненной газовой средой;
  • довольно широкий диапазон измерений (от 1:200 до 1:400);
  • возможность контроль расхода газообразных веществ, жидкостей;
  • разные условия эксплуатации: диапазон температур от -50 до 50°;
  • возможность измерения скорости потока сразу в двух направлениях;
  • универсальность: ультразвуковые приборы могут измерять разные виды топлива: природный газ, биогаз, промышленные газы;
  • отсутствие для потока любых препятствий, которые могут спровоцировать внезапное падение давления или повреждение оборудования.
  • Есть модели приборов, в которых предусмотрено питание от аккумулятора. Ультразвуковой расходомер газа может устанавливаться на трубопроводы любого диаметра, начиная от 10 мм.

    Минусы у данных расходомеров есть. Это:

  • сложность ультразвуковых устройств, их высокая цена, превышающая стоимость электромагнитных и тахометрических моделей в 3-4 раза;
  • необходимость обеспечить относительно длинные участки перед и после прибора;
  • потенциальное влияние на измерительное оборудование пузырьков воздуха;
  • контроль отложений, его необходимо обеспечить на рабочем участке;
  • ограничения, касающиеся минимальной скорости потока;
  • необходимость грамотной настройки оборудования;
  • зависимость от температуры воды.
  • Несмотря на то, что недостатки у ультразвукового оборудования есть, достоинств у него все же больше, поэтому популярность таких приборов постепенно растет.

    Как работает микротермальный счетчик?

    Преобразующим устройством объемного расхода газа в конструкции счетчика выступает микротермальный датчик. Конкретно в разработке компании «Техномер» используется датчик серии SGM6ххх (продукт швейцарских производителей).

    Он измеряет проходящую среду калориметрическим принципом. Выполнен по технологии MEMS, благодаря чему обеспечиваются высокие эксплуатационные характеристики.

    Работает сенсор следующим образом: на пути потока природного газа (рабочий канал) на кремниевой подложке установлен модульный чувствительный элемент, состоящий из нагревателя и пары температурных датчиков. Проходящий поток газа нагревается непосредственно в той части, где установлены датчики температуры.

    В результате ограниченный поток газа имеет несколько иную температуру, из-за чего образуется разница температур. Теоретически это достаточно сложный физический процесс, но главное – работает, и очень качественно, в плане точности измерений.

    Какие величины могут быть измерены при помощи означенного счётчика?

    Согласно сопроводительной документации счётчик может измерять следующие величины: проходящий объём, а так же мгновенный расход (рабочие условия). Эти же величины могут быть измерены и в нормальных условиях.

    Давление – это одни из главных показателей, который может свидетельствовать об увеличении расхода ресурса в системе. Стоит отметить, что датчики давления дублируются. По этой причине сбои весьма маловероятны.

    На основании температуры счётчик делает выводы в отношении самоподстройки. Ведь при увеличении температуры, объём так же может быть увеличен.

    Сегодня на рынке присутствуют и отечественное оборудование и западное. Эксперты не рискую делать громкие заявления, выделяя конкретного разработчика. В подавляющем количестве случаев, оборудование отрабатывает на 100%

    • Знаете ли Вы, как без помощи специалистов можно подключить датчик Меркурий – 201?

    В видео подробно рассказывается принцип работы ультразвуковых расходомеров:

    Источник

    Классификация расходомеров–счётчиков газа по их пропускной способности

    Пропускная способность — диапазон расходов, в котором обеспечивается заявленная производителем погрешность измерения счетчика.Максимальный расход (Qмакс) большинством производителей выбирается из ряда 1; 1,6; 2,5; 4; 6(6,5)

    с множителем 10n, м3/ч.Значением минимального расхода (Qмин) характеризуется ширина диапазона измерений счетчика. Принято определять ширину диапазона измерений как соотношение Qмин/Qмакс. У выпускаемых в настоящее время счетчиков ширина диапазона составляет от 1:10 до 1:250 и шире.

    От Qмин следует отличать чувствительность (характеристика, как правило, механических приборов) — такой самый минимальный расход, при котором счетный механизм еще находится в движении и происходит изменение его показаний, но погрешность такого измерения не соответствует нормативной.

    Бытовые счетчики газаС максимальной пропускной способностью от 1 до 6 м³/ч. Чаще всего используют в квартирах, домах, офисах, небольших топочных для локального учёта потребления газа.Это, как правило, небольшие мембранные (камерные, диафрагменные), реже ультразвуковые, струйные, небольшие ротационные счетчики газа.

    Коммунально-бытовыеС максимальной пропускной способностью от 10 до 40 м³/ч. Применяются для учёта потребления газа небольшими котельными, технологическими установками и т. п.Это, как правило, более крупные мембранные (камерные, диафрагменные), ротационные, ультразвуковые, струйные счетчики газа.

    Промышленные расходомеры–счетчики газаС максимальной пропускной способностью свыше 40 м³/ч.В основном используются на узлах учёта крупных потребителей — газовых котельных, промышленных и сельхозпредприятий, узлах учёта газораспределительных сетей (ротационные, турбинные, вихревые, ультразвуковые, струйные счетчики газа), на магистральных сетях (сужающие устройства, турбинные, вихревые, ультразвуковые счетчики газа).

    Конструкция прибора и принцип работы

    Существует ряд разработок умных газовых счетчиков, выполненных специалистами зарубежных стран, а также отечественными специалистами.

    Однако, судя по информации за первый квартал 2022 года, отечественные разработчики пока что не готовы вывести на коммерческий рынок устройства, в полной мере отвечающие всем требованиям умного прибора.

    Есть несколько устройств отечественных компаний, приближенно напоминающих умные конструкции учета газа:

    • «Гранд» – SPI G4 – G10;
    • «Вектор» – Т G4;
    • СГБЭТ «Сигма» G1,6 –G10;
    • «Омега» ЭТК GSM G1,6 – G4;
    • СГБУ G1,6 — G6;
    • BK-G ETe G4,G6;

    Фактически все эти приборы являются прообразом старых механических систем, попросту дополненных электронным модулем. Соответственно, полноценный функционал умного прибора они не обеспечивают.

    Тем не менее, разработки 2022 года есть, о чем мы подробно поговорим ниже.

    Импортные измерительные модули, к примеру, продукты фирмы «Metrix» («Apator»), в принципе соответствуют заявленным требованиям по интеллектуальному обеспечению.

    Однако, как утверждают отечественные специалисты, газовые счетчики «Apator» и прочих зарубежных фирм, не соответствуют измерениям объема газа для стандартных условий (Т = 20 °C, P = 101,3 кПа).

    Подготовка к эксплуатации и запуск

    Согласно установленным правилам, послемонтажная подготовка умного счетчика под запуск предполагает выполнение процедуры проверки смонтированного узла на герметичность.

    Для этого используются стандартные средства —  в домашних условиях мыльная пена, профессионально – датчики утечки газа.

    После проверки устройство запускается в эксплуатацию. Рекомендуемая методика пуска – плавное открытие запорного газового крана на линии, где установлен счетчик.

    Необходимо обеспечить заполнение рабочей области умного измерителя без резкого роста давления, дабы не повредить пневматическим ударом чувствительные компоненты системы.

    Рекомендуем также ознакомиться с нормами и правилами опломбировки газовых счетчиков.

    Правила установки новых счетчиков

    Учитывая неоднозначные условия эксплуатации приборов, к газовым счетчикам, включая «умные» конструкции, предъявляются соответствующие нормы размещения по отношению к другим газовым приборам и правила (требования) по монтажу.

    В частности, для прибора производства «Техномер» требования выглядят так, как описано ниже:

    1. Устройство следует монтировать внутри закрытых хозяйственных помещений, в крайнем случае – на улице под специально оборудованным навесом. Прибор учета необходимо надежно защитить от воздействия прямого солнечного излучения и осадков.
    2. Допускается монтирование прибора на трубопроводах, проложенных как вертикально, так и горизонтально, при этом не имеет значения, под каким углом выполняется установка.
    3. Если монтаж делается на участке горизонтальной или вертикальной трубы, направление потока газа через счетчик допускается не учитывать. То есть устройство можно ставить в любом положении по направлению. Однако производитель рекомендует придерживаться направления согласно указателю на корпусе счетчика.
    4. Недопустим монтаж счетчика в самых нижних точках пролегания газовой трубы, так как в этом варианте установки создается опасность скопления конденсата.
    5. Если контрольные пробы показывают наличие в составе бытового газа воды, контрольный прибор учета необходимо монтировать на вертикально расположенном трубопроводе, выбирая направление потока сверху вниз.
    Про анемометры:  Немного о бытовом газе — Социальная сеть для инвалидов СоСеДИ

    Предусматривая монтаж на конкретном месте нового счетчика на газ в квартирах, следует обеспечить защиту прибора учета от возможных ударов, вибраций, иных механических воздействий.

    Также, в случае переноса расходомера нельзя забывать об утвержденных правилах переноса.

    Монтажные требования не оговаривают конкретную величину условного диаметра трубы, как и не оговариваются правила соблюдения соосности патрубков расходомера и труб. Также нет конкретных требований по степени округлости труб, наличия уступов в точках сопряжения счетчика с газовой трубой.

    Принцип работы ультразвукового расходомера

    Как понятно из названия, ультразвуковой расходомер в своей работе использует ультразвук, который не воспринимается человеческим ухом.

    Звук возникает в результате вибраций, которые распространяются в виде волн. Для того, чтобы появился звук, необходимо учесть несколько моментов: источник, посылающий звуковые волны, воздушную или жидкую среду, в которой могут распространяться звуковые волны и объект, принимающий или улавливающий звуковые волны.

    Количество звуковых волн, воспроизведенных вибрирующим объектом в течение некоторого заданного отрезка времени называется частотой звуковых волн. Чем быстрее вибрирует объект, тем больше будет посылаться звуковых волн, тем выше будет частота звука. И соответственно, чем медленнее происходит вибрирование, тем ниже частота.

    Термином «ультразвук» называется звук с частотой выше уровня частоты, воспринимаемой человеческим ухом. Для того, чтобы определить скорость движения среды с помощью ультразвуковых расходомеров измеряют изменения ультразвуковых частот.

    Если работает ультразвуковой расходомер, то источник, вибрируя, посылает ультразвуковые волны с некоторой заведомо известной частотой. Звуковые волны распространяются, двигаются в потоке среды до тех пор, пока они ни наталкиваются на пузырьки воздуха или на твердые частицы в потоке движущейся среды.

    Частица или пузырек в среде, находящейся в покое

    При замере среды в покое у отраженных звуковых волн будет та же самая частота, что и у посланных источником звуковых волн. На рисунке выше изображен пузырек воздуха или твердая частица в среде, находящейся в покое. Пузырек или частица начинают вибрировать с частотой, посланных звуковых волн.

    Если среда находится в движении, уровень частоты отраженных звуковых волн, ультразвукового расходомера, сдвигается или изменяется по сравнению с уровнем частоты посланных звуковых волн. На рисунке ниже ряд звуковых волн «впереди» движущегося пузырька более уплотнен в своем последовательном чередовании, чем «позади» пузырька.

    Пузырек воздуха в потоке движущейся среды

    Волны позади пузырька вытянуты по своей конфигурации по причине наличия скорости движущегося потока. Сам пузырек тоже несколько деформирован по той же самой причине наличия скорости движущегося потока.

    Поскольку пузырек движется по мере того, как он посылает обратно или отражает звуковые волны, то фактически он движется «догоняя» звуковые волны впереди него и удаляясь от волн позади него. Другими словами, пузырек начинает вибрировать с той же самой частотой, что и посланные источником звуковые волны, но в результате наличия скорости движущегося потока, который несет этот пузырек, уровень частоты отраженных волн сдвигается.

    Когда звуковые волны, скомпрессированные в процессе движения потока впереди пузырька, достигают приемника, частота их выше, чем частота звуковых волн, посланных источником, потому, что интенсивность попадания волн на приемник будет выше, чем интенсивность их попадания на приемник в условиях среды, находящейся в покое.

    После того, как пройдет пузырек, на приемник ультразвукового расходомера попадают вытянутые по своей конфигурации волны. Частота этих волн ниже, чем частота звуковых волн, посланных передатчиком. Т.к. в последовательности этих волн отмечается расширение, для того, чтобы попасть на приемник этим вытянутым по своей конфигурации волнам понадобиться больше времени.

    По мере увеличения скорости движения потока, увеличивается также и сдвиг по частоте. И наоборот, если скорость движения потока среды уменьшается, то уменьшается и сдвиг по частоте. Другими словами, каждому изменению скорости потока присущ соответствующий сдвиг по частоте.

    Сдвиг по частоте между переданными и принятыми звуковыми волнами — это один пример естественного феномена, известного по названием эффект Доплера. Он имеет место при условии наличия относительного движения между источником волны и приемником этой волны.

    Источник

    Электромагнитные конструкции

    Данные приборы используются для измерения потока электропроводящих жидкостей. Работают электромагнитные устройства по закону электромагнитной индукции (Фарадея). В проводнике, пересекающем линию электромагнитного поля, появляется электродвижущая сила.

    Ее значение пропорционально скорости движения потока. Направление тока — перпендикулярно движению проводника. Прибор измеряет расход, фиксируя напряжение, возникающее между двумя электродами. Недостаток — повышенные требования к жидкости: она не должна иметь токопроводящие, магнитные включения.

    Плюсы:

  • отсутствие в поперечном сечении устройства неподвижных или движущихся элементов, это дает возможность сохранить скорость потока;
  • возможность использования для трубопроводов большого диаметра, эксплуатация в большом динамическом диапазоне:
  • точная работа при минимальных длинах участков для измерения;
  • использование в напорных и безнапорных системах.
  • Стабильная работа этих устройств — одна из важнейших характеристик, благодаря которой электромагнитные расходомеры относятся к одному из самых популярных видов измерительных приборов.

    Это только главные конкуренты, которые есть у ультразвуковых приборов. Еще существует оптическое, поршневое, парциальное, тепловое, мембранное (диафрагменное), струйное, калориметрическое, ионизационное, винтовое и поплавковое (расходомеры переменного перепада давления) измерительное оборудование.

    Список этот неполный, его можно, но не очень нужно, продолжать: многие из приведенных конструкций предназначаются не для бытового использования.

    Энергетическая подпитка умного измерителя

    Умные расходомеры, как и простые электронные, являются полностью автономными – не требуют применения дополнительного сетевого питания. Автономность устройств обеспечивает пара элементов питания — батарейки.

    В частности, основным энергетическим элементом выступает аккумулятор Li-SOC12 (литий-тионилхлорид), тогда как запасным — батарея Li-MnO2 (литий-оксид-марганец).

    Основная батарея дает напряжение 3,6 вольта, является съемным и полностью заменяемым компонентом. Вторая (резервная) батарея жестко вмонтирована в состав электронной платы, а потому не предусматривает взаимозаменяемость.

    Этот источник питания напряжением 3 вольта подключается к системе в моменты замены основной батареи, чем обеспечивается сохранность технологических параметров прибора.

    Согласно спецификации производителя, основного источника питания хватает для работы счетчика на срок до 10 лет. Поэтому замена аккумулятора, как правило, совпадает с процедурой поверки приборов, которая обычно проводится раз в 5-6 лет. Работоспособность резервной батареи, при условии отсутствия основного аккумулятора, гарантирована в течение 1 года.

    Выводы и полезное видео по теме

    Новизна всегда несколько пугает потенциальных пользователей или потребителей. Тем не менее, от технологического прогресса никуда не деться. К тому же технологии существенно продвигают сервисную составляющую.

    Установив умный счетчик на газ в собственной квартире, потенциальный потребитель снимает с себя задачу постоянного контроля данных и передачи информации по месту запроса. Он прост в установке и использовании, крайне не привередлив в обслуживании.

    А что вы думаете по поводу замены старых счетчиков на новые умные расходомеры? Если вы пользуетесь таким умным прибором учета, поделитесь с другими посетителями нашего сайта своим опытом, расскажите о преимуществах и недостатках, обнаруженных в процессе эксплуатации. Выражайте свое мнение, участвуйте в дискуссиях и обсуждениях — форма для связи расположена ниже.

    Оцените статью
    Анемометры
    Добавить комментарий

    Adblock
    detector