Светодиоды присутствуют везде: в домах, автомобилях, телефонах. С их помощью обеспечивается яркая подсветка экранов гаджетов, выпускаются экономичные источники освещения. Сейчас это незаменимые источники света. Рассмотрим устройство и технические характеристики основных видов светодиодов.
Инфракрасный светодиод нашел самое широкое применение практически во всех сферах нашей жизни. Этот прибор можно встретить в бытовой и медицинской технике, он участвует в сложных технологических процессах и служит военным. В этой статье мы поговорим о полупроводниках инфракрасного спектра – узнаем, что это за приборы, почему так называются, а заодно проверим их исправность подручными средствами.
Открытие эффекта излучения света при рекомбинации носителей заряда в полупроводниковом переходе привело к созданию светодиодов (LED), которые со временем произвели настоящую революцию в светотехнике. Но помимо LED, генерирующих свет в видимом диапазоне, не менее широко применяются светодиоды, излучение которых лежит в инфракрасном диапазоне. Такие приборы получили название инфракрасных светодиодов (ИК-диодов, IR LED в зарубежной терминологии).
- Что такое светодиод
- Что такое ИК-излучение
- Характеристики светодиодов
- Размеры
- Длина волны
- Обозначение и цветовая маркировка
- Графическое и буквенное изображение на схеме
- Детали практической реализации
- Можно ли самому подобрать и заменить в пульте от телевизора
- Виды светодиодов
- DIP-диоды
- Straw Hat
- Super Flux “Piranha”
- SMD
- OLED
- Филаментные
- Вида PCB Star
- Светодиодная COB-матрица
- Способы проверки на исправность
- Какими бывают
- Сфера применения
- Устройство и особенности ИК-светодиодов
- Некогерентные светодиоды
- Лазеры – когерентные светодиоды
- Как подключить
- Принцип работы или что светится в светодиоде
- Технические характеристики и виды
- Как проверить исправность ИК-диода
- Типовая классификация
- Мощные светодиоды на основе COB-матриц
- Маломощные светодиоды
- Применение светодиодов
- Конструкция
- Специфика и область применения ИК светодиодов
- Таблица напряжения светодиодов
Что такое светодиод
Светодиод (от английского Light Emitting Diode, или LED) – это твердотельный электрический источник искусственного света, изготовленный из полупроводниковых материалов p- и n- проводимости. Используя несколько технологий – напыление через маски, травление, эпитаксиальное осаждение и пр., получают p-n переход.
«Дырка» фактически неподвижна. Она имеет положительный заряд, равный заряду электрона. Электрон, «перескакивая» с внешней орбиты одного атома на внешнюю орбиту соседнего, передвигает в обратном направлении «дырку».
Что такое ИК-излучение
Прежде чем поговорить об инфракрасных светодиодах, разберемся, что такое инфракрасное (ИК) излучение. Взглянем на упрощенную таблицу спектра электромагнитного излучения.
Таблица спектра электромагнитного излучения
Начинается она с ультрафиолета, с понижением частоты переходит сначала в видимый свет – от фиолетового до красного, затем в инфракрасное излучение и заканчивается обычными радиоволнами, которые мы используем в радиосвязи. Участок, обозначенный как видимый спектр, так называется потому, что наш глаз его видит. Все остальные диапазоны, к которым относится и ИК-излучение, невидимы.
Чем же так примечателен инфракрасный диапазон? Во-первых, он полностью безвреден для людей и животных. И, во-вторых, он абсолютно не заметен для человеческого глаза, но заметен для электронных систем регистрации – от фотоприемников до обычных видеокамер. Именно поэтому ИК-светодиоды нашли такое широкое применение как в быту, так и на производстве.
Важно. Ультрафиолетовый спектр тоже не виден, но, в отличие от ИК-излучения, он оказывает существенное влияние на организм человека: из-за него можно легко испортить зрение и получить серьезные ожоги кожи.
Дополнительно инфракрасный диапазон делится на три поддиапазона:
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос эксперту
Полезно! Излучение от 0.74 до 0.86 мкм еще заметно невооруженным глазом и воспринимается как слабое красноватое свечение. Это следует учитывать при выборе приборов для скрытой подсветки ночных видеокамер и подобных целей.
За последние годы в сегменте полупроводниковой светотехники (SSL) и на светотехническом рынке в целом значительно повысилась роль бездрайверных светодиодных излучателей, или светодиодных излучателей переменного тока. У некоторых ведущих производителей светильников на такие изделия приходится половина всего объема продаж. Перспективы удешевления и упрощения конструкции очевидны: соответствующую минимальную схему управления можно расположить на одной печатной плате со светодиодами, и тогда нужда в отдельном модуле драйвера пропадает. Новейшие изделия, в которых реализован такой подход, сочетают в себе высокий КПД (до 93%), низкую стоимость и отсутствие видимого мерцания.
Светодиодные излучатели переменного тока обладают целым рядом преимуществ. Прежде всего, к ним относятся плоская форма и компактные размеры, обусловленные отсутствием драйвера, что упрощает проектирование светильников. Однако многие серийные модели, выпускаемые в настоящее время, имеют такие недостатки, как, в частности, мерцание на частоте 100 или 120 Гц (с амплитудой, близкой к 100%) и КПД, обычно не превышающий 83%. Причем с точки зрения многих проектировщиков и составителей технических заданий (ТЗ), высокий уровень мерцания делает эти излучатели непригодными для систем офисного и цехового освещения.
В этой статье представлен новый бездрайверный светодиодный излучатель с более низким уровнем мерцания и бльшим КПД, чем у многих современных изделий. У прототипов излучателей на базе новой технологии практически отсутствует видимое мерцание на частотах 100 или 120 Гц, а фактический электрический КПД равен 93%. Показанная здесь схема применена в излучателе, который производит компания ERG Lighting. Эта новая технология способна ощутимо повлиять на темпы и направления роста в сегменте полупроводниковой светотехники.
В новой архитектуре (рис. 3) ток светодиода удерживается почти постоянным, за исключением очень короткой (1,5 мс) просадки выходного тока на время заряда конденсаторов, происходящей дважды за каждый период колебаний напряжения сети. Это соответствует частоте переключения, равной приблизительно 600 Гц, что значительно превышает возможности человеческого глаза и потому воспринимается как отсутствие мерцания. Здесь не требуются дорогие микросхемы драйверов или силовые полупроводниковые ключи, широко применяемые в традиционных схемах.
Рис. 3. В новой схеме светодиодного излучателя переменного тока светодиоды питаются как током смещения, так и гальваническим током
Проще всего объяснить работу этой схемы, проследив за тем, как протекает ток от сети или источника переменного напряжения (SI). Когда напряжение на левой стороне источника растет в положительном направлении, через конденсаторы C4 и C9 протекает ток смещения, который затем возвращается в сеть через светодиодную цепочку 10. При достаточно высоком входном напряжении через светодиодную цепочку 7, диод D2 и резистор R6 начинает течь дополнительный ток. Таким образом, работа цепи обеспечивается сначала током смещения, протекающим через светодиодные цепочки, а затем гальваническим током.
Пока входное напряжение нарастает, конденсатор C8 заряжается до амплитудного значения напряжения сети через диод D14. Таким образом, конденсаторы C8 и C9 работают попеременно: пока один разряжается, другой заряжается. Следовательно, как только входное напряжение поднимается чуть выше или опускается чуть ниже нуля, ранее заряженный конденсатор немедленно начинает разряжаться, вырабатывая полный выходной ток. В середине полупериода колебаний одновременно с уменьшением тока смещения начинает расти гальванический ток, вследствие чего ток через светодиоды течет дольше. Результатом является относительно длительный период протекания выходного тока при относительно одинаковом его уровне. В экспериментальном прототипе светодиодного излучателя мощностью 19 Вт (не показан) суммарный ток протекал через все четыре цепочки светодиодов. Этот прототип работал с электрическим КПД, равным 93%.
Чтобы в полной мере осознать значение рассматриваемого новшества, начнем с обзора традиционной технологии. В первом поколении бездрайверных светодиодных излучателей использовались схемы, подобные приведенной на рис. 1.
Рис. 1. В ранних бездрайверных излучателях напряжение сети попросту выпрямлялось, а ток ограничивался резистором
В этой схеме выпрямленное переменное напряжение сети подается на цепочку светодиодов с суммарным прямым напряжением, чуть меньшим амплитуды напряжения сети. Последовательно включенный резистор ограничивает ток через цепочку на уровне, не превышающем максимального рабочего тока светодиодов. Такая схема дает яркую вспышку света с частотой 100 или 120 раз в секунду, подобно люминесцентной лампе с электромагнитным пускорегулирующим аппаратом (ПРА).
Инженеры усовершенствовали эту схему так, чтобы количество последовательно включенных в сеть светодиодов менялось путем коммутации электронных ключей на протяжении периода колебаний напряжения сети, как показано на рис. 2. Было разработано множество схем управления ключами. Иногда вместо простого резистора можно использовать управляемое током сопротивление или ограничитель тока. Для таких схем необходимы относительно дорогостоящие микросхемы контроллеров и многочисленные высоковольтные ключи, которые также недешевы.
Рис. 2. Схемы светодиодных излучателей переменного тока с разделением на сегменты, управляемые индивидуальными ключами, отличаются улучшенными характеристиками
Выходной ток схемы с коммутируемыми сегментами напоминает по форме серию синусоидальных полуволн, а входной — синусоиду. Поэтому изделия на ее основе имеют хороший коэффициент мощности и низкий полный коэффициент нелинейных искажений (КНИ). Но полусинусоидальная форма выходного тока приводит к мерцанию на частоте 100 или 120 Гц с амплитудой, близкой к 100%. Поскольку какой-то ток протекает постоянно (некоторые светодиоды всегда включены), у схемы на рис. 2 мерцание не так заметно, как у схемы на рис. 1. Но некоторые люди все равно замечают это мерцание, особенно боковым зрением, поэтому многие составители ТЗ возражают против таких схем, ссылаясь на ненадлежащее качество света.
Характеристики светодиодов
Светодиоды описываются множеством параметров. Важнейшие из них:
Есть и другие характеристики, но они используются реже. Например, вольт-амперная характеристика, ВАХ светодиода – кривая зависимости тока через переход от приложенного к нему рабочего напряжения. Применяется при электрических расчетах режима работы светодиода.
Размеры
Размеры светодиода определяются габаритами его корпуса. Для корпусов SMD – длина, ширина, толщина. Первые две величины заложены в обозначении, например, SMD2835, где две пары цифр – это 2,8 мм – ширина и 3,5 мм – длина. Толщину корпуса нужно брать из описания или паспорта на диод.
Размеры SMD3528 и SMD2835. Справа внизу серый уголок – ключ, обозначающий катод.
Для цилиндрических DIP-диодов важные характеристики – диаметр корпуса и его высота с линзой. При этом нужно учесть длину проволочных выводов и рекомендации производителя по их изгибу перед монтажом.
Длина волны
Такая характеристика светодиодов, как длина волны используется очень редко. Чаще называют цвет свечения.
Длина волны свечения диода измеряется в нанометрах – нм. В паспортных данных изделия она указывается не всегда.
Обозначение и цветовая маркировка
У каждого производителя собственная маркировка светодиодов. Например, в обозначении светодиода – LED-WW-SMD5050 его буквенные и цифровые элементы имеют расшифровку:
Варианты аббревиатур оттенков белого света:
Графическое и буквенное изображение на схеме
Анод, он же плюс светодиода на электрических схемах изображается треугольником. Катод (минус) — поперечной черточкой.
Внешний вид светодиода АЛ307 и его обозначение на чертежах и схемах.
Часто используемым сокращением является латинская аббревиатура HL
Детали практической реализации
Теперь рассмотрим работу этой схемы на уровне полупроводниковой светотехнической системы. Свет излучается четырьмя цепочками светодиодов, которые включаются одна за другой. На рис. 4 показаны осциллограммы токов через четыре светодиодные цепочки и суммарного тока из компьютерной SPICE-модели.
Рис. 4. Построив графики токов, протекающих через каждую из светодиодных цепочек, можно наблюдать относительно постоянный суммарный ток
Можно видеть, что возбуждение каждой цепочки происходит всего один раз в 16 мс. Чтобы получить желаемое равномерное свечение, необходимо смонтировать по одному светодиоду из каждой цепочки в виде компактной матрицы из четырех светодиодов и расположить рядом такое количество этих матриц, чтобы в них суммарное прямое напряжение светодиодов было сравнимо с напряжением сети. Лучше использовать керамические конденсаторы, поскольку электролитические не выдерживают больших пульсаций тока, свойственных данной схеме.
Предлагаемую архитектуру можно применять в широкой гамме изделий, если только их размеры и форма позволяют расположить светодиоды вышеописанным способом. Такой излучатель идеально подходит для освещения рабочих мест, сводов и пространства под шкафчиками в бытовых условиях.
Освобождаясь от физических ограничений, присущих светодиодным драйверам, проектировщики светильников получают в свое распоряжение принципиально новую платформу для творчества. Форма световой поверхности может быть разной, в том числе квадратной, прямоугольной или круглой. Излучателям можно придавать различные размеры и форму, не жертвуя техническими характеристиками. В разработке сейчас находятся еще более совершенные изделия с улучшенным коэффициентом мощности и непрерывным свечением. Бездрайверная технология обещает породить новое поколение светотехнической продукции.
Можно ли самому подобрать и заменить в пульте от телевизора
В некоторых случаях возникает необходимость замены излучающего диода в пульте управления бытовой техникой:
Оба варианта подразумевают проблему – тип (и, соответственно, характеристики) родного излучателя в большинстве случаев неизвестен. В первом случае надо подобрать элемент, идентичный по параметрам. Во втором – с лучшими характеристиками, но так, чтобы не перегрузить выходной ключ пульта.
Другая проблема – более мощный светодиод может не дать увеличения дальности, если длина излучаемой им волны не совпадет с участком чувствительности приемного элемента. Сигнал будет более интенсивным, но фотодиод не сможет эффективно преобразовать его. И даже если все совпадет, но телесный угол излучения будет более узким, придется более точно «прицеливаться» пультом в сторону управляемой аппаратуры, что снижает комфортность работы. Еще надо иметь в виду, что более мощный LED потребляет больше электроэнергии, и батареи в пульте придется менять чаще. Если все эти проблемы пользователя не пугают, и нужный светодиод приобретен (или демонтирован с устройства-донора), можно приступать к замене.
Сначала надо добраться до платы пульта. Для этого надо вывинтить саморезы, скрепляющие корпус, и отжать защелки.
Плата с установленным IR LED
Плату надо осмотреть и убедиться, что новый излучатель подходит по габаритам и расстоянию между выводами. Если все в порядке, старый светодиод надо отпаять или просто откусить с помощью кусачек, если он неисправен.
Демонтаж «родного» LED
Чтобы не ошибиться с полярностью, надо осмотреть плату – возможно, на ней есть маркировка анода и катода ИК-диода. Если нет – надо самостоятельно. Это можно сделать прозвонкой элемента мультиметром или визуально. Больший по площади вывод, похожий на флаг – это катод (минус), второй вывод – анод (плюс). Полярность надо нанести на плату, чтобы не ошибиться.
Определение полярности LED визуальным методом
Новый светодиод припаивается на штатное место. Пульт собирается в обратном порядке. Далее надо убедиться в работоспособности нового излучателя – сделать это можно, нажав любую кнопку и посмотрев на IR RED через камеру телефона. Должны быть видны вспышки. Потом можно опробовать работу пульта в штатном режиме и убедиться в том, что дальность работы увеличилась (или, хотя бы, не уменьшилась).
Инфракрасные светодиоды находятся вокруг людей в быту и промышленности так же, как и обычные светоизлучающие. От того, что их работа не заметна невооруженному глазу, их роль не становится менее значимой.
Виды светодиодов
Светодиоды – устройства довольно «молодые». Их окончательная классификация еще не сложилась. Поэтому многие известные производители используют собственные системы подразделения.
По одной из них светодиоды по назначению группируют так:
Индикаторные в своей группе делятся на следующие виды.
DIP-диоды
Аббревиатура получена от Dual In-line Package или «двойное размещение в линию». Обычно корпусы – цилиндры, но есть и параллелепипеды. На нижнем торце проволочные аксиальные выводы, параллельные основной оси симметрии корпуса. Вывод катода меньшей длины, чем анода.
Вид ДИП-светодиода над печатной платой, видна пайка в металлизованные отверстия.
Деление на типы – по диаметру корпуса и линзе на верхнем торце. Диаметры от 2-3 до 20 мм и более. Цвет свечения – любой, белых оттенков несколько.
Один из типов – мигающий 2-мя цветами, имеет 3 вывода.
Straw Hat
Дословный перевод – соломенная шляпа или брыль. Применяя к светодиодам – корпус похож на шляпу с округлым верхом.
Вариант ДИП-светодиода под названием Straw Hat или «соломенная шляпа».
Видны выводы разной длины, короткий – катод. Видны и ограничители высоты установки. Под линзой – кристалл с желтым люминофором.
Super Flux “Piranha”
Прямой перевод – сверхпоток. Piranha – перевод на русский язык – пиранья. Название светодиод получил из-за особенностей металлических выводов в виде узких полосок. Для упрощения установки в отверстия печатной платы у концов выводов при штамповке срезали углы. Так получились острые «зубы» хищной рыбы.
На выводе отштампованы «плечики» – ограничители, задающие высоту корпуса над платой. Так открыли корпус для охлаждения воздухом снизу. Кристаллы для пассивного охлаждения разместили на верхних торцах выводов.
Разместив в корпусе 2 или 3 чипа, увеличили поток света. А диод попал в группу сверхъярких.
Светодиод вида «пиранья» в прозрачном корпусе.
Виден кристалл, «накрытый» линзой и зауженные выводы-формирователи высоты установки.
SMD
Аббревиатура от Surface Mounted Device, перевод с английского – устройство, установленное на поверхность. Имеют вид прямоугольных корпусов из пластика или керамики. Выводы – снизу и на боковой части корпуса в виде контактных площадок.
Чаще всего – осветительные, но при малой мощности могут быть и индикаторными. Мощности от мВт (милливатт) до Вт. Свечение – любой цвет или оттенок белого света.
OLED
Кроме твердотельных светодиодов на основе полупроводниковых металлов – кремния, германия, арсенида галия и пр., имеется группа светодиодов на пленках из органических соединений. Их называют органические или OLED-светодиоды – Organic Light Emitting Diode.
Они также, как и полупроводниковые диоды, излучают свет, но не твердотельной структурой, а тонкими пленками. Пока основное применение находят при разработке одноцветных дисплеев. Имеющиеся недостатки цветных OLED-пленок – разное по длительности время работы пленок разного цвета свечения. По минимуму это около 12-15 тыс. часов.
Такие светодиоды после совершенствования будут широко применяться в сотовых телефонах, автомобильных и судовых GPS-навигаторах, в ночных прицелах и приборах для ночной охоты и стрельбы и пр.
Видео — обзор: сравнение QLED, OLED и LCD (IPS).
Филаментные
В 2012-2013 г. появились необычные светодиоды, которые назвали Filament. По сути – это COB-матрицы в виде длинных цилиндров диаметром 2-3 и длиной 15-30 мм. На стеклянный или сапфировый цилиндр наклеены 28-30 синих кристаллов с вкраплениями нескольких красных. Их соединяют в последовательные цепочки, и после проверки исправности заливают желтым люминофором.
Такая технология изготовления филаментных модулей получила название Chip-On-Glass или COG.
Готовые COG-матрицы размещают на арматуре обычных ламп накаливания, устанавливают в цоколь и помещают в стеклянную или пластмассовую колбу. Для охлаждения светодиодов колбу заполняют гелием.
В результате получили светодиодный ретрофит лампы накаливания. Часто лампу некорректно называют светодиодной лампой накаливания.
Термин ретрофит произошел от англ. retrofit – модернизация или модификация. Это новые источники света в корпусах с традиционными габаритами.
Филаментная светодиодная лампа в колбе «шар».
Филаментная лампа повышенной мощности в вытянутой колбе.
На рисунках выше разные по мощности и производителям филаментные светодиодные лампы. В стеклянной колбе с цоколем Е27 на арматуре для нитей накаливания закреплены филаментные COL-модули.
Вида PCB Star
Аббревиатура светодиодов этого вида образована от английского словосочетания Printed Circuit Board. Его перевод – печатная плата.
Плата диодов вида PCB Star.
Плата диодов вида PCB Star. Производитель – американская компания CREE, Модель диода XML. Желтый прямоугольник – это COB-матрица мощного диода.
Плата изготавливается из металла, хорошо проводящего тепло, например, алюминия. Конфигурация платы – 6-ти лучевая звезда. Светодиодная COB-матрица на заводе монтируется в центре платы-звезды. Плата окрашивается в черный цвет для повышения пассивного рассеивания тепла, которое выделяет мощный работающий светоизлучающий прибор.
Мощные светодиоды вида PCB Star.
6 «звездочек» слева – диоды разной мощности и оттенков белого света. Две снизу – более мощные элементы с большими кругами желтого люминофора. Справа столбик из 4-х шт. – диоды для планарного монтажа на поверхность контактных площадок на печатной плате.
Габаритный чертеж мощного планарного светодиода на плате-звезде.
Габаритный чертеж мощного планарного светодиода на плате-звезде. Высота конструкции – 6,6 мм, диаметр корпуса диода с планарными выводами – 8 мм, размер Star-платы – 22 мм.
Светодиодная COB-матрица
Если на теплопроводящую подложку из искусственного кристалла сапфира или кремния приклеить диэлектрическим клеем несколько десятков полупроводниковых кристаллов синего свечения, соединить их проводниками в последовательно-параллельные группы и залить сверху желтым люминофором, получим светодиодный модуль. Это COB-матрица. Аббревиатура образована от англоязычного словосочетания Chip-On-Board. Его переводят как «кристаллы на плате».
Светодиодная круглая COB-матрица, залитая желтым люминофором. По «ободку» расположены коричневые контактные площадки для подключения питающих и/или управляющих цепей.
В COB-матрицах применяют бескорпусные светодиодные кристаллы-чипы без подложек. Размещение чрезвычайно плотное. По такой технологии производят значительную часть мощных светодиодов, включающую сотни кристаллов. Хороший обдуваемый вентилятором радиатор-теплоотвод, иногда с использованием тепловых трубок, позволяет достичь мощности 150-200 Вт и более в одном корпусе. Матрица обеспечивает направленный поток с углом рассеивания 100-150 градусов по уровню 0,7 от максимума излучения.
Способы проверки на исправность
Так как светодиод является разновидностью обычного диода и содержит полупроводниковый переход с односторонней проводимостью, то и проверить инфракрасный светодиод можно точно также, как и обычный вентиль. Для этого понадобится мультиметр с режимом прозвонки диодов. В одном направлении IR LED будет проводить ток, а в другом – нет.
Проверка светодиода мультиметром
Если есть тестер электронных компонентов (продается на интернет-площадках южноазиатских поставщиков), можно воспользоваться им. Если полупроводниковый прибор исправен, то устройство определит его, как диод и сразу покажет расположение катода и анода.
Проверка ИК-излучателя тестером электронных компонентов
Если обычный LED можно проверить на свечение, подав на его выводы напряжение, то с ИК диодом это проблематично, ведь спектр его излучения лежит за пределами видимости. Но выход есть. Свечение в ИК-диапазоне видно через камеру смартфона. Можно подключить светодиод к источнику питания и посмотреть на него через дисплей телефона. Так можно увидеть свечение исправного IR LED. Камеры некоторых моделей iPhone оснащены инфракрасным фильтром, поэтому увидеть излучение с помощью Айфона не получится.
Наблюдение свечения IR LED (снимок сделан камерой телефона)
Если имеется заведомо исправный фотодиод, работающий в ИК-диапазоне, можно зажечь светодиод любым способом и поднести к приемному окошку фотоприемника. К выводам фотодиода надо подключить тестер (в режиме проверки диодов) с обратной полярностью. Если LED исправен, и его невидимое глазу излучение воздействует на IR-приемник, мультиметр покажет уменьшение сопротивления перехода.
Какими бывают
Как выглядит инфракрасный светодиод и можно ли его отличить от обычного? Вопрос довольно сложный, поскольку инфракрасные полупроводники имеют огромное количество форм-факторов – все зависит от их характеристик и назначения.
В компьютерных мышках и в пультах ДУ, к примеру, стоят обычные трехмиллиметровые приборы, в CD-приводах и лазерных принтерах – сверхминиатюрные в SMD или металлостеклянном корпусе. В ИК-прожекторах могут стоять как множество маломощных, так и несколько мощных инфракрасных светодиодов: обычных, диаметром до 10 мм или в SMD корпусе.
Примеры внешнего вида инфракрасных светодиодов
Цвет баллона тоже может быть различным – от прозрачного и металлического с прозрачным окном до матово-черного. Конечно, эти приборы можно отличить от светоизлучающих с красным и желтым баллонами – инфракрасные светодиоды не имеют таких цветов, но и только.
Что касается технических характеристик инфракрасных светодиодов, то основные из них следующие:
Сфера применения
Сегодня ИК-светодиод можно встретить почти всюду.
В бытовой технике. Пульты для дистанционного управления (ПДУ), лазерные принтеры, компьютерные «мыши», CD проигрыватели и т. д.
Пульт ДУ с инфракрасным светодиодом (свечение невидимо, но камера мобильного телефона его улавливает)
В системах охраны. Организация невидимого тревожного заграждения, невидимая подсветка объектов для камер ночного видеонаблюдения.
Организация светодиодного заграждения (направление невидимого ИК излучения показано условно)
В военной сфере. Невидимые невооруженным глазом лазерные ИК-прицелы, системы наведения управляемых ракет, дальномеры, прожекторы для приборов ночного видения.
Прибор ночного видения с ИК-подсветкой
В медицине. Пульсометры, тонометры, термометры, приборы для лечения и профилактики кожных и простудных заболеваний, сканеры, приборы лазерной хирургии и многое другое.
Инфракрасный пальцевый тонометр
В промышленном оборудовании. Датчики движения и подсчета, дефектоскопы, дальномеры, ИК-уровни и отвесы, устройства передачи информации по оптическим линиям связи, источники для накачки мощных твердотельных лазеров.
Лазерный ИК-светодиод с подключенным к нему оптоволоконным кабелем
Устройство и особенности ИК-светодиодов
Теоретически мы разобрались, чем отличаются инфракрасные светодиоды от обычных светоизлучающих. Но как это достигается на практике? Разберемся в принципе работы и тех, и других.
Некогерентные светодиоды
Конструктивно прибор представляет собой «слоеный пирог», состоящий из двух типов полупроводников: n и p. При прохождении тока через этот pn-переход отрицательный заряд электронов (n) соединяется с ионами положительно заряженных дырок (p). В этот момент выделяется энергия, и мы видим излучение света.
Принцип работы некогерентного светодиода
Но, как мы знаем, светодиоды могут светиться разным цветом, т. е. излучать волны разной длины – от ультрафиолета до инфракрасного спектра. Почему? На спектр излучения кристалла влияет тип материала, из которого он изготовлен. К примеру, светодиоды на основе нитрида алюминия работают в ультрафиолетовом спектре, фосфид галлия даст красный цвет, а приборы на основе арсенида галлия излучают в инфракрасном спектре.
Таким образом, светодиод инфракрасного спектра излучения отличается от светоизлучающего только материалом, из которого изготовлен полупроводник. Принцип же работы и у тех, и у других одинаков.
Осталось разобраться, почему они называются некогерентными. Любой светодиод излучает волну не строго определенной частоты, а захватывает небольшой участок спектра. Участок этот не особенно велик и лежит в одном цветовом диапазоне, но он есть.
То есть если полупроводник светится, скажем, синим, то этот цвет не чисто синий с определенной, строго заданной длиной волны, а просто спектр излучения прибора лежит в синем диапазоне. К примеру, устройства на основе селенида цинка излучают волны длиной от 450 до 500 нм, но мы все равно видим синий цвет. Это хорошо видно по нижеприведенной таблице спектров.
Таблица цветовых спектров
То же касается светодиодов и другого цвета свечения, включая инфракрасные. Для того чтобы получить излучение строго заданной частоты, используется совершенно иной принцип, а сами приборы, которые так работают, получили название полупроводниковых лазеров.
Лазеры – когерентные светодиоды
Полупроводниковый лазер представляет собой все тот же «слоеный пирог», только размеры этого «пирога» имеет строго заданные параметры, совпадающие с длиной волны определенного спектра или кратные ей. При этом торцы кристалла отполированы до зеркального блеска, а нижняя и верхняя его части непрозрачны.
При подаче на кристалл напряжения происходит то же, что и в обычном светодиоде: он начинает излучать спектр волн, лежащих в некотором диапазоне. Излучение же, направленное внутрь, начинает отражаться от полированных стенок кристалла. Причем длина волны, на которую настроен кристалл, будет отражаться многократно, остальные частоты начнут затухать, накладываясь друг на друга в разных фазах.
Проходя вдоль кристалла, являющегося, по сути, резонатором, излучение определенной длины будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Эта фаза называется процессом накачки лазера. Как только усиление превысит потери, начнётся лазерная генерация.
Принцип работы полупроводникового лазера
Как подключить
Подключение инфракрасного светодиода ничем не отличается от подключения обычного светоизлучающего. И тот, и другой включаются в цепь постоянного тока через ограничивающий резистор, обеспечивающий номинальный рабочий ток прибора. Ну и не стоит забывать, что инфракрасный светодиод – прибор полярный, поэтому на его анод нужно обязательно подавать «плюс», а на катод – «минус». При этом место включения резистора в цепь роли не играет.
Простейшая схема подключения ИК-светодиода
Для того чтобы рассчитать номинал токоограничивающего резистора, необходимо знать:
Сам же расчет исключительно прост. Из напряжения питания вычитаем напряжение падения на полупроводнике и находим напряжение падения на резисторе:
U = Uпит. – Uпадения на светодиоде
Теперь рассчитываем номинал резистора, который обеспечит нужный нам ток через цепь, воспользовавшись законом Ома:
R = U/ I
Онлайн рассчет Введите напряжение и выберите цвет светодиода
Номинальный ток светодиода
Мощность токоограничивающего резистора не менее:
Стандартный резистор (E24):
Сопротивление рассчитывается по средней величине диапазона номинальных напряжений указанного в скобках. Номинальный ток, который указан по умолчанию (20 мА) — это номинальный ток для большинства 5-миллиметровых светодиодов. Полученное значение сопротивления нужно округлить в большую сторону до ближайшего номинального сопротивления резисторов из доступных. То есть если получилось 45 Ом, но такого резистора вы купить не можете, смело округляйте до 47 Ом (есть в основных распространённых рядов номиналов резисторов E3, E6, E12, E24).
Важно! После расчёта, подбора резистора и подключения светодиода измеряйте ток через него и сверяйте с указанным в технической документации. При необходимости корректируйте сопротивления резистора.
Важно! Драйвер должен обеспечивать точно такой же или меньший ток, на который рассчитан конкретный светодиод.
Подключение светодиода через простейший драйвер, собранный на интегральном стабилизаторе
В нижней части рисунка указано соответствие номинала резистора необходимому току.
Принцип работы или что светится в светодиоде
Подключая к p-n переходу постоянное напряжение определенной величины и полярности, вызывают в переходе электрический ток в виде встречного потока носителей электрического заряда — «дырок» – положительных «частиц» и электронов – отрицательных. При встрече этих потоков в p-n-переходе происходит их рекомбинация или слияние. В «дырку» попадает свободный электрон с повышенной энергией, и она исчезает.
Схема работы светодиода.
Справа n-полупроводниковая часть кристалла, «обогащенная» свободными электронами, слева – p-полупроводниковая часть с положительными «частицами» – «дырками».
Энергия высвобождается в виде квантов света. Они эмитируются, т.е. излучаются из торца кристалла. Поток квантов попадает на отражатель. Его полированная поверхность отражает свет в нужном направлении. Особой конфигурацией поверхности формируют требуемую диаграмму направленности светового потока.
Схема получения света в p-n-переходе.
Напряжение для питания перехода прикладывается «+» – к аноду диода, а «-» – к катоду.
Технические характеристики и виды
Как любой полупроводниковый диод, IR LED характеризуется электрическими параметрами:
Помимо этого, у ИК светодиодов имеются характеристики параметров излучения:
В некоторых случаях важно знать время нарастания сигнала и время спада. Эти данные можно найти в даташитах на ИК-элементы.
Как проверить исправность ИК-диода
Осталось научиться проверять исправность ИК-светодиодов. Начнем с самой распространенной в быту поломки – выходу из строя ИК-диодов для пультов ДУ (ПДУ). Как проверить, исправен ли светодиод, не разбирая сам пульт? Ведь излучение таких приборов невидимо для человека. Да, невидимо, но его отлично видят видеокамеры.
Берем смартфон, ставим его в режим фотосъемки, подносим к камере мобильного устройства пульт ДУ, нажимаем на любую кнопку и смотрим на дисплей. Если с пультом все в порядке, то мы увидим, как светодиод начнет мигать.
Проверка ИК-светодиода в пульте ДУ при помощи камеры мобильного телефона
Тот же результат можно получить и при помощи веб-камеры или любой другой видеокамеры с контрольным дисплеем.
Есть и еще один метод проверки инфракрасного светодиода – при помощи мультиметра (тестера). Он очень удобен, если светодиод никуда не впаян. Для этого понадобится любой мультиметр, имеющий режим проверки диодов.
Этот прибор имеет режим проверки диодов
Инфракрасный светодиод проверяют следующим образом. Переключают прибор в режим теста диодов (на фото выше обозначен стрелкой) и щупами касаются выводов светодиода сначала в одной полярности, затем в другой. Отметим, что в этом режиме измеряется падение напряжения.
Схема подключения инфракрасного диода к тестеру
В одной из полярностей падение напряжения на переходе излучателя будет намного меньше, а через камеру смартфона мы увидим, как диод засветился.
Если нет мультиметра, то не впаянный в плату светодиод можно зажечь при помощи батарейки-«монетки» (CR2025 или CR2035). Подключаем ИК-светодиод, соблюдая полярность (анод к «плюсу»), а его свечение контролируем при помощи камеры смартфона.
Проверка светодиода при помощи батарейки
Можно ли проверить светодиод, не выпаивая его из платы? Можно. Берем мультиметр и проводим те же операции, что и в предыдущем случае. Благодаря токоограничивающему резистору внутренние элементы конструкции не будут влиять на качество проверки.
Вот и вся информация об инфракрасных светодиодах. Теперь мы знаем, что это за приборы, как работают и где используются.
Как выбрать фонарь на светодиоде Cree XM-L T6
Типовая классификация
К типам светодиодов можно отнести:
Трехкристальный светодиод в SMD-корпусе для монтажа на поверхности печатной платы.
Если в трехкристальном светодиоде кристаллы одного цвета свечения – имеем сверхъяркий светодиод. При разных цветах света кристалла получаем RGB-триаду или многоцветный управляемый светоизлучающий прибор.
SMD – аббревиатура от английского словосочетания Surface Mounted Device, устройство поверхностного монтажа. Используется для автоматизации размещения и пайки электронных компонентов на печатных платах, в т.ч. и светодиодов. Применяют в лентах, линейках, модулях и обычных печатных платах.
К основным цветам относится и пара цветов YB – Yellow, желтый и Blue, синий. Есть и другие комбинации цветов, дающих после смешивания белый цвет.
Мощные светодиоды на основе COB-матриц
У крупных моделей в углах корпуса имеются отверстия для крепления. Модели небольших размеров крепятся пайкой на печатную плату.
В дополнение к обычным характеристикам светодиодов у мощных моделей добавляются несколько дополнительных параметров:
Маломощные светодиоды
По величине потребляемой мощности – это светодиоды от 0,05 до 0,5 Вт, рабочий ток – 20-60 мА (средней мощности – 0,5-3 Вт, ток 0,1-0,7 А, большой – более 3 Вт, ток 1 А и более).
Конструктивно к маломощным светодиодам относятся несколько групп LED-излучателей света:
Маломощные светодиоды в разных корпусах.
На картинке светодиоды сверху вниз:
Применение светодиодов
Сферы применения светодиодов постоянно расширяются. Первоначально они использовались как световые индикаторы в схемах включения или работы электронной аппаратуры. Например, включение передатчика, переход на повышенную или пониженную мощность и т.д. Могли фиксировать автоматическое включение, например, при появлении сигнала вызова или для привлечения внимания. Использовались мигающие или одноцветные светодиоды – красные, желтые, зеленые, синие.
Малогабаритные сверхъяркие DIP-светодиоды соединяли в последовательно-параллельные цепочки и питали их прямо от сети 220 В. Поместив такие последовательные группы диодов в прозрачную гибкую ПВХ-трубку и залив их прозрачным герметиком, получили «гибкий неон» – светящийся «жгут». Его можно проложить по бортику бассейна, бордюру дорожки, украсить крышу дома или дерево в саду.
Использование гибкого неона.
Появление гибких многослойных плат и SMD-корпусов для поверхностного монтажа привело к созданию гибких светодиодных лент.
Вначале это были средства декоративной отделки интерьера помещений. Увеличение мощности SMD-диодов и плотности их размещения на плате позволило начать использование светодиодных лент вначале для вспомогательного, а потом и основного освещения. Увеличение степени пылевлагозащиты лент привело к их использованию для декоративной подсветки, а потом и основного освещения в условиях улицы.
Одновременно шла разработка светодиодных ламп для замены ламп накаливания в светильниках – бра, люстрах, настольных лампах. Появились лампы-ретрофиты – полные аналоги ламп накаливания и люминесцентных трубок по форме, размерам колб, напряжению питания. Началась постепенная замена ламп накаливания на светодиодные ретрофиты. При этом прекращалось производство ЛН – вначале 100 Вт и более, потом 75, 60 и т.д.
Разработка мощных единичных светодиодов, особенно в корпусе Emitter или PCB Star, способствовала появлению фонариков со встроенным аккумулятором. Яркость и длительность свечения после одного цикла заряда в разы превосходила прежние модели.
Отличная управляемость светодиодов электронными средствами — контроллерами и диммерами – регуляторами яркости, позволила использовать мощные прожекторы в светодинамической иллюминации улиц и площадей городов и поселков в любом регионе страны.
Применение в декоративной подсветке зданий.
Светодиодные ленты типа RGB, RGBW и RGBWW дали возможность не только получить мощные потоки белого света, но и в широких пределах изменять его белый оттенок от желтоватого теплого до синеватого и голубого холодного.
Управляемость новых источников света позволяет широко использовать их в световой рекламе – «бегущих строках», световых табло, информационных экранах и т.п. Используют эти яркие цветные и белые источники света в фасадной рекламе и на крышах – плоские и объемные буквы и рисунки, фирменные названия, изображения товарных знаков и многое другое.
И все эти конструкции работают много дольше аналогов на обычных лампах, почти не требуя обслуживания и потребляя при этом в разы меньше электроэнергии. Технические характеристики светодиодов и светотехнической аппаратуры постоянно растут. Стоимость светодиодов уменьшается, а применение расширяется.
Конструкция
Устройство светодиода в вертикальном разрезе.
Сиреневым цветом изображена теплоотводящая подложка. Серыми трапециями – сечения светоотражающего рефлектора-отражателя кольцевой конфигурации из алюминия. В центре голубой – чип-кристалл светодиода с подключенными золотыми или серебряными проволочками, подпаянными к выводам анода и катода.
Специфика и область применения ИК светодиодов
Особенность инфракрасного излучения в том, что оно не видимо человеческому глазу (его частота лежит ниже границы, воспринимаемой человеческим зрением). Другое полезное качество ИК-свечения в его почти полной безвредности для человеческого организма (в отличие от ультрафиолетового излучения, которое мы также не видим). Поэтому самое распространенное применение инфракрасных LED – излучатель в пультах управления бытовой техникой (телевизорами, кондиционерами и т.п.).
Расположение ИК-диапазона в спектре оптического излучения
Не менее широко применяют IR-излучатели в охранных системах. Светодиод и фотодиод создают оптопару. В нормальном состоянии излучение LED попадает в фотоприемник. Если между приемником и передатчиком излучения попадает предмет или человек, фотодиод перестает видеть луч, и это служит поводом для генерации сигнала тревоги. Тот же принцип можно применить для подсчета предметов, движущихся, например, по конвейеру. Каждое прерывание ИК-луча увеличивает показания счетчика на единицу.
Таблица напряжения светодиодов
Чтобы светодиод обеспечивал при работе все характеристики, заданные его конструкцией и технологией изготовления, ему нужно обеспечить расчетное электропитание. Например, подать на его анод и катод напряжение, которое будет немного больше прямого напряжения p-n перехода. Избыток напряжения следует «погасить» на последовательно включенном резисторе. Резистор называется токоограничивающим. Он служит для того, чтобы не допустить превышения тока через p-n переход.
У светодиода два контактных вывода – анод и катод, катод короче анода. Если длина одинаковая, то определить их можно пальчиковой батарейкой. Если появился свет, значит, перед вами анод.
Таблица. Прямое напряжение p-n перехода светодиода цветного свечения.