Можно ли удалить избыток углекислого газа с планеты? )

Можно ли удалить избыток углекислого газа с планеты? ) Анемометр

Углекислый газ в атмосфере Земли

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 декабря 2021 года; проверки требуют 7 правок.

Можно ли удалить избыток углекислого газа с планеты? )

Изменения концентрации CO2 в ppm на протяжении последних 800 тыс. лет (сверху — за последнюю тысячу лет) по 2019 год.

Роль в парниковом эффектеПравить

Спектр пропускания земной атмосферы (зависимость прозрачности от длины волны). Видны полосы поглощения CO2, O2, O3 и H2O.

Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание), переизлучение солнечного света в инфракрасном диапазоне длин вол:
1. Интенсивность солнечного излучения (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны
3. Спектры поглощения различных парниковых газов и рэлеевское рассеяние.

Роль в похолоданииПравить

Источники углекислого газаПравить

К естественным источникам диоксида углерода в атмосфере относятся вулканические извержения, сгорание органических веществ в воздухе и дыхание представителей животного мира (аэробные организмы). Также углекислый газ производится некоторыми микроорганизмами в результате процесса брожения, клеточного дыхания и в процессе гниения органических остатков в воздухе. К антропогенным источникам эмиссии CO2 в атмосферу относятся: сжигание ископаемых и неископаемых энергоносителей для получения тепла, производства электроэнергии, транспортировки людей и грузов. К значительному выделению CO2 приводят некоторые виды промышленной деятельности, такие, например, как производство цемента и утилизация попутных нефтяных газов путём их сжигания в факелах.

Растения преобразуют получаемый углекислый газ в углеводы в ходе фотосинтеза, который осуществляется посредством пигмента хлорофилла, использующего энергию солнечного излучения. Получаемый газ, кислород, высвобождается в атмосферу Земли и используется для дыхания гетеротрофными организмами и другими растениями, формируя таким образом цикл углерода.

Эмиссия углерода в атмосферу в результате промышленной деятельности в 1800—2004 гг.

Таким образом, несмотря на то, что (по состоянию на 2011 год) суммарное антропогенное выделение CO2 не превосходит от его естественного годового цикла, наблюдается увеличение концентрации, обусловленное не только уровнем антропогенных выбросов, но и постоянным ростом уровня выбросов со временем.

Изменение температуры и углеродный цикл

Сезонные колебания и изменение по широте концентрации углекислого газа в интервале с 2005 по 2014 год.

Ежемесячная и усреднённая за год концентрации атмосферного CO2, на основе наблюдений в обсерватории Мауна-Лоа (Mauna Loa Observatory), Гавайи. На врезке показаны сезонные отклонения от среднегодового значения.

Изменение концентрации в прошломПравить

Изменения концентрации атмосферного углекислого газа в течение фанерозоя (последние 541 млн лет, современность справа). В течение бо́льшей части последних лет уровень CO2 значительно превосходил современный.

На более продолжительных интервалах времени содержание атмосферного CO2 определяется на основании определения баланса геохимических процессов, включая определение количества материала органического происхождения в осадочных породах, выветривание силикатных пород и вулканизм в изучаемый период. На протяжении десятков миллионов лет в случае любого нарушения равновесия в цикле углерода происходило последующее уменьшение концентрации CO2. Потому как скорость этих процессов исключительно низка, установка взаимосвязи эмиссии диоксида углерода с последующим изменением его уровня в течение следующих сотен лет является сложной задачей.

Взаимосвязь с концентрацией в океанеПравить

Обмен диоксидом углерода между водоёмами и воздухом

В земных океанах диоксида углерода в сто раз больше, чем в атмосфере — 36⋅1012 тонн в пересчёте на углерод. Растворенный в воде CO2 содержится в виде гидрокарбонат– и карбонатионов. Гидрокарбонаты получаются в результате реакций между скальными породами, водой и CO2. Одним из примеров является разложение карбоната кальция:

Про анемометры:  Измеритель влажности воздуха комнатный купить в минске

<span data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0ae556da2703b32cc05b6a8f47debfc5f231b5e" data-alt="{\displaystyle {\ce {CaCO3 + CO2 + H2O Ca^{2+}\ +\ 2HCO3-}}}” data-class=”mwe-math-fallback-image-inline”> .

Реакции, подобные этой, приводят к сглаживанию колебаний концентрации атмосферного CO2. Так как правая часть реакции содержит кислоту, добавление CO2 в левой части уменьшает pH, то есть приводит к закислению океана. Другие реакции между диоксидом углерода и некарбонатными породами тоже приводят к образованию угольной кислоты и его ионов.

Влияние концентрации CO2 в атмосфере на продуктивность растений (фотосинтеза)Править

По способу фиксации CO2 подавляющее большинство растений относятся к типам фотосинтеза С3 и С4. К группе С3 принадлежит большинство известных видов растений (около растительной биомассы Земли это С3-растения). К группе С4 принадлежат некоторые травянистые растения, в том числе важные сельскохозяйственные культуры: кукуруза, сахарный тростник, просо.

С4-механизм фиксации углерода выработался как приспособление к условиям низких концентраций CO2 в атмосфере. Практически у всех видов растений рост концентрации CO2 в воздухе приводит к активизации фотосинтеза и ускорению роста.

У С3-растений кривая начинает выходить на плато при концентрации CO2 более .

Однако у С4-растений рост скорости фотосинтеза прекращается уже при концентрации CO2 в . Поэтому современная его концентрация, составляющая на данный момент более 400 молекул на миллион (ppm), уже достигла оптимума для фотосинтеза у С4-растений, но всё ещё очень далека от оптимума для С3-растений.

По экспериментальным данным, удвоение текущей концентрации CO2 приведет (в среднем) к ускорению прироста биомассы у С3-растений на , а у С4 — на

Добавление в окружающий воздух CO2 приведет к росту продуктивности у С3-растений на и у С4 — на у фруктовых деревьев и бахчевых культур — на бобовых — на корнеплодных — на овощных — на

ТакжеПравить

СсылкиПравить

  • Углекислый газ в атмосфере земли, Б. М. Смирнов, Объединённый институт высоких температур РАН, 126 (11) (1978), Москва

Гиперкапния

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 мая 2022 года; проверки требуют 2 правки.

  • При пользовании неисправных дыхательных аппаратов замкнутого цикла (ребризёров).
  • В плохо вентилируемых барокамерах, где содержат группу людей.
  • При забивке баллонов акваланга.
  • При использовании компрессора с плохими фильтрами в душном непроветриваемом помещении.
  • При плавании с очень длинной дыхательной трубкой: при выдохе в такой трубке остаётся старый воздух с повышенным содержанием СО2, и пловец вдыхает его в следующем дыхательном цикле.
  • При задержках дыхания под водой. Многие подводники стараются экономить воздух и задерживают выдох. Это и приводит к отравлению СО2, отчего начинаются головные боли.
  • В результате аллергических реакций организма.
  • При проведении опытов с большими объёмами сухого льда в замкнутых помещениях[3].

Лечение производится чистым кислородом, но ни в коем случае не при повышенном давлении — пропорционально парциальным давлениям газов гемоглобин не будет успевать освобождаться от кислорода и захватывать углекислый газ. Повышенное давление кислорода — тоже причина гиперкапнии.

Для контроля гиперкапнии и гипокапнии в медицине используют капнограф — анализатор содержания углекислого газа в выдыхаемом воздухе. Углекислый газ обладает большой диффузионной способностью, поэтому в выдыхаемом воздухе его содержится практически столько же, сколько в крови, и величина парциального давления CO2 в конце выдоха является важным показателем жизнедеятельности организма.

Средства индивидуальной защиты органов дыханияПравить

Чрезмерное воздействие углекислого газа на организм мешает своевременному и правильному использованию респираторов в загрязнённой атмосфере, особенно при невысокой концентрации загрязнений.

ТакжеПравить

ПримечанияПравить

  1. Лосев Н.И., Гологорский В.А., Черняков И.Н. Гиперкапния // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1977. — Т. 5. Гамбузия – Гипотиазид. — 568 с. —
  2. Углекислый газ (углекислота, двуокись углерода, диоксид углерода). Дата обращения: 19 июля 2011. Архивировано 5 ноября 2011 года.
  3. (Роспотребнадзор). № 2138. Углерода диоксид // ГН 2.2.5.3532-18 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» / утверждены А.Ю. Поповой. — Москва, 2018. — С. 29. — 170 с. — (Санитарные правила). Архивная копия от 12 июня 2020 на Wayback Machine
  4. R.J. Roberge, A. Coca, W.J. Williams, J.B. Powell & A.J. Palmiero. Physiological Impact of the N95 Filtering Facepiece Respirator on Healthcare Workers (англ.) // American Association for Respiratory Care (AARC) Respiratory Care. — Daedalus Enterprises Inc, 2010. — May (vol. 55 (). — P. 569—577. — ISSN 0020-1324. — PMID 20420727. Архивировано 31 октября 2020 года.PDF Архивная копия от 12 января 2021 на Wayback Machine перевод Архивная копия от 14 апреля 2021 на Wayback Machine
  5. Raymond J. Roberge, Aitor Coca, W. Jon Williams, Jeffrey B. Powell and Andrew J. Palmiero. Surgical mask placement over N95 filtering facepiece respirators: Physiological effects on healthcare workers (англ.) // Asian Pacific Society of Respirology Respirology. — John Wiley & Sons, Inc., 2010. — Vol. 15. — . — P. 516—521. — ISSN 1440-1843. — doi:10.1111/j.1440-1843.2010.01713.x. — PMID 20337987. Архивировано 14 июля 2021 года. Копия Архивная копия от 15 июля 2020 на Wayback Machine Перевод Архивная копия от 14 апреля 2021 на Wayback Machine
  6. E.J. Sinkule, J.B. Powell, F.L. Goss. Evaluation of N95 respirator use with a surgical mask cover: effects on breathing resistance and inhaled carbon dioxide (англ.) // British Occupational Hygiene Society The Annals of Occupational Hygiene. — Oxford University Press, 2013. — Vol. 57. — . — P. 384—398. — ISSN 0003-4878. — doi:10.1093/annhyg/mes068. — PMID 23108786. Архивировано 1 ноября 2020 года.
  7. E.C.H. Lim, R.C.S. Seet, K.‐H. Lee, E.P.V. Wilder‐Smith, B.Y.S. Chuah, B.K.C. Ong. Headaches and the N95 face-mask amongst healthcare providers (англ.) // Acta Neurologica Scandinavica. — John Wiley & Sons, 2006. — Vol. 113. — . — P. 199—202. — ISSN 0001-6314. — doi:10.1111/j.1600-0404.2005.00560.x. — PMID 16441251. Архивировано 1 ноября 2020 года. есть перевод Архивная копия от 6 декабря 2020 на Wayback Machine
Про анемометры:  ГБО Тамона (Tamona) 4, обзор ЭБУ и другой продукции литовцев

СсылкиПравить



При нормальных условиях, диоксид углерода — это бесцветный газ, почти без запаха (в больших концентрациях с кисловатым «содовым» запахом).

Плотность при нормальных условиях — 1,98 кг/м3 (в 1,5 раза тяжелее воздуха). При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное (возгонка). Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.

ИсторияПравить

Нахождение в природеПравить

СвойстваПравить

Фазовая диаграмма диоксида углерода. В области давлений ниже давления в тройной точке на диаграмме имеется только линия сублимации, то есть твёрдый и жидкий диоксид углерода сосуществовать не могут. Это объясняет, почему при атмосферном давлении сухой лёд не плавясь возгоняется и превращается сразу в углекислый газ

Диоксид углерода (IV) (углекислый газ) — бесцветный газ, при малых концентрациях в воздухе не имеет запаха, при больших концентрациях имеет характерный кисловатый запах газированной воды. Тяжелее воздуха приблизительно в 1,5 раза.

Молекула углекислого газа линейна, расстояние от центра центрального атома углерода до центров двух атомов кислорода 116,3 пм.

При температуре −78,3 °С кристаллизуется в виде белой снегообразной массы — «сухого льда». Сухой лёд при атмосферном давлении не плавится, а испаряется, не переходя в жидкое состояние, температура сублимации −78 °С. Жидкий углекислый газ можно получить при повышении давления. Так, при температуре 20 °С и давлении свыше 6 МПа (~60 атм) газ сгущается в бесцветную жидкость. В тлеющем электрическом разряде светится характерным бело-зелёным светом.

Негорюч, но в его атмосфере может поддерживаться горение активных металлов, например, щелочных металлов и щёлочноземельных — магния, кальция, бария.

Углекислый газ образуется при гниении и горении органических веществ. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Растворим в воде (0,738 объёмов углекислого газа в одном объёме воды при 15 °С).

Про анемометры:  Давление газа в газопроводе: низкое, нормальное, высокое, как определить, типы манометров

По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует нестойкую угольную кислоту. Реагирует со щелочами с образованием её солей — карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом) и нуклеофильного присоединения (например, с магнийорганическими соединениями).

2MgO + C}}}” data-class=”mwe-math-fallback-image-inline”> .

Взаимодействие с оксидом активного металла:

CaCO3}}}” data-class=”mwe-math-fallback-image-inline”> .

При растворении в воде образует равновесную смесь раствора диоксида углерода и угольной кислоты, причём равновесие сильно сдвинуто в сторону разложения кислоты:

 .

Реагирует со щелочами с образованием карбонатов и гидрокарбонатов:

CaCO3 v + H2O}}}” data-class=”mwe-math-fallback-image-inline”>  (качественная реакция на углекислый газ),
KHCO3}}}” data-class=”mwe-math-fallback-image-inline”> .

Во вдыхаемом человеком воздухе углекислый газ практически отсутствует, а в выдыхаемом воздухе его содержится около 4 % (объёмных)

Содержание углекислого газа в крови человека приблизительно таково:

Углекислый газ транспортируется в крови тремя различными способами (точное соотношение каждого из этих трёх способов транспортировки зависит от того, является ли кровь артериальной или венозной).

  • Бо́льшая часть углекислого газа (от 70 % до 80 %) преобразуется ферментом карбоангидразой эритроцитов в ионы гидрокарбоната[26] при помощи реакции H2CO3 -> H^+ + HCO3^-}}}” data-class=”mwe-math-fallback-image-inline”> .
  • Около 5—10 % углекислого газа растворено в плазме крови[26].
  • Около 5—10 % углекислого газа связано с гемоглобином в виде карбаминосоединений (карбогемоглобин)[26].

Гемоглобин, основной кислород-транспортирующий белок эритроцитов крови, способен транспортировать как кислород, так и углекислый газ. Однако углекислый газ связывается с гемоглобином в ином месте, чем кислород. Он связывается с N-терминальными концами цепей глобина, а не с гемом. Однако благодаря аллостерическим эффектам, которые приводят к изменению конфигурации молекулы гемоглобина при связывании, связывание углекислого газа понижает способность кислорода к связыванию с ним же, при данном парциальном давлении кислорода, и наоборот — связывание кислорода с гемоглобином понижает способность углекислого газа к связыванию с ним же, при данном парциальном давлении углекислого газа. Помимо этого, способность гемоглобина к преимущественному связыванию с кислородом или с углекислым газом зависит также и от pH среды. Эти особенности очень важны для успешного захвата и транспорта кислорода из лёгких в ткани и его успешного высвобождения в тканях, а также для успешного захвата и транспорта углекислого газа из тканей в лёгкие и его высвобождения там.

Ионы гидрокарбоната очень важны для регуляции pH крови и поддержания нормального кислотно-щелочного равновесия. Частота дыхания влияет на содержание углекислого газа в крови. Слабое или замедленное дыхание вызывает респираторный ацидоз, в то время как учащённое и чрезмерно глубокое дыхание приводит к гипервентиляции и развитию респираторного алкалоза.

Датчик содержания углекислого газа в помещении

ПолучениеПравить

  • В промышленных количествах углекислота выделяется из дымовых газов, или как побочный продукт химических процессов, например, при разложении природных карбонатов[29] (известняк, доломит) или при производстве алкоголя (спиртовое брожение). Смесь полученных газов промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната чаще применяется водный раствор моноэтаноламина, который при определённых условиях способен абсорбировать  , содержащийся в дымовом газе, а при нагреве отдавать его; таким образом отделяется готовый продукт от других веществ.
  • Также углекислый газ получают на установках разделения воздуха как побочный продукт получения чистого кислорода, азота и аргона.
CaCl2 + H2O + CO2 ^}}}” data-class=”mwe-math-fallback-image-inline”> .

Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который замедляет реакцию, и который удаляется значительным избытком кислоты с образованием кислого сульфата кальция.

Для приготовления сухих напитков может быть использована реакция пищевой соды с лимонной кислотой или с кислым лимонным соком. Именно в таком виде появились первые газированные напитки. Их изготовлением и продажей занимались аптекари.

CO2 ^ + 394 kJ}}}” data-class=”mwe-math-fallback-image-inline”> .
Оцените статью
Анемометры
Добавить комментарий