Отвод газов от газового котла

Отвод газов от газового котла Анемометр

11. УСЛОВИЯ ОБРАЗОВАНИЯ ПРОДУКТОВ НЕПОЛНОГО СГОРАНИЯ И СНИЖЕНИЕ В НИХ КОНЦЕНТРАЦИИ ВРЕДНЫХ ВЕЩЕСТВ

При сжигании горючих газов в продуктах сгорания могут содержаться компоненты как полного (диоксид углерода и водяной пар), так и неполного сгорания (оксид углерода, водород, ненасыщенные, насыщенные, ароматические углеводороды и сажистые частицы). Кроме того, в продуктах сгорания всегда обнаруживаются и оксиды азота.

Основные причины их большого содержания:

  • сжигание газов с недостаточным количеством воздуха;
  • плохое смешение горючих газов и воздуха до и в процессе горения;
  • чрезмерное охлаждение пламени до завершения реакций горения.

Для метана реакции горения (в зависимости от концентрации кислорода в реагирующей смеси) могут быть описаны следующими уравнениями:

СН4 2О2 = СО2 2Н2О 800,9 МДж/моль

при стехиометрическом соотношении или при избытке окислителя;

СН4 О2 = СО Н2 Н2О Q и СН4 0,5О2 = СО 2Н2О Q

при недостатке окислителя.

На рис. 8.12 показан приближенный усредненный состав некоторых промежуточных соединений — водорода, оксида углерода, этилена, ацетилена и сравнительно небольшое число насыщенных и простейших ароматических соединений — и диоксида углерода, возникающих в пламени при диффузионном горении природного газа (97%). Сжигание газа производилось в ламинарном факеле, газ вытекал из трубки диаметром 12 мм. Общая высота пламени 130–140 мм.

Максимальная концентрация водорода и ацетилена достигается примерно на одной высоте пламени, они исчезают почти одновременно в вершине светящейся зоны пламени. Из всех образующихся в пламени промежуточных соединений (исключая сажистые частицы) оксид углерода исчезает последним.

Горение углеводородных газов с недостатком окислителя приводит к образованию частиц сажи, придающих пламени желтую окраску. Процесс выгорания сажи протекает стадийно и сравнительно медленно. Иногда выгорание образовавшихся частиц сажи затягивается и может прекратиться полностью при входе в низкотемпературную область факела или при омывании пламенем теплообменных поверхностей.

Предотвращение образования сажистых частиц достигается предварительным смешением углеводородных газов с достаточным количеством окислителя. Содержание первичного воздуха в смеси, при котором возникает прозрачное пламя, зависит не только от вида углеводородов, но и от условий смешения с вторичным воздухом (диаметра огневых каналов горелок) (рис. 8.13).

На границе и выше кривых пламя прозрачно, а ниже кривых имеет желтые язычки. Кривые показывают, что содержание первичного воздуха в смеси возрастает при увеличении числа углеродных атомов в молекуле и диаметра огневых каналов горелок. Коэффициент избытка первичного воздуха α1 в смеси, при котором исчезают желтые язычки пламени, в зависимости от указанных факторов может быть определен для малых огневых каналов горелок:

α1 = 0,12 (m n/4)0,5 (dk/d0)0,25(8.35)

где m и n — число углеродных и водородных атомов в молекуле или среднее их число для сложного газа; dk — диаметр огневых каналов горелки, мм; d0 — эталонный диаметр канала горелки (1 мм).

Обеспечение полноты сгорания в практических условиях — задача достаточно сложная, зависящая не только от принципа сжигания газа, но и от условий развития пламени в топочном объеме. Наиболее высокие требования по полноте сгорания предъявляются к бытовым аппаратам и другим установкам, сбрасывающим продукты сгорания в атмосферу.

Сгорание газа в таких установках является наиболее трудным, так как связано с омыванием пламенем холодных теплообменных поверхностей. Для сжигания газа в бытовых плитах применяют инжекционные многофакельные горелки, образующие гомогенную смесь с коэффициентом избытка первичного воздуха α1 < 1. Недостающий для сгорания газа воздух поступает за счет диффузии из окружающей атмосферы.

Концентрация оксида углерода в продуктах сгорания в газовой плите

Рис. 8.14. Концентрация оксида углерода
в продуктах сгорания в газовой плите
а – горелка с периферийной подачей вторичного воздуха;
б – с центральной и периферийной подачей вторичного воздуха
1 – природный газ, горелка с периферийным подводом
вторичного воздуха, расстояние до дна посуды 25 мм;
2–4 – природный газ, горелка с перифейрийным и
центральным подводом вторичного воздуха, расстояние
до дна посуды, мм: 2 – 25, 3 – 18, 4 – 10;
5 – сжиженный газ, горелка с центральным и периферийным
подводом вторичного воздуха, расстояние до дна посуды 25 мм;
6 – сжиженный газ, горелка с периферийным подводом

На рис. 8.14 приведены схемы 2-конфорочных горелок для бытовых газовых плит и усредненная концентрация оксида углерода СО в продуктах сгорания природного метана (95 об. %) и пропана (93 об. %) при работе горелок с номинальной тепловой мощностью. Различие горелок заключается в том, что к одной из них вторичный воздух подводится только с периферии, а к другой — как с периферии, так и из центрального канала.

Полнота сгорания газа зависит от коэффициента избытка первичного воздуха в смеси, расстояния от огневых каналов горелки до дна посуды, вида горючего газа, способа подвода вторичного воздуха. При этом увеличение содержания первичного воздуха в смеси, а также увеличение расстояния от горелки до дна посуды приводят к снижению концентрации оксида углерода в продуктах сгорания.

Минимальная концентрация оксида углерода соответствует коэффициенту избытка первичного воздуха α1 = 0,6 и выше и расстоянию от горелки до дна посуды 25 мм, а максимальная — α1 = 0,3 и ниже и расстоянию от горелки до дна посуды 10 мм.

На появление в процессе горения ароматических соединений — бензола, полициклических бензпирена, безантрацена и др. — следует обратить особое внимание, так как некоторые из них канцерогенны. Процесс их образования весьма сложен и протекает стадийно. На первом этапе появляется ацетилен и его производные.

Таблица 8.16. Средняя концентрация в продуктах сгорания оксида углерода и бенз(а)пирена в зависимости от вида газа, типа горелки и коэффициента избытка первичного воздуха (тепловая нагрузка горелки — 1600 ккал/ч, расстояние от горелки до дна посуды — 24–26 мм)

Тип горелкиСредняя концентрация
оксида углерода, мг/л
(в пересчете на α = 1,0)
бенз(а)пирена,
мкг/100 м3
Природный газ
Горелка с периферийным подводом вторичного воздуха:

при αi = 0,60 ÷ 0,70

0,10Не обнаружен

при αi = 0,30 ÷ 0,35

1,20Следы
Горелка с центральным и периферийным подводом вторичного воздуха:

при αi = 0,60 ÷ 0,70

0,50Не обнаружен

при αi = 0,30 ÷ 0,35

0,12Не обнаружен
Сжиженный углеводородный газ
Горелка с периферийным подводом вторичного воздуха:

при αi = 0,60 ÷ 0,70

0,300,03

при αi = 0,30 ÷ 0,35

1,201,10
Горелка с центральным и периферийным подводом вторичного воздуха:

при αi = 0,60 ÷ 0,70

0,070,02

при αi = 0,30 ÷ 0,35

1,000,045

Данные табл. 8.16 показывают, что при сжигании природных газов с коэффициентом избытка первичного воздуха α1 = 0,6 и выше на обоих типах горелок концентрация оксида углерода продуктах сгорания отвечает требованиям ГОСТ 5542–87.

Таблица 8.17. Расстояние между кромками огневых каналов инжекционных однорядных горелок в зависимости от их размеров и коэффициента избытка первичного воздуха

Диаметры огневых каналов, ммРасстояния между кромками каналов, мм при разных значениях коэффициента избытка первичного воздуха α1
0,20,30,40,50,6
2,0118654
3,01512975
4,016141197
5,01815141210
6,02018161412

Исследования показали, что расстояния между кромками огневых каналов, обеспечивающие быстрое распространение пламени, предотвращающие их слияние, зависят от их размера и содержания первичного воздуха в смеси, уменьшаясь с его увеличением. Оптимальные расстояния между кромками каналов, обеспечивающие достаточную полноту сгорания газа и быстрое распространение пламени, приведены в табл. 8.17.

Про анемометры:  Как проверить мыльным раствором утечку газа - На обе руки мастер

Обобщение многочисленных экспериментальных данных позволило получить усредненные кривые концентрации в продуктах сгорания различных компонентов, качественно и количественно характеризующих процесс горения (рис. 8.15). Полное сгорание гомогенной газовоздушной смеси достигается только при коэффициенте избытка первичного воздуха α = 1,05 и выше.

При уменьшении содержания воздуха в смеси, в особенности при α < 1,0, возрастает концентрация оксида углерода СО, ацетилена С2Н2, этилена С2Н4, пропилена С3Н6 и пропана С3Н8, а также бенз(а)-пирена С20Н9. Также возрастает концентрация и других компонентов — водорода, бензола и др.

Кроме рассмотренных продуктов незавершенного горения, при сжигании газа всегда возникает некоторое количество оксидов азота, образование которых происходит в зонах высоких температур как после завершения основных реакций горения, так и в процессе горения.

Первичное соединение при горении газовоздушных смесей — оксид азота. Начало цепной реакции связано с атомарным кислородом, возникающим в зонах высоких температур за счет диссоциации молекулярного кислорода:

О2 –› 2О — 490 кДж/моль(8.36)

О N2 –› NO N — 300 кДж/моль(8.37)

N О2 –› 2NO 145 кДж/моль(8.38)

Балансовая реакция

N2 О2 –› 2NO — 177 кДж/моль(8.39)

Образование атомарного кислорода происходит и при частичной диссоциации продуктов сгорания: при снижении температуры и наличии кислорода часть образовавшегося оксида азота (1–3 об. %) окисляется до диоксида азота NO2. Наиболее интенсивно реакция протекает после выхода оксида азота в атмосферу. Основные влияющие факторы:

  • температура в реакционных зонах;
  • коэффициент избытка воздуха и время контакта реагирующих компонентов.

Температура пламени зависит от химического состава газа, содержания воздуха в газовоздушной смеси, степени ее однородности и теплоотвода из реакционной зоны. Максимально возможная при данной температуре концентрация оксида азота, об. %, может быть подсчитана по формуле

NOp = 4,6е-2150/(RT)/√О2N2(8.40)

где NOp — равновесная концентрация оксида азота, об. %; R — универсальная газовая постоянная; Т — абсолютная температура, К; O2 и N2 — концентрация, об. %, соответственно кислорода и азота.

Высокая концентрация оксида азота, соизмеримая с равновесной, возникает при сжигании газа в топках мощных парогенераторов и в высокотемпературных мартеновских, коксовых и аналогичных печах. В котлах малой и средней мощности, в небольших нагревательных и термических печах со значительным теплоотводом и малым временем пребывания компонентов в высокотемпературных зонах выход оксида азота на порядок меньше.

https://www.youtube.com/watch?v=yKKaZneQDa0

Эффективно также сжигание газа в излучающих горелках и в псевдоожиженном слое: в этих случаях происходит микрофакельное горение гомогенной газовоздушной смеси с коэффициентом избытка воздуха α= 1,05 при весьма интенсивном отводе теплоты из реакционной зоны.

Концентрация оксидов азота при сжигании газа в излучающих горелках составляет около 40, а в псевдоожиженном слое — 80–100 мг/м3. Уменьшение размеров огневых каналов излучающих горелок и огнеупорных зерен в псевдоожиженном слое способствует снижению выхода оксидов азота.

Накопленные данные позволили внести ряд изменений в конструкцию котельно-отопительного оборудования, обеспечивающих не только высокий КПД и низкую концентрацию продуктов неполного сгорания, но и сниженный сброс в атмосферу оксидов азота. К этим изменениям относятся:

  • сокращение длины высокотемпературных туннелей и перемещение горения из них в топки;
  • применение взамен керамических туннелей стабилизаторов горения в виде тел плохообтекаемой формы или кольцевого пламени;
  • организация плоского факела пламени с увеличенной поверхностью теплоотдачи;
  • рассредоточение пламени за счет увеличения числа горелок или использования блочных горелок;
  • ступенчатый подвод воздуха в реакционную зону;
  • равномерное распределение тепловых потоков в топке, экранирование топок и их разделение на отсеки экранами;
  • применение диффузионного принципа сжигания газа (диффузионное горение допустимо только в тех случаях, когда может быть обеспечено свободное развитие пламени без омывания теплообменных поверхностей).

Наиболее эффективное снижение выхода оксидов азота достигается при одновременном использовании нескольких способов.

3. ТЕМПЕРАТУРА ГОРЕНИЯ

В теплотехнике различаются следующие температуры горения газов: жаропроизводительность, калориметрическую, теоретическую и действительную (расчетную). Жаропроизводительность tж — максимальная температура продуктов полного сгорания газа в адиабатических условиях с коэффициентом избытка воздуха α = 1,0 и при температуре газа и воздуха, равной 0°C:

tж = Qн /(∑Vcp)(8.11)

где Qн — низшая теплота сгорания газа, кДж/м3; ∑Vcp — сумма произведений объемов диоксида углерода, водяного пара и азота, образовавшихся при сгорании 1 м3 газа (м3/м3), и их средних объемных теплоемкостей при постоянном давлении в пределах температур от 0°С до tж (кДж/(м3o°С).

В силу непостоянства теплоемкости газов жаропроизводительность определяется методом последовательных приближений. В качестве начального параметра берется ее значение для природного газа (≈2000°С), при α = 1,0 определяются объемы компонентов продуктов сгорания, по табл. 8.

Таблица 8.3. Средняя объемная теплоемкость газов, кДж/(м3•°С)

Температура, °С

CO2N2O2COCH4H2H2O (водяные пары)воздух
сухойвлажный на 1 м3
сухого газа
1,59811,29701,30871,30621,57081,28521,49901,29911,3230
1001,71861,29911,32091,30621,65901,29781,51031,30451,3285
2001,80181,30451,33981,31461,77241,30201,52671,31421,3360
3001,87701,31121,36081,32301,89841,30621,54731,32171,3465
4001,98581,32131,38221,33562,02861,31041,57041,33351,3587
5002,00301,33271,40241,34822,15041,31041,59431,34691,3787
6002,05591,34531,42171,36502,27641,31461,61951,36121,3873
7002,10341,35871,35491,37762,38981,31881,64641,37551,4020
8002,14621,37171,45491,39442,50321,32301,67371,38891,4158
9002,18571,38571,46921,40702,60401,33141,70101,40201,4293
10002,22101,39651,48221,41962,70481,33561,72831,41411,4419
11002,25251,40871,49021,43222,79301,33981,75561,42631,4545
12002,28191,41961,50631,44482,88121,34821,78251,43721,4658
13002,30791,43051,51541,45321,35661,80851,44821,4771
14002,33231,44061,52501,46581,36501,83411,45821,4876
15002,35451,45031,53431,47421,38181,85851,46751,4973
16002,37511,45871,54271,88241,47631,5065
17002,39441,46711,55111,90551,48431,5149
18002,41251,47461,55901,92781,49181,5225
19002,42891,48221,56661,96981,49941,5305
20002,44941,48891,57371,50781,96941,53761,5376
21002,45911,49521,58091,9891
22002,47251,50111,59432,0252
23002,48601,50701,59432,0252
24002,49771,51661,60022,0389
25002,50911,51751,60452,0593

Жаропроизводительность распространенных простых и сложных газов при их горении в сухом воздухе приведена в табл. 8.4. При сжигании газа в атмосферном воздухе, содержащем около 1 вес. % влаги, жаропроизводительность снижается на 25–30°С.

Таблица 8.4. Жаропроизводительность газов в сухом воздухе

Калориметрическая температура горения tк — температура, определяемая без учета диссоциации водяных паров и диоксида углерода, но с учетом фактической начальной температуры газа и воздуха. Она отличается от жаропроизводительности tж тем, что температура газа и воздуха, а также коэффициент избытка воздуха α принимаются по их действительным значениям. Определить tк можно по формуле:

tк = (Qн qфиз)/(ΣVcp)(8.12)

где qфиз — теплосодержание (физическая теплота) газа и воздуха, отсчитываемое от 0°С, кДж/м3.

Природные и сжиженные углеводородные газы перед сжиганием обычно не нагревают, и их объем по сравнению с объемом воздуха, идущего на горение, невелик. Поэтому при определении калориметрической температуры теплосодержание газов можно не учитывать. При сжигании газов с низкой теплотой сгорания (генераторные, доменные и др.) их теплосодержание (в особенности нагретых до сжигания) оказывает весьма существенное влияние на калориметрическую температуру.

Про анемометры:  ПАРОВОЙ КОТЁЛ • Большая российская энциклопедия - электронная версия

Зависимость калориметрической температуры природного газа среднего состава в воздухе с температурой 0°С и влажностью 1% от коэффициента избытка воздуха α приведена в табл. 8.5, для сжиженного углеводородного газа при его сжигании в сухом воздухе — в табл. 8.7. Данными табл. 8.5–8.

7 можно с достаточной точностью руководствоваться при установлении калориметрической температуры горения других природных газов, сравнительно близких по составу, и углеводородных газов практически любого состава. При необходимости получить высокую температуру при сжигании газов с малыми коэффициентами избытка воздуха, а также для повышения КПД печей, на практике подогревают воздух, что приводит к росту калориметрической температуры (см. табл. 8.6).

Таблица 8.5. Калориметрическая и теоретическая температуры горения природного газа в воздухе с t = 0°С и влажностью 1% в зависимости от коэффициента избытка воздуха α

Коэффициент избытка воздуха αКалориметрическая температура горения tк, °СТеоретическая температура горения tт, °СКоэффициент избытка воздуха αКалориметрическая температура горения tк, °С
1,0202219201,331620
1,02199019001,361600
1,03197018801,401570
1,05194018701,431540
1,06192018601,461510
1,08190018501,501470
1,10188018401,531440
1,12185018201,571410
1,14182017901,611380
1,16180017701,661350
1,18178017601,711320
1,20176017501,761290
1,2217301,821260
1,2517001,871230
1,2816701,941200
1,3016502,001170

Таблица 8.6. Калориметрическая температура горения природного газа tк, °С, в зависимости от коэффициента избытка сухого воздуха и его температуры (округленные значения)

Коэффициент избытка воздуха αТемпература сухого воздуха, °С
20100200300400500600700800
0,5138014301500154516801680174018101860
0,6161016501715178018401900196020222150
0,7173017801840191519702040210022002250
0,8188019402022206021302200226023302390
0,9198020302090215022202290236024202500
1,0205021202200225023202385245025102560
1,2181018601930200020702140220022802350
1,4161016601740180028701950203021002160
1,6145015101560164017301800186019502030
1,8132013701460152015901670174018301920
2,0122012701360142014901570164017201820

Таблица 8.7. Калориметрическая температура горения tк технического пропана в сухом воздухе с t = 0°С в зависимости от коэффициента избытка воздуха α

Коэффициент избытка воздуха αКалориметрическая температура горения tк, °СКоэффициент избытка воздуха αКалориметрическая температура горения tк, °С
1,021101,451580
1,0220801,481560
1,0420501,501540
1,0520301,551500
1,0720221,601470
1,1019701,651430
1,1219501,701390
1,1519101,751360
1,2018401,801340
1,2517801,851300
1,2717501,901270
1,3017301,951240
1,3516702,001210
1,4016302,101170

Теоретическая температура горения tT — максимальная температура, определяемая аналогично калориметрической tк, но с поправкой на эндотермические (требующие теплоты) реакции диссоциации диоксида углерода и водяного пара, идущие с увеличением объема:

СО2 ‹–› СО 0,5О2 — 283 мДж/моль(8.13)

Н2О ‹–› Н2 0,5О2 — 242 мДж/моль(8.14)

При высоких температурах диссоциация может привести к образованию атомарного водорода, кислорода и гидроксильных групп ОН. Кроме того, при сжигании газа всегда образуется некоторое количество оксида азота. Все эти реакции эндотермичны и приводят к снижению температуры горения.

Теоретическая температура горения может быть определена по следующей формуле:

tT = (Qн qфиз – qдис)/(ΣVcp)(8.15)

где qдис — суммарные затраты теплоты на диссоциацию СО2 и Н2О в продуктах сгорания, кДж/м3; ΣVcp — сумма произведения объема и средней теплоемкости продуктов сгорания с учетом диссоциации на 1 м3 газа.

Таблица 8.8. Степень диссоциации водяного пара H2O и диоксида углерода CO2 в зависимости от парциального давления

Температура, °СПарциальное давление, МПа
0,0040,0060,0080,0100,0120,0140,0160,0180,0200,0250,0300,040
Водяной пар H2O
16000,850,750,650,600,580,560,540,520,500,480,460,42
17001,451,271,161,081,020,950,900,850,80,760,730,67
18002,402,101,901,801,701,601,531,461,401,301,251,15
19004,053,603,253,02,852,702,652,502,402,202,101,9
20005,755,054,604,304,03,803,553,503,403,152,952,65
21008,557,506,806,356,05,705,455,255,104,804,554,10
220012,310,89,909,908,808,357,957,657,406,906,505,90
230016,015,013,712,912,211,611,110,710,49,69,18,4
240022,520,018,417,216,315,615,014,413,913,012,211,2
250028,525,623,522,120,920,019,318,618,016,815,914,6
300070,666,763,861,659,658,056,555,454,351,950,047,0
Диоксид углерода CO2
15000,50,50,50,50,50,50,40,40,40,40,4
16002,01,81,61,51,451,41,351,31,251,21,1
17003,83,33,02,82,62,52,42,32,22,01,9
18006,35,55,04,64,44,24,03,83,73,53,3
190010,18,98,17,67,26,86,56,36,15,65,3
200016,514,613,412,511,811,210,810,410,09,48,8
210023,921,319,618,317,316,515,915,314,913,913,1
220035,131,529,227,526,125,024,123,322,621,220,1
230044,740,737,935,934,332,931,830,930,028,226,9
240056,051,848,846,544,643,141,840,639,637,535,8
250066,362,259,356,955,053,452,050,749,747,345,4
300094,993,993,192,391,790,690,189,688,587,686,8

Как видно из табл. 8.8, при температуре до 1600°С степень диссоциации может не учитываться, и теоретическую температуру горения может принять равной калориметрической. При более высокой температуре степень диссоциации может существенно снижать температуру в рабочем пространстве.

На практике особой необходимости в этом нет, теоретическую температуру горения необходимо определять только для высокотемпературных печей, работающих на предварительно нагретом воздухе (например, мартеновских). Для котельных установок в этом нужды нет.

Действительная (расчетная) температура продуктов сгорания tд — температура, которая достигается в реальных условиях в самой горячей точке факела. Она ниже теоретической и зависит от потерь теплоты в окружающую среду, степени отдачи теплоты из зоны горения излучением, растянутости процесса горения во времени и др.

Действительные усредненные температуры в топках печей и котлов определяются по тепловому балансу или приближенно по теоретической или калориметрической температуре горения в зависимости от температуры в топках с введением в них экспериментально установленных поправочных коэффициентов:

Про анемометры:  Применение анемометров и термоанемометров в различных сферах промышленности

tд = tтη(8.16)

где η— т.н. пирометрический коэффициент, укладывающийся в пределах:

  • для качественно выполненных термических и нагревательных печей с теплоизоляцией — 0,75–0,85;
  • для герметичных печей без теплоизоляции — 0,70–0,75;
  • для экранированных топок котлов — 0,60–0,75.

В практике надо знать не только приведенные выше адиабатные температуры горения, но и максимальные температуры, возникающие в пламени. Их приближенные значения обычно устанавливают экспериментально методами спектрографии. Максимальные температуры, возникающие в свободном пламени на расстоянии 5–10 мм от вершины конусного фронта горения, приведены в табл. 8.9.

5. ПРЕДЕЛЫ ВОСПЛАМЕНЯЕМОСТИ И ВЗРЫВАЕМОСТИ

Газовоздушные смеси могут воспламеняться (взрываться) только тогда, когда содержание газа в смеси находится в определенных (для каждого газа) пределах. В связи с этим различают нижний и верхний концентрационные пределы воспламеняемости. Нижний предел соответствует минимальному, а верхний — максимальному количеству газа в смеси, при котором происходят их воспламенение (при зажигании) и самопроизвольное (без притока тепла извне) распространение пламени (самовоспламенение). Эти же пределы соответствуют и условиям взрываемости газовоздушных смесей.

Если содержание газа в газовоздушной смеси меньше нижнего предела воспламеняемости, такая смесь гореть и взрываться не может, поскольку выделяющейся вблизи источника зажигания теплоты для подогрева смеси до температуры воспламенения недостаточно. Если содержание газа в смеси находится между нижним и верхним пределами воспламеняемости, подожженная смесь воспламеняется и горит как вблизи источника зажигания, так и при удалении его.

Такая смесь является взрывоопасной. Чем шире будет диапазон пределов воспламеняемости (называемых также пределами взрываемости) и ниже нижний предел, тем более взрывоопасен газ. И наконец, если содержание газа в смеси превышает верхний предел воспламеняемости, то количества воздуха в смеси недостаточно для полного сгорания газа.

Существование пределов воспламеняемости вызывается тепловыми потерями при горении. При разбавлении горючей смеси воздухом, кислородом или газом тепловые потери возрастают, скорость распространения пламени уменьшается, и горение прекращается после удаления источника зажигания.

Таблица 8.11. Пределы воспламеняемости газов в смеси с воздухом (при t = 20°C и p = 101,3 кПа)

ГазСодержание газа в газовоздушной смеси, об. %

Максимальное
давление взрыва,
МПа

Коэффициент избытка воздуха α при пределах воспламенения
При пределах воспламеняемостиПри стехиометрическом составе смесиПри составе смеси, дающем максимальное давление взрыва
нижнемверхнемнижнемверхнем
Водород4,075,029,532,30,7399,80,15
Оксид углерода12,574,029,52,90,15
Метан5,015,09,59,80,7171,80,65
Этан3,212,55,686,280,7251,90,42
Пропан2,39,54,044,600,8581,70,40
н-Бутан1,78,53,143,60,8581,70,35
Изобутан1,88,43,14~1,80,35
н-Пентан1,47,82,563,00,8651,80,31
Этилен3,016,06,58,00,8862,20,17
Пропилен2,410,04,5~5,1~0,891,90,37
Бутилен1,79,03,4~4,0~0,881,70,35
Ацетилен2,580,07,7514,51,033,30,019

Таблица 8.12. Пределы воспламеняемости газов в смеси с кислородом (при t = 20°C и p = 101,3 кПа)

ГазСодержание газа в газокислородной смеси, об. %, при пределах воспламеняемости
нижнемверхнем
Водород4,094,0
Оксид углерода12,594,0
Метан5,06,0
Этан3,056,0
Пропан2,255,0
н-Бутан1,749,0
Изобутан1,749,0
Этилен3,080,0
Пропилен2,053,0
Бутилен1,4750,0
Ацетилен2,589,0

Пределы воспламеняемости для распространенных газов в смесях с воздухом и кислородом приведены в табл. 8.11–8.12. С увеличением температуры смеси пределы воспламеняемости расширяются, а при температуре, превышающей температуру самовоспламенения, смеси газа с воздухом или кислородом горят при любом объемном соотношении.

Пределы воспламеняемости зависят не только от видов горючих газов, но и от условий проведения экспериментов (вместимости сосуда, тепловой мощности источника зажигания, температуры смеси, распространения пламени вверх, вниз, горизонтально и др.). Этим объясняются несколько отличающиеся друг от друга значения этих пределов в различных литературных источниках. В табл. 8.11–8.

12 приведены сравнительно достоверные данные, полученные при комнатной температуре и атмосферном давлении при распространении пламени снизу вверх в трубке диаметром 50 мм и более. При распространении пламени сверху вниз или горизонтально нижние пределы несколько возрастают, а верхние снижаются. Пределы воспламеняемости сложных горючих газов, не содержащих балластных примесей, определяются по правилу аддитивности:

Lг = (r1 r2 … rn)/(r1/l1 r2/l2 … rn/ln)(8.17)

где Lг — нижний или верхний предел воспламеняемости сложного газа в газовоздушной или газокислородной смеси, об. %; r1, r2, …, rn — содержание отдельных компонентов в сложном газе, об. %; r1 r2 … rn = 100%;

При наличии в газе балластных примесей пределы воспламеняемости могут быть определены по формуле:

Lб = Lг[1 Б/(1 – Б)o100]/[100 LгБ/(1 – Б)](8.18)

где Lб — верхний и нижний пределы воспламеняемости смеси с балластными примесями, об. %; Lг — верхний и нижний пределы воспламеняемости горючей смеси, об. %; Б — количество балластных примесей, доли единицы.

При расчетах часто необходимо знать коэффициент избытка воздуха α при разных пределах воспламеняемости (см. табл. 8.11), а также давление, возникающее при взрыве газовоздушной смеси. Коэффициент избытка воздуха, соответствующий верхнему или нижнему пределам воспламеняемости, можно определить по формуле

α = (100/L – 1) (1/VT)(8.19)

Давление, возникающее при взрыве газовоздушных смесей, можно определить с достаточным приближением по следующим формулам:

для стехиометрического соотношения простого газа с воздухом:

Рвз = Рн(1 βtк) (m/n)(8.20)

для любого соотношения сложного газа с воздухом:

Рвз = Рн(1 βtк) Vвлпс /(1 αVm)(8.21)

где Рвз — давление, возникающее при взрыве, МПа; рн — начальное давление (до взрыва), МПа; β — коэффициент объемного расширения газов, численно равный коэффициенту давления (1/273); tK — калориметрическая температура горения, °С; m — число молей после взрыва, определяемое по реакции горения газа в воздухе; п — число молей до взрыва, участвующих в реакции горения;

Таблица 8.13. Давление, возникающее при взрыве пропанововоздушной смеси, в зависимости от коэффициента сброса kсб и вида защитного устройства

Вид защитного устройстваКоэффициент сброса kсб, м23
0,0630,0330,019
Одинарное глухое остекление с наружным креплением стекла толщиной 3 мм0,0050,0090,019
Двойное глухое остекление с наружным креплением стекла толщиной 3 мм0,0070,0150,029
Поворотный одинарный оконный переплет с большим шарниром и пружинным замком на нагрузку 5 МПа/м20,002
Поворотный одинарный оконный переплет с верхним шарниром и пружинным замком на нагрузку 5 МПа/м20,003
Свободно лежащие на перекрытии плиты массой, кг/ м2:

50

0,023  

100

0,005  

200

0,018  

Давления взрыва, приведенные в табл. 8.13 или определенные по формулам, могут возникнуть только в том случае, если происходит полное сгорание газа внутри емкости и ее стенки рассчитаны на эти давления. В противном случае они ограничены прочностью стенок или их наиболее легко разрушающихся частей — импульсы давления распространяются по невоспламененному объему смеси со скоростью звука и достигают ограждения гораздо быстрее, чем фронт пламени.

Эта особенность — различие скоростей распространения пламени и импульсов давления (ударной волны) — широко используется на практике для защиты газовых устройств и помещений от разрушения при взрыве. Для этого в проемах стен и перекрытий устанавливаются легко открывающиеся или разрушающиеся фрамуги, рамы, панели, клапаны и т.д.

Оцените статью
Анемометры
Добавить комментарий

Adblock
detector