Пьезорезистивный метод измерения давления

Пьезорезистивный метод измерения давления Анемометр
Содержание
  1. Введение
  2. Методы измерения давления
  3. Высота жидкости в колонне
  4. Упругая деформация
  5. Электрические методы
  6. Что такое пьезодатчик и зачем он нужен
  7. Окружающая среда
  8. Типы датчиков
  9. Упругие датчики
  10. Трубки Бурдона
  11. Сильфоны
  12. Точка отключения
  13. Тип датчика
  14. Пример 2
  15. Цифровая электроника вычислительная техника встраиваемые системы
  16. Диапазон давлений
  17. Критерии отбора датчика
  18. Дополнительная информация о датчиках давления
  19. Методы измерения давления, принципы действия и конструкции датчиков
  20. Тензометрический метод измерения
  21. Пьезорезистивный метод измерения
  22. Ёмкостный метод измерения
  23. Резонансный метод измерения
  24. Индуктивный метод измерения
  25. Пьезоэлектрический метод измерения
  26. Ионизационный метод измерения
  27. Выбор вида выходного сигнала в зависимости от быстротечности процесса
  28. Общие определения, разъяснения и понятия относящиеся к датчикам давления
  29. 2 Дополнительное оборудование и арматура для датчиков давления и манометров
  30. 3 Виды исполнений датчиков давления по взрывозащите
  31. 4 Отличие интерфейсов RS485/RS422 от RS232 и USB
  32. 5 Про HART-протокол
  33. 6 Отличие M-Bus от ModBus
  34. Оглавление раздела технические преобразователи / датчики давления
  35. Чувствительность

Введение

Давление необходимо учитывать при проектировании многих химических процессов. Давление определяется как сила действующая на единицу площади и измеряется в английских единицах — пси или в СИ единицах — Па. Существуют три типа измеряемого давления:

  • Абсолютное давление — атмосферное давление плюс избыточное давление;
  • Избыточное давление — абсолютное давление минус атмосферное давление;
  • Дифференциальное давление — разность давлений между двумя точками.

Существуют различные типы датчиков давления, которые сегодня доступны на рынке для использования в промышленности. Каждый из них имеет преимущества в определенных ситуациях.

Методы измерения давления

Существует несколько наиболее часто используемых методов измерения давления. Эти методы включают в себя визуальный замер высоты жидкости в колонне, метод упругой деформации и электрические методы.

Высота жидкости в колонне

Давление можно выразить как высоту жидкости с известной плотностью в трубке. Используя уравнение P = ρ GH, можно легко вычислить значение давления. Данные типы измерительных приборов обычно называют манометрами. Для измерения высоты жидкости в колонне, может быть использована шкала с единицами измерения расстояния, также как и откалиброванная шкала давления. Обычно в качестве жидкости в этих колоннах используется вода или ртуть. Вода используется, когда вы хотите достичь более высокой чувствительности (плотность воды значительно меньше, чем плотность жидкой ртути, так что высота столба воды будет более сильно меняться при изменении давления). Ртуть же используется, когда вы хотите измерять более высокие значения давления, но с меньшей чувствительностью.

Упругая деформация

Этот метод измерения давления основан на принципе, который гласит, что степень деформации упругого материала прямо пропорциональна прикладываемому давлению. Для данного метода, в основном, используются три типа датчиков: трубки Бурдона, диафрагмы и сильфоны. (См. раздел «Типы датчиков»)

Электрические методы

Электрические методы, используемые для измерения давления основаны на принципе, основывающимся на том, что изменение размера влияет на электрическое сопротивление проводника. Устройства, использующие для измерения давления изменение сопротивления называют тензодатчиками. Также существуют и другие электрические датчики, например емкостные, индуктивные, магнетосопротивления (Холла), потенциометрические, пьезометрические и пьезорезистивные преобразователи. (См. раздел «Типы датчиков»)

Датчики давления: Аналитический обзор, сравнение видов и рыночных цен, анализ характеристик и преимуществ, правила профессионального подбора моделей датчиков давления любого вида (избыточного, абсолютного, вакуумметрического, гидростатического и дифференциального (перепада-разности) давлений, в том числе и специальных нестандартных исполнений).

Датчик давления – это конструктивно обособленный первичный преобразователь давления (избыточного, дифференциального, абсолютного, вакуумметрического).
Измерительный преобразователь давления – это технический прибор с нормативными метрологическими характеристиками, служащий для преобразования давления в унифицированный выходной сигнал (электрический, пневматический) и/или цифровой код (HART-протокол, интерфейсы RS-232/485 и др.).

Специальное предложение — технические датчики давления — цена от 2200 рублей*
(цена указана на базовое исполнение без НДС, подробнее о скидках и акциях см. ниже).

В данном разделе представлен подробный обзор технических датчиков давления — преобразователей в унифицированный выходной сигнал (электрический или пневматический), применяемых в промышленности, энергетике, ТЭК и ЖКХ, но также рекомендуем ознакомиться и с
датчиками-реле давления (прессостаты с релейным выходом: замыкание/размыкание контакта при достижении заданного значения (уставки));
специализированными датчиками давления (например: высокотемпературных расплавов полимеров, сыпучих продуктов, для хладогентов и т.п.);
автомобильными датчиками давления (масла, топлива и воздуха в шинах);
миниатюрными датчиками для радиоэлектроники и медицины.

II. Дополнительная информация о датчиках давления:
1. Методы измерения давления, принципы действия и конструкции датчиков.
2. Выбор вида выходного сигнала (цифровой или аналоговый) в зависимости от быстротечности процесса.
3. Общие определения, разъяснения и понятия:
— Отличие датчика давления от манометра, ЭКМ и реле (сигнализатора).
— Дополнительное оборудование и арматура для манометров и датчиков давления.
— Виды исполнений по взрывозащите (Exi, Exd/Exs).
— Отличие интерфейсов RS485/RS422 от RS232 и USB.
— Про HART-протокол.
— Отличие M-Bus от ModBus.
— Предупреждение о воровстве контента.

Виды технических (промышленных) датчиков давления (избыточного, дифференциального(перепада), абсолютного, вакуумметрического (разряжения), далее, сокращенно — ДД) в зависимости от определяющих технических характеристик (конкретные марки датчиков можно посмотреть, перейдя по ссылке):
1. Датчики давления с унифицированным токовым сигналом (0-5мА,  4-20мА) и цифровой выходом (интерфейс, протокол)
—  Малогабаритные датчики и экономкласс (для ЖКХ)
—  Однопредельные датчики (однодиапазонные)
—  Многопредельные датчики (многодиапазонные перенастраиваемые)
—  С электроконтактным (релейным, дискретным) выходом — ЭКМ
—  С цифровым выходом (RS232, RS485, USB; ModBus, HART-протокол)
2. Датчики с выходом по напряжения постоянного тока (0-1,-5,-10В)
3. Датчики с выходом взаимной индуктивности 0-10мГн
4. Датчики с пневматическим выходным сигналом 20-100кПа
5. Датчики гидростатического давления (датчики уровня) погружные и врезные (с торцевой открытой мембраной).
6. Нестандартные специальные датчики давления
(перегрузка, нестандартный диапазон и/или выход, высокотемпературное и защищенное исполнение и т.п.).
Подробнее о датчиках давления, их видах, принципах действия, конструктивных исполнениях, а также о технических характеристиках, особенностях выбора (как правильно выбрать, заказать, купить датчик), комплектации, областях применения, выходных сигналах, о ценах (см. общий прайс-лист на датчики давления), наличию на складе или сроках изготовления см. ниже.

Что такое пьезодатчик и зачем он нужен

Пьезо – это греческий термин, обозначающий «пресс» или «сжатие». Пьезоэлектричество (также называемое пьезоэлектрическим эффектом) – это наличие электрического потенциала по бокам кристалла, когда механическое напряжение прикладывается путем его сжатия. В работающей системе кристалл действует как крошечная батарея с положительным зарядом на одной стороне и отрицательным зарядом на противоположной стороне. Чтобы сформировать целостную цепь, две грани соединены вместе, и через эту цепь проходит ток.

Пьезорезистивный метод измерения давления

В качестве примера пьезоэффекта можно вспомнить зажигалки. В них генерируется электрический импульс из-за силы, возникающей при внезапном воздействии спускового механизма на материал внутри.

Пьезорезистивный метод измерения давления

Эффект пьезоэлектричества обратимый. Всякий раз, когда электрическое поле прикладывается к клеммам кристалла, пьезодатчик испытывает механическое напряжение, что приводит к изменению формы. Это известно как обратный пьезоэлектрический эффект.

Пьезорезистивный метод измерения давления

Такой эффект можно наблюдать в кварцевых часах. В повседневной работе наручные часы используют кварцевый резонатор, который работает как генератор. Используемый элемент – диоксид кремния. Когда на кристалл подается электрический сигнал, кристалл вибрирует, что помогает периодически регулировать механизм внутри часов. Также хорошим примером являются пьезо-зуммеры. В данном случае определенное количество напряжения со значением величины и частоты прикладывается к кристаллу, что заставляет кристалл вибрировать. Вибрация превращается в звук.

Когда датчик работает по принципу пьезоэлектричества, он называется пьезоэлектрическим датчиком. Пьезоэлектричество – это явление, при котором электричество генерируется, если к материалу прикладывается механическое напряжение. Датчик, который использует пьезоэлектрический эффект для измерения изменений ускорения, деформации, давления и силы путем преобразования их в электрический заряд, называется пьезоэлектрическим датчиком. Это произведенное пьезоэлектричество пропорционально напряжению, приложенному к подложкам из прочного пьезоэлектрического кристалла.

Когда к пьезоматериалу применяется давление или ускорение, на гранях кристалла генерируется эквивалентное количество электрического заряда. Электрический заряд будет пропорционален приложенному давлению. Пьезоэлектрический датчик нельзя использовать для измерения статического давления. При постоянном давлении выходной сигнал будет нулевым. Работу пьезоэлектрического датчика можно обобщить следующим образом.

  • В пьезоэлектрическом кристалле заряды точно сбалансированы и находятся в несимметричном расположении.
  • Эффект зарядов компенсируется друг с другом, и, следовательно, на поверхностях кристаллов не будет обнаружено никакого чистого заряда.
  • Когда кристалл сжимается, заряд в кристалле становится неуравновешенным.
  • Следовательно, отныне влияние заряда не взаимно компенсируется, что приводит к появлению чистого положительного и отрицательного заряда на противоположных гранях кристалла.
  • Поэтому, сжимая кристалл, напряжение создается на противоположной стороне, и это известно как пьезоэлектричество.

Пьезорезистивный метод измерения давления

Схема пьезоэлектрического датчика показана далее. Она состоит из внутреннего сопротивления Ri, которое также известно как сопротивление изолятора. Дроссель генерирует индуктивность из-за инерции датчика. Значение емкости Се обратно пропорционально упругости материала датчика. Для получения полного отклика датчика сопротивление нагрузки и утечки должно быть достаточно большим, чтобы поддерживать низкую частоту.

Пьезорезистивный метод измерения давления

Пьезоэлектрические датчики используются для измерения динамического давления. Измерение динамического давления предусматривается в таких областях, как измерение турбулентности, сгорания в двигателя и т. д. Изменения давления жидкостей и газов при измерениях давления в цилиндрах гидравлического процесса можно измерять с помощью пьезорезистивных датчиков давления.

Пьезорезистивный метод измерения давления

Когда сила прикладывается к пьезоэлектрической диафрагме, она генерирует электрический заряд на гранях кристалла. Выход измеряется как напряжение, которое пропорционально приложенному давлению.

Про анемометры:  Что такое мультиклапан ГБО

Эффект применяется и в ультразвуковых датчиках. Ультразвуковые датчики генерируют ультразвуковые волны. Это свойство применяется, например, в медицине. Звуковые волны передаются через ткани тела. Волны отражаются назад, чтобы создать образ ткани. Это принцип работы ультразвуковой системы визуализации. При этом пьезоэлектрические кристаллы прикрепляются к передней части преобразователя, что помогает генерировать ультразвуковые волны. Электроды действуют как связующий узел между кристаллами и машиной. Когда электрический сигнал подается на кристалл, он из-за вибрации генерирует ультразвуковую волну с частотами от 1,5 до 8 МГц.

Пьезорезистивный метод измерения давления

Помимо этого пьезоэлектрический датчик используется в датчиках детонации двигателя, датчиках давления, в дизельных топливных инжекторах, оптической настройке, ультразвуковой очистке и сварке, в музыкальных инструментах и приборах, таких как звукосниматели и микрофоны и т.п.

Окружающая среда

Окружающая среда (в технологическом процессе — это среда создаваемая веществом, вибрация, температура и т.д.), в которой проводится технологический процесс, также должна быть учтена при выборе датчика давления. В агрессивных средах, при сильных вибрациях в трубопроводе, или при экстремальных температурах, датчики должны иметь дополнительный уровень защиты. Герметичные, прочные корпуса с заполнением материалом, содержащим глицерин или силикон — часто используются, для того, чтобы защитить внутренние компоненты датчика (кроме чувствительного элемента) от очень жестких, агрессивных сред и колебаний.

Типы датчиков

Существует множество различных датчиков давления являющихся наиболее подходящими для конкретного процесса, но их обычно можно разделить на несколько категорий, а именно: упругие датчики, электрические преобразователи, датчики дифференциального давления и датчики давления вакуума. Ниже представлены категории, каждая из которых содержит уникальные внутренние компоненты более подходящие под использование в конкретной ситуации.

Упругие датчики

Большинство датчиков давления жидкости имеют упругую структуру, где жидкость заключена в небольшой отсек по меньшей мере с одной упругой стенкой. При использовании данного метода, показания давления определяются путем измерения отклонения этой эластичной стенки, представляя результат непосредственным отсчетом через соответствующие связи, либо через трансдуцированные электрические сигналы. Упругие датчики давления очень чувствительны, они довольно хрупкие и подвержены вибрации. Кроме того, они, как правило, значительно дороже, чем манометры, и поэтому в основном используются для передачи измеренных данных и измерения разности давлений. Теоретически можно использовать довольно широкий спектр упругих элементов для упругих датчиков давления. Однако большинство устройств используют ту или иную форму трубки Бурдона или диафрагмы.

Трубки Бурдона

Принцип, на котором основаны разного вида трубки Бурдона: Давление, подаваемое внутрь трубки, вызывает упругую деформацию эллиптического или овального сечения трубки в сторону круга, которая вызывает появление напряжений в продольном направлении, заставляющих трубку разгибаться, а свободный конец трубки перемещаться. Система рычагов и передач превращает это движение и возвращает стрелку, показывающую давление относительно круглой шкалы. Диапазон измерения такого манометра составляет — от 10 Па до 1000 МПа. Трубные материалы могут быть изменены соответствующим образом в соответствии с требуемым условием процесса. Также, трубки Бурдона — портативные и требуют минимального технического обслуживания, однако, они могут быть использованы только для статических измерений и имеют низкую точность.

Материалом для трубчатых пружин может служить сталь, бронза, латунь. В зависимости от конструктивного исполнения трубчатые пружины могут быть одно- и многовитковые (винтовые и спиральные), S-образные и т.п. Распространены одновитковые трубчатые пружины, используемые в манометрах, которые предназначены для измерения давления жидкостей и газов, а также в таких типах манометров как глубиномер. Датчики С-типа могут быть использованы в диапазонах давлений приближающихся к 700 МПа; они имеют минимальный рекомендованный диапазон давления — 30 кПа (т.е. они не достаточно чувствительны для измерения разности давлений меньше чем 30 кПа).

Сильфоны

Сильфоны имеют цилиндрическую форму и содержат много складок. Они могут деформироваться в осевом направлении при изменении давления (сжатие или расширение). Давление, которое должно быть измерено прикладывается к одной стороне сильфона (внутри или снаружи), тогда как на противоположную сторону действует атмосферное давление. Абсолютное давление может быть измерено путем откачки воздуха из внешнего или внутреннего пространства сильфона, а затем измерением давления на противоположной стороне. Сильфон может быть подключен только к включающим / выключающим переключателям или к потенциометру и используется при низких давлениях, H 2 (газ) + ZnCl 2 (жидк), вы производите один моль газообразного водорода в дополнение к существующему давлению воздуха в емкости. По мере протекания реакции, давление внутри сосуда будет существенно увеличиваться. Моделирование давления H 2 (газ) в идеальных условиях равно, Р = НЗТ / V

Пьезорезистивный метод измерения давления

Точка отключения

Принимая во внимание быстрое увеличение давления, как оценено в пункте (2), и отказ клапана при 4 атм., точка выключения должно быть примерно равна 3 атм.

Тип датчика

  • Учитывая типы датчиков, которые мы обсуждали, мы можем сразу отбросить вакуумные датчики, так как они работают при очень низких давлениях (почти вакууме, отсюда и название). Мы можем также отбросить дифференциальные датчики давления, поскольку мы не ищем перепада давления на резервуаре.
  • Поскольку мы хотим добиться высокой чувствительности, мы должны использовать электрические компоненты. Учитывая диапазон давлений (3 атм.; макс

0,3 МПа) оптимальным будет емкостной элемент, потому что он прочный и хорошо работает в системе низкого давления.

Так, в итоге, мы выбираем датчик, который будет использовать диафрагму в качестве упругого элемента, емкостной элемент качестве электрического компонента и антикоррозийный корпус.

Пример 2

Ваш руководитель сказал вам добавить датчик давления в очень дорогой и важной части оборудования. Вы знаете, что часть оборудования работает на 1 МПа и при очень высокой температуре. Какой датчик вы бы выбрали?

Поскольку часть оборудования, которое вы имеете дело очень дорогое, вам нужен датчик, который имеет высокую чувствительность. Электрический датчик был бы подходящим, потому что вы могли бы подключить его к компьютеру для быстрого и простого считывания показаний. Кроме того, вы должны выбрать датчик, который будет работать на 1 МПа и сможет выдерживать высокие температуры. Из информации представленной в этой статье вы знаете, что есть много датчиков, которые будут работать при давлении 1 МПа, так что вы должны решить, относительно других влияющих факторов. Одним из наиболее чувствительных электрических датчиков является датчик емкостного типа. Он имеет чувствительность 0.07 МПа. Емкостный датчик обычно имеет диафрагму в качестве упругого элемента. Мембраны имеют быстрое время отклика, очень точны и работают на 1 МПа.

Цифровая электроника вычислительная техника встраиваемые системы

Чувствительный элемент (упругий элемент) будет подвергаться воздействию веществ, используемых в процессе, поэтому материалы датчика, которые могут реагировать с данными веществами или подвергаться воздействию агрессивных сред — непригодны для использования. Мембраны (диафрагмы) являются оптимальными даже для очень суровых условий использования.

Диапазон давлений

Большинство процессов работают в определенном диапазоне давлений. Поскольку определенные датчики давления работают оптимально в определенных диапазонах давления, существует необходимость выбрать устройства, способные функционировать в диапазоне, установленном процессом.

Критерии отбора датчика

Для того чтобы контролируемая давлением система работала правильно и эффективно, важно, чтобы используемый датчик давления мог давать точные показания по мере необходимости и в течение длительного периода времени без необходимости ремонта или замены в условиях работы системы. Существует несколько факторов, влияющих на пригодность конкретного датчика давления для конкретного процесса. Основные это:

  • характеристики используемых веществ в среде которых будет использоваться устройство;
  • условия окружающей среды;
  • диапазон давлений;
  • уровень точности и чувствительности, требуемые в процессе измерения.

Дополнительная информация о датчиках давления

В данном подразделе последовательно рассмотрены следующие вопросы:
1. Методы измерения давления, принципы действия и конструкции датчиков.
2. Выбор вида выходного сигнала (цифровой или аналоговый) в зависимости от быстротечности процесса.
3. Общие определения, разъяснения и понятия:
— Отличие датчика давления от манометра, ЭКМ и реле (сигнализатора).
— Дополнительное оборудование и арматура для манометров и датчиков давления.
— Виды исполнений по взрывозащите (Exi, Exd/Exs).
— Отличие интерфейсов RS485/RS422 от RS232 и USB.
— Про HART-протокол.
— Отличие M-Bus от ModBus.
— Предупреждение о воровстве контента.

Методы измерения давления, принципы действия и конструкции датчиков

В общем, широком смысле датчик (англ. sensor (сенсор)) — это термин систем управления, обозначающий первичный преобразователь, как элемент измерительного (сигнального, регулирующего или управляющего) устройства системы, преобразующий на основе чувствительного элемента и вспомогательных систем контролируемую физическую величину в удобный для использования сигнал (обычно электрический, но иногда пневматический, гидравлический и т.п.).

Датчик давления состоит из первичного преобразователя, в составе которого чувствительный элемент — приемник давления с сенсором, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей, в том числе для герметичного соединения датчика с объектом и защиты от внешних воздействий и устройства вывода информационного сигнала (обычно сальник или разъем).

Сенсор датчика давления — это устройство на базе чувствительного элемента (тензометрического, пьезометрического, емкостного, резонансного, индуктивного принципа действия), физические параметры которого изменяются в зависимости от давления измеряемой среды: жидкости, газа, пара. Давление измеряемой среды преобразуется измерительным и электронным блоками датчика (преобразователя) в разнообразные электрические сигналы (релейный, унифицированный выходной сигнал тока(мА), напряжения(В), индукции(мГн)) или цифровой выходной код (интерфейс RS232, RS485, USB, M-Bus или HART, ModBus-протоколы) или, гораздо реже, для использования на особо взрывоопасных объектах в пневматический сигнал (20-100кПа).

Про анемометры:  Ремонт газовых котлов в Москве и Московской области

Основными отличиями одних измерительных приборов от других являются пределы (диапазоны) измерений, динамические и частотные диапазоны, точность регистрации давления (погрешность), допустимые условия эксплуатации (в зависимости от окружающей и измеряемой среды), массогабаритные характеристики, которые зависят от пыле-водо-взрыво-защищенности, вида и величины измеряемого давления и принципов его преобразования (типа сенсора) в выходной сигнал (например, для электрического сигнала — это тензометрический, пьезорезистивный, ёмкостный, индуктивный, резонансный, ионизационный, пьезоэлектрический и другие методы):

Тензометрический метод измерения

Чувствительные элементы тензометрических датчиков базируются на принципе изменения сопротивления при деформации тензорезисторов, приклеенных на диэлектрической подложке к упругому чувствительному элементу (обычно мембрана), который деформируется под действием измеряемого давления.

Пьезорезистивный метод измерения

Пьезорезистивный метод измерения основан на интегральных чувствительных элементах из монокристаллического кремния (Si). Кремниевые преобразователи имеют высокую чувствительность благодаря изменению удельного объемного сопротивления полупроводника при деформировании давлением.

Для измерения давления чистых неагрессивных сред применяются так называемые Low cost — решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем.

Для измерения агрессивных сред и большинства промышленных применений используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостный метод измерения

При емкостном методе измерения «Сердцем» датчика давления является ёмкостная ячейка. Ёмкостный метод основан на зависимости изменения электрической ёмкости между обкладками конденсатора и измерительной мембраны от подаваемого Д.. Основным преимуществом ёмкостного метода является защита от перегрузок (измерительная мембрана при перегрузке просто ложится на стенки «обкладки» конденсатора, длительное время не подвергаясь деформации. При снятии перегрузки мембрана восстанавливает исходную форму, при этом дополнительная калибровка сенсора не требуется), а также обеспечивается высокая стабильность метрологических характеристик, уменьшение влияния температурной погрешности за счет малого объема заполняющей жидкости непосредственно в ячейке.

Резонансный метод измерения

В основе резонансного метода лежит изменение резонансной частоты колеблющегося упругого элемента при деформировании его силой или Д.. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора.

К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Индуктивный метод измерения

Индуктивный метод основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенной нагрузке.

Пьезоэлектрический метод измерения

В основе пьезоэлектрического метода лежит прямой пьезоэлектрический эффект, при котором пьезоэлемент генерирует электрический сигнал, пропорциональный действующей на него силе или Д.. Пьезоэлектрические датчики используются для измерения быстроменяющихся акустических и импульсных давлений, обладают широкими динамическими и частотными диапазонами, имеют малую массу и габариты, высокую надежность и могут использоваться даже в жестких условиях эксплуатации.

Ионизационный метод измерения

В основе ионизационного метода лежит принцип регистрации потока ионизированных частиц. Аналогом являются ламповые диоды.

Лампа оснащена двумя электродами: катодом и анодом, — а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов.

Преимуществом таких ламп является возможность регистрировать низкое давление — вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками Д., например, емкостными. К тому же, зависимость сигнала от измеряемого давления не является является линейной — она логарифмическая.

Из вышеизложенного становиться очевидно, что выбор датчика давления должен начинаться с выбора и анализа основных параметров, под которые подбирается метод измеряния (тензометрический, пьезорезистивный, ёмкостный, индуктивный, резонансный, пьезоэлектрический, ионизационный или иной).

Выбор вида выходного сигнала в зависимости от быстротечности процесса

Выбор выходного сигнала зависит от быстротечности изменений контролируемого процесса. Процессы (и соответствующие им выходные сигналы) могут быть как медленноменяющимися, так и быстропеременными. Именно быстропеременность давления зачастую является ключевым фактором при отказе от современных цифровых микропроцессорных датчиков в пользу, казалось бы, устаревших аналоговых преобразователей.

Спектр медленноменяющихся сигналов лежит в области низких частот. Для того, чтобы с высокой точностью оцифровать медленоменяющийся сигнал, необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях.
Специально для медленноменяющихся сигналов используются интегрирующие аналого-цифровые преобразователи — АЦП*. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи.

Для измерения переменных давлений применяют датчики с аналоговым выходным сигналом, например, 0—20мА, 4—20мА и 0—5В, 0,4—2В.

Пьезоэлектрические датчики применяются для измерения быстропеременных процессов в диапазоне частот от единиц Гц до сотен кГц.

Общие определения, разъяснения и понятия относящиеся к датчикам давления

Пьезорезистивный метод измерения давления

Цифровые электроконтактные (сигнализирующие) манометры (например, ЭКМ-1005/ЭКМ-2005, ДМ5001/ДМ5002 и другие) являются, по-сути, преобразователями (датчиками) давления с индикатором и дискретным электроконтактным выходом (э/м реле) и предназначены для измерения и непрерывного преобразования значения избыточного (а также, иногда и абсолютного, дифференциального или вакуумметрического) давлений неагрессивных и умеренно агрессивных сред в электрический унифицированный выходной сигнал (4-20мА) с отображением информации о давлении на цифровом табло (ЖК или СД-дисплей), а так же для управления внешними электрическими цепями в системах автоматического контроля и управления технологических процессов (АСУТП).

Параметры сигнализирующего устройства для электроконтактных манометров ЭКМ и датчиков

Сигнализирующее устройство по подключению внешних цепей имеет четыре варианта исполнения по ГОСТ 2405-88:
исп. V (исп. 5) (базовое исполнение) — левый контакт размыкающий (min), правый замыкающий (max) – оба указателя синие (5 исп.).
исп. III (исп. 3) — два размыкающих контакта: левый указатель (min) — синий, правый (max) — красный (3 исп.).
исп. IV (исп. 4) — два замыкающих контакта: левый указатель (min) — красный, правый (max) — синий (4 исп.).
исп. VI (исп. 6) — левый контакт замыкающий (min), правый размыкающий (max) – оба указателя красные (6 исп.).
При выборе исполнения следует учитывать, что варианты определяются относительно начала диапазона измерения (относительно нормальных условий производства и хранения).

2 Дополнительное оборудование и арматура для датчиков давления и манометров

I. Присоединение к процессу (подвод давления на вход прибора):
1. Монтажная арматура: отборные устройства(ОУ) и закладные конструкции (ЗК): бобышки (адаптеры вварные), отводы прямые и угловые (в т.ч. петлевые трубки Перкинса) или импульсные трубки (линии), манифольды.
2. Краны манометровые (до 16/25бар) или клапаны/клапанные блоки (свыше 2,5МПа), клапаны нажимные и предохранительные.

Пьезорезистивный метод измерения давления

3. Прокладки/уплотнения медные, фторопластовые, паранитовые и др.
4. Переходники (резьбы-М/G/K нар/вну), муфты, бочонки (материал сталь, латунь, нержавейка).
5. Демпферы (гасители пульсаций гидроударов, дроссели), охладители (отводы-радиаторы), разделители мембранные РМ, капиллярные линии — КЛ и соединительные рукава мод-55004.
6. КМЧ – комплект монтажных частей (скоба, кронштейн, крепеж для монтажа на трубе, плите и пр.).
7. КПЧ – комплект присоединительных частей (присоединители: фланцы, штуцера, гайки-М20х1,5/G1/2, ниппели (сталь, нерж.), крепеж, уплотнения).
8. Для дифманометров-расходомеров: диафрагмы ДБС, ДКС, ДФК; сосуды СК, СУ, СР, универсальные СКУР-100/250.
Внимание — для приборов измеряющих дифференцтальное (разность, перепад) давление (дифманометры — перепадомеры, расходомеры, уровнемеры) необходимо предусмотреть двойной комплект присоединительных частей — КПЧ (для подключения к «плюсовой» и «минусовой» камере соответственно).

II. На выходе из прибора (по сигнальной линии):
1. Вторичные приборы: индикаторы-измерители, регуляторы с выходом, контроллеры, коммуникаторы, регистраторы/самописцы и пр.
2. Блоки питания БП-36/24В, преобразования, корнеизвлечения и барьеры искрозащиты (взрывозащиты-Exi).
3. Кабель и провода монтажные.
4. Пульты или коммуникаторы (для настройки параметров, калибровки, выбора режимов работы), модемы, конфигурационное программное обеспечение ПО.

III. Вокруг прибора:
Защитные кожухи. Монтаж в специальные утепляющие пожаробезопасные пылевлагозащитные шкафы и чехлы, применение специальных обогревателей для КИПиА.

см. подробнее про дополнительное/вспомогательное оборудование ПД

3 Виды исполнений датчиков давления по взрывозащите

а) Взрывозащищенное исполнение (Exi, Вн: Exd/Exsd)
Exi — взрывозащищенное с видом взрывозащиты «искробезопасная электрическая цепь «ia» и уровнем взрывозащиты «особо взрывобезопасный» (0); маркировка взрывозащиты «0ExiaIICT5X».

Вн: Exd/Exsd — взрывозащищенное с видами взрывозащиты «взрывонепроницаемая оболочка» (d); «специальный» (S); уровнем взрывозащиты «взрывобезопасный» (1); маркировка по взрывозащите «1ExsdIIBT5X».

б) Невзрывозащищенное (общепромышленное исполнение — никак не обозначается при маркировке датчиков).

в) Исполнение повышенной надежности (для работы на объектах атомной энергетики — ОАЭ (АЭС и пр.)

4 Отличие интерфейсов RS485/RS422 от RS232 и USB

Важным элементом электронного блока современных цифровых датчиков давления является АЦП — Аналого-цифровой преобразователь (англ. Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигнал в дискретный бинарный код (цифровой сигнал), позволяющий микропроцессорному преобразователю иметь цифровой ЖК- или СД-индикатор, интерфейсы связи (RS485/RS232/USB и др.) и поддерживать протоколы управления и удаленного обмена данными (HART, ModBas и др.).

Про анемометры:  табличка указатель расположения подземных сетевых устройств

Интерфейс RS-485 (англ. Recommended Standard 485), EIA-485 (англ. Electronic Industries Alliance-485) — стандарт физического уровня для асинхронного интерфейса. Регламентирует электрические параметры полудуплексной многоточечной дифференциальной линии связи типа «общая шина».

Стандарт RS-485 приобрел большую популярность и стал основой для создания целого семейства промышленных сетей, широко используемых в промышленной автоматизации.
В стандарте RS-485 для передачи и приёма данных используется одна витая пара проводов, иногда сопровождаемая экранирующей оплеткой или общим проводом.
Передача данных в RS485 осуществляется с помощью дифференциальных сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль.

Так как интерфейсы RS485/422 реализованы на дифференциальных линиях связи, их помехозащищённость очень хорошая. Обычно применяется кабельное хозяйство с волновым сопротивлением 120 Ом. На концах линий обязательно ставятся согласующие резисторы. Линии RS485 могут быть длиной до 1 километра.

Интерфейс RS422 является «облегчённой» версией RS485. У него снижены выходные токи передатчиков и следовательно меньше нагрузочная способность. Для улучшения этих параметров применяются повторители данных.

Интерфейс RS485 реализуют магистральный принцип обмена данными. В нём может быть адресовано до 63 портов. Строго говоря, RS422 – радиальный интерфейс, но многие производители оборудования дополняют его возможностью магистрального подключения и частичной совместимостью с RS485 (со сниженными параметрами по нагрузочной способности).

б) Интерфейс RS232
Интерфейс RS232 построен на униполярных линиях передачи данных. Поэтому его производительность и максимальная длина кабеля невелики. RS232 применяется для подключения периферийного оборудования к управляющим компьютерам. RS232 является радиальным интерфейсом, поэтому понятие адреса в нём отсутствует. Эти факторы способствуют повышению эффективности работы интерфейса в системах сбора данных и с периферийным оборудованием.

в) Интерфейс USB
USB (ю-эс-би, англ. Universal Serial Bus — «универсальная последовательная шина») — последовательный интерфейс для подключения периферийных устройств к вычислительной технике. Интерфейс USB получил широчайшее распространение и фактически стал основным интерфейсом подключения периферии к бытовой цифровой технике.

Интерфейс USB позволяет не только обмениваться данными, но и обеспечивать электропитание периферийного устройства. Сетевая архитектура позволяет подключать большое количество периферии даже к устройству с одним разъёмом USB.

5 Про HART-протокол

HART-протокол (англ. Highway Addressable Remote Transducer Protocol) — цифровой промышленный протокол передачи данных, попытка внедрить информационные технологии на уровень полевых устройств.
Модулированный цифровой сигнал, позволяющий получить информацию о состоянии датчика или осуществить его настройку, накладывается на токовую несущую аналоговой токовой петли уровня 4—20мА. Таким образом, питание датчика, снятие его первичных показаний и вторичной информации осуществляется всего по двум проводам.
HART-протокол — это практически стандарт для современных промышленных датчиков. Приём сигнала о параметре и настройка датчика осуществляется с помощью HART-модема или HART-коммуникатора. К одной паре проводов может быть подключено несколько датчиков. По этим же проводам может передаваться сигнал 4—20мА.

HART-протокол был разработан в середине 1980-х годов американской компанией Rosemount. В начале 1990-х годов протокол был дополнен и стал открытым коммуникационным стандартом. Однако, полных официальных спецификаций протокола в открытом доступе нет — их необходимо заказывать за деньги на сайте фонда HART-коммуникаций. На март 2009 года доступна спецификация версии HART 7.2, поддерживающая технологию беспроводной передачи данных.

HART-протокол использует принцип частотной модуляции для обмена данными на скорости 1200 бод. Для передачи логической «1» HART использует один полный период частоты 1200 Гц, а для передачи логического «0» — два неполных периода 2200 Гц. HART-составляющая накладывается на токовую петлю 4—20мА. Поскольку среднее значение синусоиды за период равно «0», то HART-сигнал никак не влияет на аналоговый сигнал 4—20мА. HART-протокол построен по принципу «Ведущий — Ведомый», то есть полевое устройство отвечает по запросу системы. Протокол допускает наличие двух управляющих устройств (управляющая система и коммуникатор).

Существует два режима работы датчиков, поддерживающих обмен данными по HART протоколу:

Режим передачи цифровой информации одновременно с аналоговым сигналом — обычно в этом режиме датчик работает в аналоговых АСУ ТП, а обмен по HART-протоколу осуществляется посредством HART-коммуникатора или компьютера. При этом можно удаленно (расстояние до 3000 метров) осуществлять полную настройку и конфигурирование датчика. Оператору нет необходимости обходить все датчики на предприятии, он может их настроить непосредственно со своего рабочего места.

В многоточечном режиме — датчик давления передает и получает информацию только в цифровом виде.
Аналоговый выход автоматически фиксируется на минимальном значении (только питание устройства — 4 мА) и не содержит информации об измеряемой величине. Информация о переменных процесса считывается по HART-протоколу. К одной паре проводов может быть подключено до 15 датчиков. Их количество определяется длиной и качеством линии, а также мощностью блока питания датчиков. Все датчики в многоточечном режиме имеют свой уникальный адрес от 1 до 15, и обращение к каждому идет по соответствующему адресу. Коммуникатор или система управления определяет все датчики, подключенные к линии, и может работать с любым из них.

6 Отличие M-Bus от ModBus

Интерфейс M-Bus (Meter-Bus) — стандарт физического уровня для полевой шины на основе асинхронного интерфейса. Также под этим названием понимают коммуникационный протокол, используемый для связи устройств по этой шине. Интерфейс M-bus преимущественно применяется для приборов учета электрической энергии (электросчётчики), тепловой энергии (теплосчётчики), расходомеров воды и газа.

Протокол Modbus — открытый коммуникационный протокол, основанный на архитектуре ведущий-ведомый (master-slave). Широко применяется в промышленности для организации связи между электронными устройствами. Может использоваться для передачи данных через последовательные линии связи интерфейсы RS485, RS422, RS232, и сети TCP/IP (Modbus TCP). Также существуют нестандартные реализации, использующие UDP.

Не следует путать «MODBUS» и «MODBUS Plus». MODBUS Plus — приприетарный протокол принадлежащий Schneider Electric. Физический уровень уникальный, похож на Ethernet 10BASE-T, полудуплекс по одной витой паре, скорость 1 Мбит/с. Транспортный протокол — HDLC, поверх которого специфицировано расширение для передачи MODBUS PDU.

7 Предупреждение о воровстве контента статьи «Датчики давления»

Вышеприведенные материалы опубликованы с согласия правообладателя, любое копирование, в том числе и части текста возможно только с согласия правообладателя.

Заранее благодарим Вас за обращение в любое из предприятий группы компаний — ГК «Теплоприбор» (Теплоприборы, Промприбор, Теплоконтроль и другие) и обещаем приложить все усилия для оправдания Вашего доверия.

Виды технических (промышленных) датчиков давления (избыточного, дифференциального(перепада), абсолютного, вакуумметрического (разряжения), далее, сокращенно — ДД) в зависимости от определяющих технических характеристик (конкретные марки датчиков можно посмотреть, перейдя по ссылке):
1. Датчики давления с унифицированным токовым сигналом (0-5мА,  4-20мА) и цифровой выходом (интерфейс, протокол)
—  Малогабаритные датчики и экономкласс (для ЖКХ)
—  Однопредельные датчики (однодиапазонные)
—  Многопредельные датчики (многодиапазонные перенастраевыемые)
—  С электроконтактным (релейным, дискретным) выходом — ЭКМ
—  С цифровым выходом (RS232, RS485, USB; ModBus, HART-протокол)
2. Датчики с выходом по напряжения постоянного тока (0-1,-5,-10В)
3. Датчики с выходом взаимной индуктивности 0-10мГн
4. Датчики с пневматическим выходным сигналом 20-100кПа
5. Датчики гидростатического давления (датчики уровня) погружные и врезные (с торцевой открытой мембраной).
6. Нестандартные специальные датчики давления
(перегрузка, нестандартный диапазон и/или выход, высокотемпературное и защищенное исполнение и т.п.).
Подробнее о датчиках давления, их видах, принципах действия, конструктивных исполнениях, а также о технических характеристиках, особенностях выбора (как правильно выбрать, заказать, купить датчик), комплектации, областях применения, выходных сигналах, о ценах (см. общий прайс-лист на датчики давления), наличию на складе или сроках изготовления см выше и в соответствующих разделах сайта..

Оглавление раздела технические преобразователи / датчики давления

I.  Описание, определения и основные характеристики датчиков давления.
1. Виды измеряемого датчиками давления.
2. Виды исполнения сенсора (чувствительного элемента) и материал мембраны.
3. Класс точности и выходные сигналы датчиков давления.
4. Условия эксплуатации в зависимости от измеряемой и окружающей среды.
5. Параметры питания и способы монтажа датчиков давления.
6. Общие рекомендации о том как правильно выбрать, заказать и купить датчик давления.

В настоящее время ожидается дополнение и переиздание авторской статьи «Датчики давления: Аналитический обзор, сравнение видов и рыночных цен, анализ характеристик и преимуществ, правила профессионального подбора» моделей датчиков давления любого вида (избыточного, абсолютного, вакуумметрического, гидростатического и дифференциального (перепада) давления, в том числе и специальных нестандартных исполнений).

Вернуться в начало страницы.

Чувствительность

Различные процессы требуют различных уровней точности. В общем, чем точнее датчик, тем он дороже, таким образом, будет экономически выгодно выбрать датчики, которые способны максимально удовлетворить требуемую точность. Существует также компромисс между точностью и способностью быстро обнаруживать изменения давления. Следовательно, в процессах, в которых давление сильно варьируется в течение коротких периодов времени — нецелесообразно использовать датчики, которым требуется больше времени, чтобы дать точные показания давления, хотя они и могли бы дать более точные значения.

Оцените статью
Анемометры
Добавить комментарий