Ра́диока́псула (синоним э́ндора́диока́псула; устаревшие названия: кишечный датчик, кишечный радиозонд) — заглатываемая человеком или животным капсула — медицинский прибор, измеряющий в просвете органов желудочно-кишечного тракта (ЖКТ) некоторые величины (например, кислотность, температуру, давление и другие) и передающий результаты измерений по радиоканалу. Радиосигнал от радиокапсулы записывается и обрабатывается специальной приёмно-анализирующей аппаратурой.
- Состав измерительного комплексаПравить
- Типы радиокапсул по измеряемым параметрамПравить
- Радиокапсулы, измеряющие давление
- Из истории радиокапсулПравить
- Разработка радиокапсул в СССР
- PH-радиокапсулы БравоПравить
- Недостатки видеокапсульной эндоскопии
- Пульсоксиметр
- Принцип действияПравить
- ИсторияПравить
- ЛитератураПравить
- Физические основыПравить
- Составляющие системы ультразвуковой диагностикиПравить
- Методики ультразвукового исследованияПравить
Состав измерительного комплексаПравить
Радиокапсула является лишь одной из частей комплекса, измеряющего значения каких-либо характеристик ЖКТ. Сигнал, излучаемый капсулой, должен приниматься специальным устройством. Если не ставится задача определения точного местоположения капсулы в ЖКТ пациента, а также предполагается, что пациент должен вести обычный образ жизни, вне стационара, то приёмник представляет из себя небольшой электронный блок, носимый в кармане одежды или на поясе пациента. Приёмник записывает текущие результаты измерений. После окончания процедуры записанные значения передаются, например, в персональный компьютер, на котором, с помощью специально разработанного программного обеспечения, происходит обработка этих измерений и их анализ.
Если исследуется ЖКТ животных, например, крупного рогатого скота, то приёмник размещается за оградой территории, доступной животным. При этом передатчик в капсуле и приёмник должны обладать достаточными для записи полезного сигнала мощностью и чувствительностью, соответственно.
В обыденной речи фраза «разработка радиокапсулы» и ей аналогичные обычно означает разработку не только самой капсулы, но и всего комплекса аппаратуры, включающего, в том числе, приёмник(и) и программное обеспечение для анализа результатов измерений.
Типы радиокапсул по измеряемым параметрамПравить
Различные варианты радиокапсул измеряют разный набор параметров. Но наиболее часто измеряемыми радиокапсулами параметрами являются внутриполостные давление, температура и кислотность. Существуют различные варианты реализаций: или в одной капсуле совмещают два или более измеряемых параметра, или разрабатывают серию капсул, в которой каждая из капсул оснащена датчиком только одного типа.
Радиокапсулы, измеряющие давление
Датчики измерения температуры в капсулах должны работать в диапазоне 34—42°С, датчик должен обнаруживать изменения температуры, равное ± 0,1 — 0,2 °C.
С момента создания первой радиокапсулы, в датчиках измерения температуры были использованы различные преобразователи:
- сегнетокерамические или иные конденсаторы с резко выраженной температурной зависимостью диэлектрической проницаемости материала между прокладками конденсатора;
- катушки индуктивности с сердечником, магнитная проницаемость которого в достаточной для регистрации степени зависит от температуры;
- терморезисторы;
- диоды или транзисторы с заметной температурной зависимостью коллекторного тока от температуры.
Из истории радиокапсулПравить
Выдающиеся изобретатели — участники бума разработок радиокапсул конца 1950-х — 1960-х годов:
Разработка радиокапсул в СССР
С 1957 года, времени первых публикаций, до начала 1970-х годов разработкой радиокапсул и методов их применения занимались во многих странах и с большим энтузиазмом. Существовала вера, что радиокапсулы смогут стать мощным диагностическим инструментом. Довольно быстро были решены все инженерные задачи, связанные с конструированием капсул, датчиков, передачей и приёмом радиосигнала и его обработкой. Были некоторые достижения в области физиологии (например, измерены pH и температурные профили всего желудочно-кишечного тракта). Общее число публикаций в научных журналах достигло нескольких сотен. Однако главная задача — широкое внедрение радиокапсул в практическую медицину — не была решена.
Основными причинами этого явились сложность (или невозможность) точного определения, где (в каком отделе ЖКТ) в конкретный момент находится капсула и невозможность «остановки» капсулы при её перемещении по ЖКТ на клинически интересном участке.
PH-радиокапсулы БравоПравить
Существует большое количество различных радиоэлектронных капсул, предназначенных для диагностических или лечебных целей. Часть из них имеет широкое применение в медицинской практике, другие используются только в научных исследований, третьи реализованы в нескольких экземплярах, четвёртые существуют только в виде проектных разработок. Ниже перечислены «электронные таблетки», хотя и не являющиеся в первоначальном понимании термина радиокапсулами, но имеющее общим то, что они являются радиотехническим или радиоэлектронным устройством, имеют вид капсулы, вводятся в желудочно-кишечный тракт и излучают радиосигналы.
Недостатки видеокапсульной эндоскопии
Назначение и классификация датчиков.
Характеристики датчиков. Погрешность датчиков.
Примеры устройства датчиков, используемых в медицине.
Датчик – (преобразователь медицинской информации) – устройство съема информации, реагирующий своим чувствительным элементом на воздействие измеряемой величины, а также осуществляющий преобразование этого воздействия в форму, удобную для последующего усиления, регистрации, обработки и т.д.
Тип и конструкция датчика зависят от вида необходимого преобразования, то есть определяются конкретными физическими представлениями входного неэлектрического сигнала и выходного электрического сигнала, а также зависят от условий работы датчика.
Входными неэлектрическими величинами датчиков могут быть механические величины (линейные и угловые перемещения, скорость, ускорение, давление, частота колебаний), физические (температура, освещенность, влажность), химические (концентрация, вещества, состав), непосредственно физиологические (наполнение ткани кровью).
Выходными электрическими величинами обычно служат ток, напряжение, ионное сопротивление (импеданс), частота (или фаза) переменного тока или импульсных сигналов.
Датчики медико-биологической информации можно разделить на
две группы: биоуправляемые и энергетические.
Биоуправляемые датчики изменяют свои характеристики непосредственно под влиянием медико-биологической информации, поступающей от объекта измерения. В свою очередь биоуправляемые датчики подразделяются на активные (генераторные) и пассивные (параметрические).
В активных датчиках измеряемый параметр непосредственно преобразуется в электрический сигнал, то есть под воздействием измеряемой величины активные датчики сами генерируют сигнал соответствующей амплитуды или частоты. К таким датчикам относятся пьезоэлектрические, индукционные преобразователи, термоэлементы.
Пассивные датчики под воздействием входной величины изменяют свои электрические параметры: сопротивление, емкость или индуктивность. В отличие от активных (генераторных) датчиков, пассивные (параметрические) датчики для получения соответствующего значения выходного напряжения или тока включаются в электрическую цепь с внешним источником питания. К таким датчикам можно отнести емкостные, индуктивные, резистивные, контактные датчики.
Энергетические датчики в отличие от биоуправляемых активно воздействуют на органы и ткани. Они создают в исследуемом органе так называемый немодулированный энергетический поток со строго определенными, постоянными во времени характеристиками. Измеряемый параметр воздействует на характеристики этого потока, модулирует его пропорционально изменениям самого параметра. Энергетические информационные преобразователи нуждаются в источнике дополнительной энергии для воздействия на объект и создания немодулированного энергетического потока. Из датчиков такого типа можно указать, к примеру, фотоэлектрические и ультразвуковые.
Каждый датчик характеризуется определенными метрологическими показателями. Важнейшими из них являются:
1) чувствительность – минимальное изменение снимаемого параметра, которое можно устойчиво обнаружить с помощью данного преобразователя;
2) динамический диапазон – диапазон входных величин, измерение которых производится без заметных искажений от максимальной предельной величины до минимальной, ограниченной порогом чувствительности или уровнем помех;
3 ) погрешность – максимальная разность между получаемой и номинальной выходными величинами;
4) время реакции – минимальный промежуток времени, в течение которого происходит установка выходной величины на уровень, соответствующий измененному уровню входной величины.
Погрешности устройств съема медико-биологической информации – одно из звеньев в общей цепи ошибок измерений, зависящих от ряда технических и специфических причин. Это обстоятельство затрудняет сопоставление результатов в процессе диагностики и лечения.
Причинами погрешностей могут быть:
1 ) температурная зависимость функции преобразования;
2) гистерезис – запаздывание y от x даже при медленном изменении входной величины, происходящее в результате необратимых процессов в датчике;
3) непостоянство функции преобразования во времени;
4) обратное воздействие датчика на биологическую систему, приводящее к изменению показаний;
5) инерционность датчика (пренебрежение его временными характеристиками) и другие.
Пульсоксиметр
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 октября 2021 года; проверки требуют 11 правок.
Пульсокси́метр (англ. ) — медицинский контрольно-диагностический прибор для неинвазивного измерения уровня капиллярной крови (пульсоксиметрии).
Пульсоксиметр, надетый на палец
Сверху – значение SpO2, снизу – пульс.
Пульсоксиметр с браслетом
Существует множество патологий, течение которых сопровождается хроническим недостатком кислорода в крови (гипоксией). В данном случае показатель сатурации кислорода крови требует постоянного наблюдения.
Принцип действияПравить
Спектр поглощения гемоглобина, связанного с молекулами кислорода (HbO2), и гемоглобина без кислорода (Hb).
ИсторияПравить
- оценка функции дыхательной системы
- анестезиология
- хроническая обструктивная болезнь лёгких
- саркоидоз
- туберкулёз
- Ю. С. Александрович, В. И. Гордеев, К. В. Пшениснов. Неотложная педиатрия. Учебное пособие. — СпецЛит, 2010. — ISBN 978-5-299-00442-7.
- Elizabeth Mack Focus on Diagnosis: Co-oximetry Архивная копия от 15 сентября 2018 на Wayback Machine
- Порядок дезинфекции пульсоксиметра после применения у лиц с подозрением на особо опасные инфекции Архивная копия от 30 сентября 2020 на Wayback Machine, видео Архивная копия от 3 августа 2020 на Wayback Machine, ФГБУ НМИЦ ФПИ МИНЗДРАВА РОССИИ, март 2020
- Jagadeesh Kumar V., K. Ashoka Reddy. Pulse Oximetry for the Measurement of Oxygen Saturation in Arterial Blood (англ.) // Studies in Skin Perfusion Dynamics: Photoplethysmography and its Applications in Medical Diagnostics / Vladimir Blazek, Jagadeesh Kumar V., Steffen Leonhardt, Mandavilli Mukunda Rao. — Singapore: Springer, 2021. — . — . — doi:10.1007/978-981-15-5449-0_3.
- Home care for patients with suspected or confirmed COVID-19 and management of their contacts . www.who.int. Дата обращения: 10 января 2021. Архивировано 11 января 2021 года.
ЛитератураПравить
Запрос «УЗИ» перенаправляется сюда; см. также другие значения.
Ультразвуковое исследование (УЗИ), сонография — неинвазивное исследование организма человека или животного с помощью ультразвуковых волн.
Портативный аппарат УЗИ GE Logiq V
Физические основыПравить
Ультразвук распространяется в средах в виде чередующихся зон сжатия и расширения вещества. Звуковые волны, в том числе и ультразвуковые, характеризуются периодом колебания — длительностью одного полного цикла упругого колебания среды; частотой — числом колебаний в единицу времени; длиной — расстоянием между точками одной фазы и скоростью распространения, которая зависит главным образом от упругости и плотности среды. Длина волны обратно пропорциональна её периоду. Чем выше частота волны, тем выше разрешающая способность ультразвукового датчика. В системах медицинской ультразвуковой диагностики обычно используют частоты от 2 до 29 МГц. Разрешающая способность современных ультразвуковых аппаратов может достигать долей мм.
Любая среда, в том числе и ткани организма, препятствует распространению ультразвука, то есть обладает различным акустическим сопротивлением, величина которого зависит от их плотности и скорости распространения звуковых волн. Чем выше эти параметры, тем больше акустическое сопротивление. Такая общая характеристика любой эластической среды обозначается термином «акустический импеданс».
В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Доплера) позволяют определить скорость движения границы раздела плотностей, а также разницу в плотностях, образующих границу.
Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).
Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 — 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.
Особый интерес в диагностике вызывает использование эффекта Доплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).
При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя.
Составляющие системы ультразвуковой диагностикиПравить
Генератором ультразвуковых волн является датчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.
Линейные датчики используют частоту 5-15 МГц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдьюсера на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдьюсера к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур — щитовидной железы, молочных желёз, небольших суставов и мышц, а также для исследования сосудов.
Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов: органов брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренных суставов.
Секторный датчик работает на частоте 1,5-5 МГц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография — исследование сердца.
Гель для ультразвуковой эмиссии
В отличие от слышимого диапазона, ультразвук заметно ослабляется и искажается тонкими (доли мм) препятствиями, а высокое разрешение сканирования возможно только при минимальных искажениях амплитуды и времени прохождения звука. При простом прикладывании датчика образуется воздушная прослойка постоянно меняющейся толщины и геометрии. Ультразвук отражается от обеих границ прослойки, ослабевая и интерферируя с полезным отражением. Для устранения отражающих границ в месте контакта применяются специальные гели, заполняющие область между датчиком и кожей.
Методики ультразвукового исследованияПравить
Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране монитора в виде изображения срезов тела, имеющие различные оттенки серого. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная — чёрным (эхонегативные участки). При негативной регистрации наблюдается обратное положение. Выбор позитивной или негативной регистрации определяется личными предпочтениями оператора.
Изображение, получаемое при исследовании, может быть разным в зависимости от режимов работы сканера. Выделяют следующие режимы:
- A-режим (англ. ). Методика даёт информацию в виде одномерного изображения, где первая координата — это амплитуда отраженного сигнала от границы сред с разным акустическим сопротивлением, а вторая — расстояние до этой границы. Зная скорость распространения ультразвуковой волны в тканях тела человека, можно определить расстояние до этой зоны, разделив пополам (так как ультразвуковой луч проходит этот путь дважды) произведение времени возврата импульса на скорость ультразвука.
- B-режим (англ. ). Методика даёт информацию в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени, что позволяет оценивать их морфологическое состояние.
- M-режим (англ. ). Методика даёт информацию в виде одномерного изображения, вторая координата заменена временной. По вертикальной оси откладывается расстояние от датчика до лоцируемой структуры, а по горизонтальной — время. Используется режим в основном для исследования сердца. Дает информацию о виде кривых, отражающих амплитуду и скорость движения кардиальных структур.