Принцип работы термоэлектрического термометра

Принцип работы термоэлектрического термометра Анемометр

На сегодняшний день редкая котельная или ЦТП обходятся без системы автоматики. С ее помощью можно настроить систему отопления так, чтобы все процессы в ней происходили без участия человека. Основным процессы регулирования в системе отопления проходят по температуре, либо по температуре наружного воздуха, либо по температуре теплоносителя. Ранее рассмотренные термометры расширения, а именно жидкостные, манометрические термометры, к использованию в системах автоматизации непригодны. Биметаллические термометры могут управлять контактами реле посредством изгибания пластины, но все же строить автоматику только на них достаточно проблематично. Поэтому стоит обратить внимание на основную группу приборов для измерения температуры, применяющихся в сфере отопления, — электрические термометры.

Они делятся на два вида:

Принцип работы термоэлектрического термометра

  • термоэлектрические термометры (принцип их работы основан на возникновении термоэлектродвижущей силы);
  • термометры сопротивления (в основе принципа их работы лежит изменение электрического сопротивления проводников, изготовленных из металла, при изменении их температуры).

Термоэлектрические термометры имеют очень большой диапазон измерений от -50 до +1300°С. Причем верхняя планка измерения температуры может быть в некоторых случаях поднята еще выше (до +2500°С) . Именно данная характеристика и является главным достоинством термоэлектрических термометров.

Работа данного вида термометров основана на том факте, что в замкнутой цепи, состоящей из двух разнородных электродов (проводников), возникает термоЭДС, если их холодный и горячий спаи имеют различную температуру. Спаи имеют свои специальные названия – холодный спай носит название свободного, горячий спай – рабочего. Именно изменение температуры рабочего конца спая вызывает соответствующее изменение термоэлектродвижущей силы, которое воспринимается вторичным электроприбором – потенциометром либо пирометрическим милливольтметром. Значение термоЭДС зависит от материала электродов и от температуры холодного и горячего спаев.

Для изготовления стандартных термоэлектрических термометров (их еще называют термопары) применяют платины и такие сплавы, как хромель, алюмель, копель, платинородий. Обозначаются данные термометры по первым буквам электродов, например ТХК – Термометр Хромель-Копелевый.

Преимуществами термопар являются их простота, высокая точность и большой диапазон измерений, дешевизна и надежность. А главными недостатками является влияние температуры свободных концов термопары на ее показания, а также нелинейная характеристика зависимости термоЭДС от температуры.

Для минимизации влияния погрешностей в показаниях прибора к свободным концам присоединяют так называемые компенсационные провода, которые отводятся в зону с постоянной и известной температурой. Изготавливаются компенсационные провода обязательно из тех же материалов, что и термометры. При использовании компенсационных проводов обязательно нужно проверять правильность их присоединения, а также их соответствие термометру.

Термометры сопротивления имеют диапазоны измерений, зависящие от материала изготовления чувствительного элемента прибора. Если он изготовлен из платины, то с помощью данного термометра сопротивления (ТСП – Термометр Сопротивления Платиновый) можно измерять температуры от -200 до 1100°С. Если же чувствительный прибор изготовлен из меди (ТСМ – Термометр Сопротивления Медный), то диапазон его измерений составляет от -50 до 180°С.

Питание схемы постоянным током осуществляется двумя методами: либо от аккумулятора небольшой емкости, либо от электрической сети через выпрямитель. В качестве показывающих вторичных электрических приборов используются логометры или уравновешенные автоматические мосты (мост Уинстона). Причем немаловажно, что к одному вторичному прибору можно подключать сразу несколько термометров сопротивления. Достоинством термометров данного вида является отсутствие необходимости в поправке на температуры свободных концов. Благодаря этому обстоятельству температуру измеряемой среды можно отсчитывать сразу по вторичному прибору.

Защитные чехлы термометров сопротивления по своей конструкции очень похожи на чехлы термоэлектрических термометров. Соединительные медные провода должны иметь такое же сопротивление, как и сопротивление, указанное на шкале прибора. При несоответствии же сопротивления соединительных проводов возникает необходимость в подключении подгоночного сопротивления из манганиновой проволоки.

Измерение температуры с помощью термопары

Преимуществами термометров сопротивления являются их высокая точность, стабильность и практически линейная характеристика зависимости сопротивления от температуры, что упрощает разработку вторичных преобразователей сигнала. Также при трех- и четырехпроводной схемах подключения исключается влияние сопротивления линий связи.

Недостатком является их относительно небольшой диапазон измерений в сравнении с термопарами, а также необходимость наличия источника питания для работы термометров сопротивления.

Термоэлектрические термометры;

Термопара – два проводника из разнородных материалов, соединенных на одном конце и образующих часть устройства, использующего термоэлектрический эффект для измерения температуры (ГОСТ 6616–94).

Термоэлектрические преобразователи – устройства с металлическими термопарами в качестве термочувствительных элементов, предназначенные для измерения температуры от минус 270 до плюс 2500 °С.

Принцип действия термоэлектрических термометров основан на зависимости термоэлектродвижущей силы термопары от температуры.

Термоэлектродвижущая сила (термоЭДС) возникает в цепи, составленной из двух разнородных проводников при неравенстве температур в местах соединения этих проводников, схема термоэлектрической цепи представлена на рис. 6.5. Термоэлектродвижущая сила зависит от рода проводников и температуры спаев.

Если в цепи (рис. 6.5) температуры мест соединения проводников a и b будут одинаковы и равны t, то и разности потенциалов будут равны по значению, но иметь разные знаки,

а суммарная термоЭДС и ток в цепи будут равны нулю,

Если t ¹ t 0, то суммарная термоЭДС не равна нулю,

так как разности потенциалов для одних и тех же проводников при разных температурах не равны. Результирующая термоЭДС (6.1) зависит для данных проводников a и b от температур t и t 0. Чтобы получить однозначную зависимость термоЭДС от измеряемой температуры t, необходимо другую температуру t 0 поддерживать постоянной.

Рис. 6.5. Термоэлектрическая цепь

Для измерения термоЭДС в цепь термоэлектрического термометра включают измерительный прибор, причем его включение вводит в цепь, по крайней мере, еще один, третий проводник.

Цепь, составленная из трех различных проводников a, b, c представлена на рис. 6.6, а.

Рис. 6.6. Включение третьего проводника в цепь термопары

ТермоЭДС такой цепи при равенстве температур всех мест соединения

Про анемометры:  Дизельные котлы отопления: цена на дизельные котлы в магазине Мастер Ватер

Рассмотрим термоэлектрическую цепь из трех проводников, когда температура мест подсоединения третьего проводника c не равна измеряемой температуре (рис. 6.6, б),

Из (6.2) следует, что

Тогда (6.3) можно записать так:

Таким образом, термоЭДС цепи, составленной из трех разнородных проводников, не отличается от термоЭДС цепи, составленной из двух проводников (6.1), если температура мест подсоединения третьего проводника одинакова.

Из закономерностей включения третьего проводника можно сделать следующие выводы:

1) включение одного, двух или нескольких проводников в цепь термоэлектрического термометра не вызовет искажения термоЭДС, если места подсоединения каждого из этих проводников будут иметь одинаковую температуру;

2) рабочий спай термоэлектрического термометра можно изготовлять путем сварки или пайки, если температура во всех точках спая будет одинакова.

На основании особенностей включения третьего проводника в цепь термоэлектрического термометра могут быть использованы два варианта включения измерительного прибора ИП в цепь термоэлектрического термометра: в разрыв электрода (рис. 6.7, а) и в разрыв спая (рис. 6.7, б).

Рис. 6.7. Включение измерительного прибора в цепь термоэлектрического термометра

В первом случае измеряемая температура, т.е. температура рабочего спая, будет t, температура свободных концов, поддерживаемая постоянной, t 0 и температуры мест подсоединения третьего проводника с измерительным прибором t ′ и t′′. Чтобы не было искажения развиваемой термоЭДС, температуры t ′ и t ′′ должны быть равны, а температура свободных концов t 0 постоянна.

Во втором случае третий проводник с измерительным прибором включается в разрыв свободных концов, поэтому места подсоединения третьего проводника одновременно являются свободными концами термоэлектрического термометра. Эти температуры должны быть одинаковы, как концы третьего проводника, и постоянны, как свободные концы. Если выполнены эти условия, то включение измерительного прибора не искажает термоЭДС термометра.

Для измерения температуры термоэлектрическим термометром необходимо измерить термоЭДС, развиваемую термометром, и температуру свободных концов. Если температура свободных концов термометра при измерении температуры равна 0 °C, то измеряемая температура определяется сразу из градуировочной характеристики (рис. 6.8), устанавливающей зависимость термоЭДС от температуры рабочего спая.

Градуировочные характеристики термоэлектрических термометров определены, как правило, при температуре свободных концов, равной 0 °C. Если температура свободных концов на практике отличается от 0 °C, но остается постоянной, то для определения температуры рабочего спая по градуировочной характеристике необходимо знать не только термоЭДС, развиваемую термометром, но и температуру свободных концов t 0. Чтобы ввести поправку на температуру свободных концов t 0, если t 0 ¹ 0 °C, необходимо к термоЭДС, развиваемой термоэлектрическим термометром E (t, t 0), прибавить E (t 0, 0), чтобы получить значение термоЭДС E (t, 0),

Такую термоЭДС E (t, 0) развивает термоэлектрический термометр при температуре рабочего спая t и температуре свободных концов 0 °C, т.е. в условиях градуировки.

Рис. 6.8. Введение поправки на температуру свободного спая термоэлектрического термометра

Значение поправки на температуру свободных концов термоэлектрического термометра зависит от градуировочной характеристики термометра.

Поправка вводится расчетным или автоматическим путем, при этом применяется следующая методика введения поправки: определяется значение E (t 0, 0), которое затем суммируется с термоЭДС термопары. Суммарная термоЭДС E (t, 0) соответствует градуировочному значению.

Для решения отдельных задач измерений температуры применяются различные способы соединения термоэлектрических термометров. Наиболее распространенные из них – термобатарея и дифференциальная термопара.

Термобатарея. Для увеличения коэффициента преобразования термоэлектрического термометра применяется последовательное включение нескольких термопар, т.е. термобатарея (рис. 6.9).

Рис. 6.9. Термобатарея

При таком включении термоЭДС, развиваемая термопарами, суммируется, т.е. термоЭДС термобатареи, состоящей из n термопар, в n раз больше термоЭДС отдельной термопары. Такое включение применяют для измерений при малых разностях температур рабочего t и свободного t 0 концов. Однако, как правило, температуры в различных точках расположения рабочих и свободных концов не совсем одинаковы вследствие неоднородности температурных полей. Поэтому термобатарея, увеличивая термоЭДС термометра, позволяет уменьшить погрешность измерения термоЭДС, но не повышает существенно точности измерения температуры. Другой областью применения термобатарей является создание термоэлектрогенераторов. Такие генераторы способны вырабатывать электроэнергию напряжением 1,2÷100 В и силой тока 10÷2000 мА.

Дифференциальная термопара. В некоторых случаях возникает необходимость измерения разности температур

в двух точках. Для этого располагают рабочий спай термопары в одной из точек, а свободные концы – в другой точке (рис. 6.10).

Рис. 6.10. Дифференциальный термоэлектрический термометр

В этом случае термоЭДС, развиваемая термометром, будет определяться температурами рабочего спая t 1 и свободных концов t 2,

Такая линейная аппроксимация обычно справедлива для любой термопары при разности температур, не превышающей 20÷25 °C.

Комплект термоэлектрического термометра состоит из термоэлектрического преобразователя, измерительного прибора и соединительных проводов.

Преобразователь термоэлектрический (рис.1.5) служит первичным преобразователем (чувствительным элементом) термоэлектрического термометра. Он состоит из двух разнородных проводников – электродов А и В, соединенных между собой. Место соединения электродов, нагреваемое до температуры t (температурой измеряемой среды), называется рабочим (горячим спаем), а до постоянной температуры t0 – свободным (холодным). Действие преобразователя основано на термоэлектрическом эффекте, заключающемся в том, что в замкнутой цепи из двух или нескольких разнородных проводников возникает термоэлектродвижущая сила (термо-ЭДС), если спаи проводников имеют разную температуру. Следовательно, термо-ЭДС, развиваемая преобразователем, зависит как от температуры t рабочего спая, так и от температуры t0 холодного спая. Если температура холодного спая поддерживается постоянной, то термо-ЭДС зависит лишь от степени нагрева горячего спая t. Измеряя эту термо-ЭДС, можно определить искомую температуру.

Термопреобразователи изготавливают из чистых металлов и сплавов, обладающих постоянством и хорошей воспроизводимостью термоэлектрических свойств. Для изготовления положительного электрода чаще всего используют платинородий, хромель, а отрицательного – алюмель, копель и др.

В технических термометрах создаваемая термо-ЭДС не превышает 8 мВ на каждые 100 °С; при измерении высоких температур она не превышает 70 мкВ.

Согласно ГОСТ 6616-94 допускается применение стандартных термоэлектрических преобразователей пяти типов (табл.1.1).

Изолированные термоэлектроды помещают в защитный чехол из газонепроницаемых материалов (сталь, фарфор и др.), выдерживающих высокие температуры.

На рис.1.6а показан общий вид термоэлектрического термометра. Термоэлектроды помещены в стальной чехол 8 с насаженным на него фланцем 9 со стопорным винтом. Рабочий конец чувствительного элемента 12 (рис.1.6б) расположен в фарфоровом стаканчике 11 или приваривается ко дну чехла. Оба электрода изолированы фарфоровыми бусами 10. Головка термоэлектрического термометра состоит из корпуса 7, крышки 3, штуцера 5 для вывода проводов. Крышка прикрепляется к головке цепочкой 1. Внутри головки расположена фарфоровая колодка 6 с двумя подвижными зажимами 4, имеющими две пары винтов 2 для закрепления термопроводов и соединительных проводов.

Про анемометры:  Утечки газа в газовых баллонах: причины и что делать - Статьи от компании «ТОРГГАЗ»

Температура головки термометра под действием окружающей среды может изменяться, вследствие чего нарушается постоянство температуры холодных спаев, вызывающее погрешность измерения. Устранения влияния температуры окружающей среды на величину термо-ЭДС достигают путем использования термоэлектродных проводов, которые развивают при темпера турах не более 100-150 °С термо-ЭДС, равную термо-ЭДС преобразователя. При наращивании преобразователя термоэлектродными проводами холодные спаи удаляются от среды с меняющейся температурой в зону с постоянной температурой, где может находиться нулевой (ледяной) или иной термостат (ТС).

а – общий вид; б – рабочий конец чувствительного элемента.

Рис. 3-6. Термоэлектрический термометр.

В качестве вторичных приборов для измерения термо-ЭДС в комплектах термоэлектрических термометров применяют милливольтметры и потенциометры.

Милливольтметр является прибором магнитоэлектрической системы. Принцип его работы основан на взаимодействии магнитного поля постоянного магнита с магнитным полем, образованным проводником, по которому протекает измеряемый электрический ток. Милливольтметр состоит из постоянного магнита 4 (рис.1.7) с полюсными наконечниками, круглого неподвижного сердечника 3, расположенного между полюсами магнита с зазором, в котором может поворачиваться подвижная рамка /. Рамка изготовляется из медной или алюминиевой проволоки и укрепляется по центру охватываемого сердечника на кернах или подвешивается на металлических подвесках. Стрелка 2, конец которой перемещается вдоль шкалы 6, жестко соединена с подвижной рамкой. Грузики 5 служат для балансирования подвижной системы. Электрическая цепь, в которой производится измерение термо-ЭДС, подключается к рамке через спиральные пружины (на схеме не показаны), соединенные одним концом с рамкой, а другим с неподвижными деталями прибора. Ток, протекая через рамку, вызывает вращающий момент. При этом угол поворота рамки зависит от величины тока. Милливольтметр может быть отградуирован в градусах температуры или в милливольтах. На шкале технического прибора указывается градуировка термоэлектрического преобразователя, для работы с которым он предназначен.

Милливольтметры выпускаются равных модификаций: переносные показывающие; стационарные показывающие; стационарные показывающие и сигнализирующие, показывающие и позиционно регулирующие узкопрофильные со световым указателем; самопишущие для измерения и записи температуры в одной или нескольких точках на одной диаграммной ленте.

Рис.1.7. Схема магнитоэлектрического милливольтметра.

Точность показаний термоэлектрического термометра зависит от способов его установки. При монтаже термометра в трубопроводах рабочий конец его располагают в центре потока (на оси трубопровода). В трубопроводах малого диаметра термометр устанавливают наклонно, концом навстречу потоку. Если температура измеряемой среды превышает 800°С, то термометр располагают вертикально, что заметно уменьшает деформацию его защитного чехла под действием высоких температур. Места крепления термометров к ограждающим стопкам должны быть надежно уплотнены, так как присосы холодного воздуха или прорывы нагретых газов наружу могут привести к неправильным показаниям и повреждению защитного чехла и головки термометра.

Рис.1.8. Монтаж термоэлектрического термометра в кирпичной кладке.

Установка термоэлектрического термометра в кирпичной кладке показана на рис.1.8. Труба 6, заделываемая в кладку, имеет три ребра 7, которые предохраняют ее от провертывания и осевого смещения. Термометр / со стопорным винтом 3 укреплен на фланцах 4, между которыми находится асбестовая прокладка 5. Свободные щели уплотнены набивкой 2. Глубина погружения термометра регулируется винтом 3. При монтаже термометра на металлической стенке труба с фланцем приваривается к этой стенке.

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Принцип работы термоэлектрического термометра

Устройство термопары

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Принцип работы термоэлектрического термометра

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

Принцип работы термоэлектрического термометра

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Принцип работы термоэлектрического термометра

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Принцип работы термоэлектрического термометра

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Принцип работы термоэлектрического термометра

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Про анемометры:  5 лучших датчиков угарного газа с AliExpress - ChinaCity

Принцип работы термоэлектрического термометра

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Лайфхак! Для правильного определения полярности компенсационных проводов и их подключения к термопаре запомните мнемоническое правило ММ — минус магнитится. То есть берём любой магнит и минус у компенсации будет магнитится, в отличии от плюса.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Принцип работы термоэлектрического термометра

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr). Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Принцип работы термоэлектрического термометра

Положительный электрод: сплав хромель (90% Ni, 10% Cr). Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь). Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Принцип работы термоэлектрического термометра

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh). Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый). Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh). Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Принцип работы термоэлектрического термометра

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh. Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

Принцип работы термоэлектрического термометра

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Принцип работы термоэлектрического термометра

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Принцип работы термоэлектрического термометра

Факторы, увеличивающие быстродействие:

  • Правильная установка и расчет длины первичного преобразователя;
  • При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  • Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  • Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  • Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Принцип работы термоэлектрического термометра

Причины выхода из строя термопары:

  • Неиспользование защитного экранирующего устройства;
  • Изменение химического состава электродов;
  • Окислительные процессы, развивающиеся при высоких температурах;
  • Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.
Оцените статью
Анемометры
Добавить комментарий