Содержание газов в выдыхаемом воздухе составляет

Содержание газов в выдыхаемом воздухе составляет Анемометр

Капнография, неинвазивный метод измерения и графической регистрации уровня СO2 во время дыхательного цикла, хорошо изучена, и много лет применяется для контроля за вентиляцией в анестезиологии и интенсивной терапии. Ниже будут описаны лишь наиболее актуальные аспекты применения этого метода при проведении мониторинга в интенсивной терапии.

При спокойном дыхании уровень PetСO2 у здоровых людей равен 36-45 мм рт. ст. Или, если выразить концентрацию углекислого газа в процентах (1% = 7,6 мм рт. ст.) при давлении 760 мм рт. ст., FetСO2 равен 4,7-5,9%. У женщин в третьем триместре беременности нормальная PetСO2 составляет 32-36 мм рт. ст.

Фаза I обусловлена наличием аппаратного и анатомического мертвого пространства. Видно, что уровень СO2 в начале выдоха не определяется. В фазе II начинает поступать альвеолярный газ, и уровень СO2 в выдыхаемом воздухе резко повышается. В фазе III, которая получила название «фаза плато» происходит медленное повышения уровня CO2 за счет поступления прогрессивно уменьшающегося объема газа из неперфузируемых альвеол, в которых низкий уровень СO2.

В самом конце выдоха уровень СO2 максимален, это и есть PetСO2. Затем начинается новый вдох, и уровень CO2 снижается до нуля.

Обмен
газов в легких.Перенос
газов в системе дыхания происходит
двумя способами: диффузионный и
конвективный перенос газов. В трахее,
бронхах и бронхиолах перенос газов
происходит путем конвекции. В респираторных
бронхиолоах и альвеолярных ходах, где
воздух движется очень медленно, к
процессу конвекции присоединяется
диффузионный обмен, обусловленный
градиентом парциальных давлений
дыхательных газов: молекулы кислорода
перемещаются в альвеолы, где парциальное
давление кислорода ниже, чем во вдыхаемом
воздухе, а молекулы углекислого газа –
в обратном направлении.Функциональной
единицей легких является ацинус. Каждый
ацинус вентилируется теминальной
бронхиолой, которая заканчивается
альвеолярными мешками, в стенках этих
мешков находятся альвеолы. Диаметр
альвеолы от 0,18 до 0,26 мм. В легких их около
300 млн.За 1-2 с газовый состав альвеол
обновляется за счет поступления
атмосферного воздуха.

Про анемометры:  Температура тела измеряется в каких градусах

В
состав атмосферного воздуха входит
20,93% кислорода, 0,03% углекислого газа.
79,03% азота, 14% кислорода, 5,5% углекислого
газа и около 80% азота. При выдохе
альвеолярный воздух смешивается с
воздухом мертвого пространства, состав
которого соответствует атмосферному.
Поэтому в выдыхаемом воздухе 16% кислорода,
4,5% углекислого газа и 79,4% азота. Дыхательные
газы обмениваются в легких через
альвеолокапиллярную мембрану. Это
область контакта альвеолярного эпителия
и эндотелия капилляров. Переход газов
через мембрану происходит по законам
диффузии. Скорость диффузии прямо
пропорциональна разнице парциального
давления газов. Согласно закону Дальтона,
парциальное давление каждого газа в их
смеси, прямо пропорционально его
содержанию в ней. Поэтому парциальное
давление кислорода в альвеолярном
воздухе 100 мм.рт.ст. а углекислого газа
40 мм.рт.ст. Напряжение кислорода в
венозной крови капилляров легких 40
мм.рт.ст., а углекислого газа – 46 мм.рт.ст.
Поэтому градиент давления по кислороду
направлен из альвеол в капилляры, а для
углекислого газа в обратную сторону.
Кроме того, скорость диффузии зависит
от площади газообмена, толщины мембраны
и коэффициента растворимости газа в
тканях. Общая поверхность альвеол
составляет 50-80 м2, а толщина альвеоло
-капиллярной мембраны всего 1 мкм. Это
обеспечивает высокую эффективность
газообмена. Показателем проницаемости
мембраны является коэффициент диффузии
Крога. Для углекислого газа он в 25 раз
больше, чем для кислорода. Где он
диффундирует в 25раз быстрее. Высокая
скорость диффузии компенсирует более
низкий градиент давлений углекислого
газа. Диффузионная способность легких
для газа (л) характеризуется его
количеством, которое обменивается за
1 минуту на 1 мм.рт.ст. градиента давления.
Для кислорода в норме она равна 30 мл*
мин-1*мм:рт.ст.

Чтобы
произошел газообмен в легких необходима
разность парциальных давлений обмениваемых
газов. Парциальное давление – это давление
газа в смеси газов. Давление газов в
жидкости называют парциальным напряжением
газов. Парциальное напряжение газа в
крови или в тканях – это сила, с которой
молекулы растворенного газа стремятся
выйти в газовую фазу. Выражается это
давление в мм рт. ст. В артериальной
крови парциальное напряжение кислорода
достигает почти 100 мм рт. ст., в венозной
крови около 40 мм рт.ст., а в клетках 0 –
10-15 мм рт. ст. Напряжение углекислого
газа в артериальной крови – около 40 мм
рт. ст., в венозной крови 46 мм рт. ст., а в
тканях – до 60 мм рт. ст. Таким образом, за
счет разности давлений газов между
альвеолярным воздухом и венозной кровью
за 1-2 с газовый состав выравнивается и
венозная кровь превращается в
артериальную.

Содержание
  1. Выбор параметров ИВЛ
  2. Обструктивные нарушения
  3. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха
  4. Контроль за вентиляцией
  5. Взгляд изнутри
  6. Часть 2. Транспорт газов кровью.
  7. Газовый состав вдыхаемого, альвеолярного и выдыхаемого воздуха
  8. Анатолий Минеев «Квант» №4, 2020
  9. Что первично для организма
  10. Подтвеждение правильной интубации
  11. Взгляд снаружи
Про анемометры:  Измерительные приборы для измерения

Выбор параметров ИВЛ

При нормальной функции легких существует небольшой градиент 3-5 мм рт. ст. между уровнем СO2 в артерии (PaCO2) и уровнем углекислого в конце выдоха (PetСO2). Но при любом увеличении объема мертвого пространства (анатомического, аппаратного, альвеолярного), или в случае нарушения диффузии CO2 через альвеолокапиллярную мембрану (например, тяжелый ОРДС), этот градиент возрастает, причем, мало предсказуемым образом.

Практически любое поражение легких, будь то пневмония, эмфизема, астма, ХОБЛ или нарушение гемодинамики со снижением перфузии легких (например, кровотечение, сердечная недостаточность, любой вид шока и т.д.) приводят к росту мертвого пространства и снижению PetСO2.

Внимание. У больных с легочной патологией и (или) нарушениями гемодинамики нельзя проводить коррекцию вентиляции, ориентируясь только на капнограмму.

Вот только до сих пор в стране имеется не столь много больниц, где существует возможность проведения круглосуточного мониторинга газов крови. В то же время существует категория больных, у которых метод контроля PaCO2 по уровню PetСO2 при проведении ИВЛ обеспечивает приемлемую для клинических целей достоверность результатов. В первую очередь это больные с поражением центральной нервной системы (ТЧМТ, инсульты, другие нейрохирургические вмешательства) и (или) пациентов других профилей без грубых легочных и гемодинамических нарушений. У большинства пациентов ИВЛ проводится в режиме нормовентиляции – ориентируются на PetСO2 = 34-40 мм рт. ст.

Обструктивные нарушения

Увеличение сопротивления во время выдоха сопровождается уменьшением скорости выделения CO2, и, часто, увеличением PetСO2. На капнограмме «фаза плато» становится наклонной.

Наиболее частые причины:

  • Бронхоспазм;
  • Частичная обструкция бронхов;
  • Перегиб или частичная обструкция эндотрахельной или трахеостомической трубки.

Следует иметь в
виду, что аэрогематический барьер легких
обладает определенной проницаемостью,
которая характеризуется диффузионной
способностью легких.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Альвеолярный
и выдыхаемый воздух по своему составу
значительно отличаются друг от дру­га.
Отличие их состава связано с тем, что
при выдохе к альвеолярному воздуху
примешивается воздух,
который находится в воздухоносных
путях, в так называемом вредном
пространстве. Сле­довательно,
выдыхаемый воздух представляет собой
смесь альвеолярного воздуха и воздуха
вред­ного
пространства. Если считать, что человек
в среднем выдыхает (при одном выдохе)
500 мл, то этот
воздух будет состоять из 360 мл альвеолярного
воздуха и 140 мл воздуха, находившегося
во вредном
пространстве.

Переход газов в
легких из воздуха в кровь и, наоборот,
поступление газов из крови в воздух
“одчиняется определенным физическим
законам, связанным с парциальным
давлением и коэф­фициентами растворимости
газов в жидкостях.

Каждый
газ растворяется в жидкости в зависимости
от своего парциального давления. Что
же называется парциальным давлением
газа? Если имеется смесь газов, то
парциальное давле­ние
каждого газа определяется процентным
содержанием данного газа в смеси газов.
Таким обра­зом,

парциальным
давлением называется та часть общего
давления, которая приходится на долю
каждого
газа в газовой смеси. Поясним это
примером. В состав атмосферного воздуха
входят кислород,
углекислый газ и азот, причем, как нам
известно, кислорода содержится 20,94%,
угле­кислого
газа 0,03% и азота 79,03%. Каково же будет
парциальное давление каждого из этих
газов? Атмосферное
давление равно 760 мм рт. ст. Следовательно,
если воздух оказывает давление, рав­ное
760 мм, то парциальное давление кислорода
будет равняться 20,94% от общего давления,
т. е. от
760 мм, и будет равно 159 мм рт. ст; парциальное
давление азота составит 79,03% атмосферного
давления
и будет равно 600,8 мм рт. ст. Углекислого
газа содержится очень мало — всего
0,03%. Поэтому
и парциальное давление углекислого
газа будет составлять приблизительно
0,2 мм рт. ст. Если
парциальное давление газа в окружающей
среде выше, чем давление (напряжение)
этого же газа
в жидкости, то газ растворяется в
жидкости, и между жидкостью и окружающим
ее газом устанавливается
определенное равновесие. Напряжение
газа измеряют парциальным давлением
газа над жидкостью, с которой он находится
в равновесии. Если, например, парциальное
давле­ние
кислорода в альвеолярном воздухе будет
выше, чем в притекающей венозной крови,
то кисло­род
из альвеолярного воздуха будет переходить
в кровь. Но в силу той же разницы газ из
жидко­сти
будет выходить в окружающий воздух,
когда напряжение газа в жидкости выше,
чем его пар­циальное
давление в окружающей среде. Если
напряжение углекислого газа в венозной
крови будет
выше, чем его парциальное давление в
альвеолярном воздухе, то этот газ будет
выходить из венозной
крови в альвеолярный воздух. Переход
газа из жидкости в окружающую смесь
газов будет
продолжаться до тех пор, пока не
установится равновесие. Таким образом,
газ растворяется

в
жидкости или выходит из жидкости в
окружающую среду в зависимости от
величины парциаль­ного
давления этого же газа в воздухе и его
напряжения в жидкости, причем газ
переходит из среды,
где имеется высокое давление, в среду
с меньшим давлением. Этот переход
продолжается до
тех пор, пока не установится равновесие.

Кроме
парциального давления, при растворении
газов в жидкостях большое значение
имеют температура
жидкости и коэффициент растворимости
газа в жидкости. Между температурой
жидкости
и количеством растворенного в ней газа
существует определенная зависимость:
чем выше
температура жидкости, тем меньше газа
в ней растворяется. Общеизвестно, что
при кипяче­нии
воды из нее выделяются пузырьки
растворенного в ней воздуха. Коэффициентом
раствори­мости называется то количество
газа, которое может быть растворено в
1 мл воды при давлении 760 мм рт. ст. при
данной температуре. Коэффициент
растворимости меняется в зависимости
от температуры
раствора. Разные газы имеют разный
коэффициент растворимости, так же как
и в разных растворителях может раствориться
разное количество одного и того же газа.

Переход
газов в легких из воздуха в кровь и,
наоборот, поступление газов из крови в
воздух подчиняются
рассмотренным выше физическим законам.
Однако в легких имеется ряд особенно­стей.
Воздух, находящийся в альвеолах, и кровь,
протекающая по капиллярам, отделены
друг от друга
всего лишь двумя слоями клеток: стенкой
альвеолы и стенкой капилляра. Незначительная
толщина
перепонки, отделяющей газ от крови, не
мешает свободному переходу газа. Полный
газообмен
между альвеолярным воздухом и кровью
возможен в короткий срок протекания
крови по
легочным капиллярам в том случае, если
имеются условия для лучшего и быстрого
перехода газов.
Одним из таких условий является большая
площадь легких. Действительно, если
растя­нуть
легкие, то их поверхность равняется в
среднем 90 м2.
Вся огромная площадь легкого густо
покрыта
капиллярами, по которым кровь растекается
очень небольшим слоем. Огромная пло­щадь
соприкосновения крови и воздуха при
незначительной толщине слоя протекающей
в капил­лярах
крови способствует быстрому насыщению
крови кислородом и отдаче углекислоты.
Газо­обмен
совершается в легких между альвеолярным
воздухом и кровью. Обмен газов в легких
может протекать
совершенно нормально, так как имеется
вполне достаточная разность в напряжении
газов
в крови и их парциальном давлении в
воздухе. Эта разность видна из табл.
5.2.

Парциальное
давление кислорода, углекислого газа
и азота во вдыхаемом и
альвеолярном воздухе, а также их
напряжение в крови

Кислород
из альвеолярного воздуха в кровь, а
углекислый газ из крови в альвеолярный
воз­дух
переходят путем диффузии. Диффузия
возможна потому, что парциальное давление
кислоро­да
в альвеолярном воздухе составляет 110
мм рт. ст., а в венозной крови — 40 мм рт.
ст. Таким образом, создается
разность давления в 70 мм рт. ст., чего
вполне достаточно, чтобы обеспечить
переход кислорода. Потребность человека
в кислороде равна 350 мл в минуту; при
работе потребность в кислороде
возрастает и доходит до 5000 мл в минуту.
Разности в парциальном давлении в 1 мм
рт. ст.
достаточно, чтобы за минуту перешло в
кровь 250 мл кислорода, а между парциальным
давле­нием
крови в альвеолярном воздухе и его
напряжением в крови имеется разность
в 70
мм рт. ст. — разность, вполне достаточная
для обеспечения максимальных потребностей
орга­низма.
Что же касается углекислого газа, то и
здесь имеется достаточная разность
между напря­жением СО2
в крови и его парциальным давлением в
альвеолярном воздухе. Эта разность
равна 6—7
мм рт. ст., что обеспечивает переход
углекислого газа из крови в альвеолярный
воздух.

Связывание,
перенос и отдача кислорода, а также
связывание и перенос углекислоты в
орга­низме
человека осуществляются кровью. Кислород
и углекислый газ находятся в крови в
физи­чески
растворенном состоянии (растворение
газов в жидкости называется абсорбцией)
и в хими­чески
связанном виде. Из 100 мл крови можно
выделить только 20 мл кислорода; между
тем в физически
растворенном состоянии в 100 мл крови
может находиться только 0,3 мл кислорода.
Так как количество кислорода, содержащегося
в 100 мл крови, во много раз больше, чем
может находиться
в растворенном состоянии, то ясно, что
кислород в основном находится в химически
связанном
виде. Веществом, вступающим в химическую
связь с кислородом, является гемоглобин,
содержащийся
в эритроцитах (см. главу 6). Кислород из
воздуха диффундирует в плазму крови, а
из
плазмы поступает в эритроциты и вступает
в химическую связь с гемоглобином.
Гемоглобин при
этом превращается в оксигемоглобин; 1
г гемоглобина может связать 1,34 мл
кислорода. Пре­вращение
гемоглобина в оксигемоглобин, т. е
степень насыщения гемоглобина кислородом,
связа­но
с величиной парциального давления
кислорода, но зависимость эта не прямо
пропорциональ­ная.
Гемоглобин обладает особым свойством,
имеющим очень важное биологическое
значение: он может
энергично вступать в соединение с
кислородом даже при его незначительном
парциальном давлении.

Артериальная
кровь, насыщенная в легких кислородом,
идет в капиллярную сеть большого круга
кровообращения, где оксигемоглобин
отдает тканям кислород. Оксигемоглобин,
отдавший кислород,
называется восстановленным гемоглобином
(дезоксигемоглобином). В артериальной
крови
почти весь гемоглобин превращен в
оксигемоглобин, а в венозной крови,
оттекающей от капилляров
большого круга кровообращения (см. главу
6), преобладает дезоксигемоглобин. В
переходе кислорода из крови к тканям
решающее значение имеет разность
напряжений кисло­рода
в артериальной крови и в тканях. Кислород
из крови поступает в тканевую жидкость
и из нее в клетки, где принимает участие
в окислительных процессах. Это возможно
потому, что напряже­ние кислорода,
растворенного в артериальной крови,
протекающей через капилляры, равно 100—
НО
мм рт. ст., в тканевой жидкости — 20—40 мм
рт. ст., а в клетках свободного кислорода
нет. Разность
напряжения растворенного кислорода,
равная 70—80 мм рт. ст., обеспечивает
энергич­ный
переход кислорода из плазмы крови в
тканевую жидкость. Оксигемоглобин,
который являет­ся нестойким соединением,
отдает кислород в плазму; в силу разности
напряжения растворенный кислород
переходит в тканевую жидкость и оттуда
в клетку, где вступает в окислительные
про­цессы.
Помимо разности в напряжении растворенного
кислорода, на степень отдачи кислорода
оксигемоглобином
сильно влияет величина напряжения
углекислого газа, растворенного в
кро­ви.
Специальными исследованиями доказано,
что чем выше напряжение углекислого
газа, ра­створенного в крови, тем
слабее становится связь гемоглобина с
кислородом, т. е. тем больше кислорода
освобождается. В капиллярах большого
круга кровообращения наряду с переходом

кислорода
из крови в тканевую жидкость происходит
и переход углекислого газа из тканевой
жидкости
в кровь. Количество углекислого газа
растет и его напряжение в крови возрастает,
а это обстоятельство
вызывает ослабление связи гемоглобина
с кислородом и способствует большему
освобождению
кислорода. В легких же происходит отдача
углекислого газа; его напряжение в крови
падает и благодаря этому сродство
гемоглобина с кислородом повышается,
т. е. гемоглобин начинает
более энергично соединяться с кислородом
и превращаться в оксигемоглобин. На
проч­ность
связи гемоглобина с кислородом влияет
также температура. При повышенной
температуре связь ослабевает, при
пониженной — увеличивается.

Связывание
и перенос углекислоты также осуществляет
кровь. Углекислота находится в кро­ви
преимущественно в виде бикарбонатов
натрия и калия. Кроме этих солей, в
переносе углекис­лого
газа участвует и гемоглобин. Для
поступления углекислого газа в кровь
и перехода из крови в альвеолярный
воздух требуется наличие разности его
давления. В тканевой жидкости напряже­ние
углекислого газа составляет около 60 мм
рт. ст., а в артериальной крови 40 мм рт.
ст. Следова­тельно,
имеется достаточная разность, и углекислый
газ диффундирует в кровь. В венозной
крови его
напряжение составляет 47 мм рт. ст., а его
парциальное давление в альвеолярном
воздухе — 40
мм рт. ст. Такая разность давлений вполне
достаточна для перехода углекислого
газа в альве­олярный воздух, а оттуда
— в атмосферный воздух.

Итак,
мы кратко рассмотрели основы
функционирования дыхательной системы
человека, одной
из физиологических систем, изменения
динамики которых в ходе полиграфной
проверки регистрирует
и анализирует специалист-полиграфолог.

Мы
констатировали, что в регуляции
респираторной активности организма
человека при­нимают
участие нервная и сердечно-сосудистая
системы. Поэтому в следующей главе мы
изло­жим основы анатомии и физиологии
сердечно-сосудистой системы, еще одной
системы, актив­ность
которой регистрирует и анализирует
полиграфолог в ходе инструментальной
«детекции лжи».

Контроль за вентиляцией

Капнография традиционно применяется для контроля за вентиляцией во время проведения ИВЛ. Реже – при сохраненном спонтанном дыхании пациента.

Быстрое снижение PetСO2 до нуля

Быстрое снижение PetСO2 до нуля может быть обусловлено несколькими причинами:

  • Остановкой дыхания;
  • Обтурацией, смещением эндотрахеальной или трахеостомической трубки;
  • Остановкой кровообращения;
  • Нарушением забора газов (смещение, обтурация канюли, попадание воды);
  • Неисправность аппарата ИВЛ;
  • Неисправностью капнографа.

Быстрое снижение PetСO2, но не до нулевых значений

Наиболее часто встречающиеся причины быстрого снижения PetСO2 < 36 мм рт. ст. (см. Рис.4), но не до нулевых значений – капнографическая кривая сохраняется:

  • Гипервентиляция при аппаратном дыхании, или одышка – на спонтанном;
  • Смещение эндотрахеальной трубки;
  • Тромбоэмболия легочной артерии;
  • Кровотечение;
  • Пневмоторакс;
  • Ателектаз;
  • Смещение канюли.

Взгляд изнутри

На уровне клеток организма состав воздушной среды совершенно иной. Содержание кислорода в клетках организма около 1–2% (исключение — эритроциты, в которых может содержаться до 96–98% кислорода), углекислого газа в клетках около 6%. Если концентрации CO2 в клетках уменьшается, то появляется все больше проблем с дыханием. На рисунке 4 приведена зависимость характерного времени, в течение которого человек (не рекордсмен) способен задержать дыхание, частоты пульса и степени ухудшения кровоснабжения органов от концентрации углекислого газа. Общий вывод таков: при уменьшении концентрации CO2 время задержки дыхания уменьшается и, если она приближается к 3%, клетки гибнут; быстро растет частота пульса; ухудшается кровоснабжение органов. В результате желательная концентрация CO2 в клетках должна быть 6% и даже немного больше. Примерное содержание кислорода и углекислого газа в различных частях организма человека, приведенное в таблице 3, подтверждает вышеуказанные цифры.

Содержание газов в выдыхаемом воздухе составляет

Таблица 3. Содержание кислорода и углекислого газа

Содержание газов в выдыхаемом воздухе составляет

В легких происходит обмен кислорода и углекислого газа между альвеолами и кровью. Альвеолы — концевые образования в легких, имеющие вид пузырьков, которые оплетены сетью капилляров (рис. 5). Через стенки альвеол (их диаметр около 0,3 мм, количество альвеол в легких человека около миллиарда, а общая поверхность приблизительно 100 м2) осуществляется газообмен: кислород переходит в кровь и примерно столько же углекислого газа из крови поступает в легкие. Более точно, в среднем за сутки из альвеолярного воздуха в кровь поступает 500 литров кислорода и выделяется 430 литров углекислого газа из крови в альвеолярный воздух.

Содержание газов в выдыхаемом воздухе составляет

Более подробно о свойствах альвеол рассказано в книге К. Ю. Богданова «Физик в гостях у биолога» (Библиотечка «Квант», выпуски 49, 133).

Часть 2. Транспорт газов кровью.

Механизмы связывания
газов кровью:

В жидкой части
крови растворены газы воздуха: кислород,
углекислый газ, азот. Растворенные в
эндогенной воде О2 и СО2 не
играют какой-либо значимой физиологической
роли.

2. Химическое
связывание кислорода кровью.

Насыщение
кровью кислородом зависит от:

1. Альвеолярной
вентиляции (pO2 в
альвеолах);

4. Содержания
гемоглобина (HHb)
в эритроцитах.

1. Насыщение крови
кислородом зависит от рО2 в
альвеолах. Величина рО2 в
альвеолах определяется прежде всего
интенсивностью вентиляции легких
(альвеолярной вентиляцией).

2. Важную роль в
насыщении крови кислородом играет
кровоток в легких (перфузия легких
кровью).

Характеристика
перфузии легких кровью.

Объем легочной
перфузии – около 500 мл крови.

МОК для малого
круга кровообращения равен (соответствует)
таковому для большого круга кровообращения.

Давление в
легочных артериях составляет 15-25
мм.рт.ст.,. В легочной артерии низкое
пульсовое давление 5-6 мм.рт.ст.

В малом круге
кровообращения невелика разница между
давлением в артериях и венах (10 мм.рт.ст.).

В связи с низким
кровяным давлением легочной кровоток
имеет фазный характер, т.е. зависит от
вдоха и выдоха.

Существенное
влияние на легочную перфузию кровью
оказывает гравитационное и альвеолярное
давление. В связи с этим перфузия кровью
различных частей легкого не одинакова.

Выделяют 3 зоны
легких с разной перфузией кровью:

Зона 1. Верхушка
легкого. Минимальная перфузия.

Зона 2. Верхняя
треть легкого. Умеренная перфузия. Часть
капилляров может находиться в спавшемся
состоянии.

Зона 3. Нижние
две трети легкого. Наибольщая перфузия.

3. Диффузионная
способность легких это количество
мл газа, которое проходит за 1
минуту через легочную мембрану
при разнице парциальных давлений
по обе стороны мембраны 1 мм.рт.ст.

4. Содержание
гемоглобина (HHb)
в эритроцитах. 1 г HHb способен связать
1,35 мл О2. При содержании
гемоглобина 150 г/л (норма) каждые 100
мл крови переносят 20,8 мл О2. Это
кислородная емкость крови.

Другой показатель,
отражающий связывание кислорода кровью –
содержание кислорода в крови, взятой
в различных участках сосудистого русла:
в артериальной крови в норме 20 мл
О2/100 мл крови и в венозной
крови -14 млО2/100 мл крови.

Следующий показатель
– артерио-венозная разница (норма 5-6
мл О2/100 мл крови).

Гемоглобин
присоединяет кислород с помощью непрочной
водородной связи, с образованием
оксигемоглобина. Эта реакция обратима:

Направленность
реакции зависит от содержания
кислорода: если количество кислорода
в крови увеличивается, то реакция
идет в сторону образования оксигемоглобина,
если уменьшается – то в
противоположную сторону.

Динамика
взаимодействия Нв и О2
отражается кривой диссоциации
оксигемоглобина. Эта кривая
количественно определяет приведенную
выше реакцию связывания гемоглобином
кислорода.

Кривая отражает
общую закономерность: увеличение
количества кислорода сопровождается
усиленным образованием оксигемоглобина.
Кривая диссоциации оксигемоглобина
имеет S-образный вид.

Это связано с тем,
что до 10 мм рт. ст. кислород связывается
гемоглобином медленно, затем до 60-50
мм рт. ст. скорость реакции резко
увеличивается, кривая круто
поднимается вверх, при давлении 90 мм
рт. ст., когда более 98% гемоглобина
связано с кислородом, кривая вновь
идет почти горизонтально.

Избыток СО2
и ацидоз сдвигают кривую
диссоциации вправо, а недостаток
СО2 и алкалоз – влево
(эффект Бора).

В кровеносной
системе легких реакция взаимодействия
гемоглобина с кислородом идет в
сторону образования оксигемоглобина,
так как венозная кровь имеет
напряжение кислорода 40 мм
рт. ст., а в альвеолярном воздухе
парциальное давление кислорода
составляет 100 мм рт. ст.

В тканях напряжение
О2 равно 20-40 мм рт. ст.,
а в артериальной крови – 100 мм рт. ст.,
в связи с этим реакция идет в сторону
распада оксигемоглобина. Кровь отдает
в ткани часть О2.

Этот процесс
оценивается коэффициентом утилизации
кислорода (КУК).

КУК это отношение
потребленного кислорода к кислородной
емкости крови. В норме в покое 30-40%,
при физ. нагрузках существенно возрастает.

Для оценки
эффективности газообмена вычисляют
коэффициент использования кислорода
(КИК).

КИК показывает
количество кислорода в мл, которое
потребляется из 1 литра воздуха. В
норме он составляет 40 мл.

Напряжение СО2
в тканях составляет 60
мм.рт.ст., а в притекающей крови
– 50-60 мм.рт.ст. Благодаря этому СО2
переходит из ткани в кровь (напряжение
в оттекающей крови – 46 мм.рт.ст.).

Основная форма
связывания СО2 кровью –
это образование бикарбонатов натрия и
калия.

СО2 +
Н2О = Н2СО3

Эта реакция
обратима, ее направление зависит
от количества СО2. Его
увеличение сдвигает реакцию вправо,
уменьшение – влево. Образующаяся
угольная кислота диссоциирует:

Н2
СО3 —- Н+ +
НСО3-

Следовательно, в
эритроците образуются катионы Н+
и анионы НСО3-.
Катионы водорода вступают в
реакцию восстановления гемоглобина:
Н+ + Нв = ННв.

Анионы НСО3–
– частично выходят из эритроцитов
в плазму из-за разности концентраций.

Таким образом, в
плазме и в эритроцитах появляется
значительное количество анионов
НСО3-, которые в плазме
взаимодействуют с катионами натрия
(55% связывания углекислого газа), а
в эритроцитах – взаимодействуют с
катионами калия (35% связывания
углекислого газа), образуя
соответственно гидрокарбонаты Na и К.

Ключом всех этих
реакций служит фермент карбоангидраза,
который содержится в мембранах эритроцитов
и катализирует обратимую реакцию
соединения углекислого газа с водой.

Кроме того, небольшое
количество углекислого газа (10%)
транспортируется в виде карбогемоглобина
– соединения СО2 с гемоглобином.

В клинической
практике 2 и 4 этапы дыхания оцениваются
не раздельно, а в целом.

1. Определение
состава альвеолярного, вдыхаемого и
выдыхаемого воздуха,
при их сопоставлении можно получить
сведения о газообмене. Анализ состава
альвеолярного, вдыхаемого и выдыхаемого
воздуха проводят на газоанализаторах.

2. Количество
потребленного кислорода
– оно характеризует интенсивность
деятельности дыхательной системы.
Определение количества потребленного
кислорода можно произвести путем
сопоставления состава вдыхаемого и
выдыхаемого воздуха газоанализаторами,
либо с помощью оксиспирографа.

Третий этап
дыхания оценивается путем определения
концентрации дыхательных газов в
артериальной и венозной крови.

Для этого проводят
вытеснение дыхательных газов из
крови физическим методом
(изменение давления над кровью,
И.М. Сеченов), химическим
методом (вытеснение дыхательных
газов из крови химическими реагентами,
Баркрофт) или физико-химическим
методом (Ван Слайк).

Собирают вытесненные
газы в сосуд и определяют их содержание
с помощью газоанализатора.

Газовый состав вдыхаемого, альвеолярного и выдыхаемого воздуха

Внешнее дыхание
необходимо для обновления альвеолярного
воздуха, так как в процессе
жизнедеятельности идет постоянный
процесс потребления О2 и выделения
СО2. Внешнее дыхание поддерживает
концентрацию дыхательных газов в
альвеолярном воздухе на постоянном
уровне.

Интенсивность
внешнего дыхания подчинена задачам
обеспечения оптимальных условий для
газообмена в организме.

Оптимальные
условия для газообмена в организме
сохраняются в организме определенное
время (3-4 секунды).

Этим и определяется
частота дыхания (14-18 в минуту).
Таким образом, аппарат дыхания
обладает резервами, которые позволяют
обменивать воздух с определенной
периодичностью.

В основе обмена
газов между альвеолярным воздухом и
кровью, между кровью и тканями лежит
одно физическое явление – процесс
диффузии.

Если газ
находится над жидкостью, он
также легко в неё переходит, растворяясь
в ней. Интенсивность перехода
газа в жидкость зависит от парциального
давления этого газа над жидкостью.

Давление газа в
смеси с другими газами, выраженное
в мм рт. ст., принято обозначать термином
«парциальное давление газа».

Давление газа,
растворенного в жидкости, обозначают
как «напряжение газа».

Анатолий Минеев
«Квант» №4, 2020

В данной статье речь пойдет о воздействии на человека кислорода и углекислого газа — по отдельности и вместе. Некоторую настоящую интригу придает взгляд на проблему как извне — со стороны вдыхаемого воздуха, так и изнутри — внутри самого организма. Или, более научно, как со стороны внешнего дыхания — обмена между атмосферой и клетками в легких, так и внутреннего дыхания — процессы в клетках и тканях организма.

Среднее значение давления земной атмосферы на уровне моря примерно равно pатм = 760 мм рт. ст. На долю кислорода приходится 160 мм рт. ст. или приблизительно 21%. Кислород частично усваивается организмом, углекислый газ образуется в результате химических реакций окисления. Состав вдыхаемого и выдыхаемого воздуха приведен в таблице.

Таблица 1. Состав вдыхаемого и выдыхаемого воздуха

Содержание газов в выдыхаемом воздухе составляет

Чем интересны эти цифры? Азот и аргон не используются организмом человека (являются инертными). Степень усвоения кислорода невелика, около 0,25. После вдоха организм выдыхает обратно основную часть кислорода. Углекислый газ практически отсутствует во вдыхаемом воздухе и активно образуется при окислительных реакциях в организме. Процент поглощения организмом кислорода (21% − 16% = 5%) оказывается близким к проценту образования углекислого газа (4%).

Инертность азота и аргона при обменных процессах в организме привела к соблазну вообще отказаться от них в условиях длительного пребывания в замкнутом пространстве. По этому пути пошли американские астронавты в первых космических полетах, перейдя на дыхание чистым кислородом. При этом давление в случае использования только O2 было существенно ниже атмосферного и составляло 260–280 мм рт. ст. Однако по мере увеличения длительности космических полетов в такой чисто кислородной атмосфере у астронавтов стали появляться проблемы с дыхательными путями. К тому же, чисто кислородная атмосфера пожароопасна. Российские космонавты с самого начала использовали состав воздуха, близкий к земному, что потребовало более сложной системы регенерации воздуха. В настоящее время при полетах в космосе и в плавании на подводных лодках используется земной состав атмосферы.

Что первично для организма

В нашем случае проблема выбора — что первично (иными словами, что запускает процессы в человеческом организме): кислород или углекислый газ — решается следующим образом. Раньше первичным считался кислород — ведь он основной источник энергии, дающий толчок всем процессам в организме. Но сейчас маятник выбора качнулся в сторону углекислого газа. Постепенно пришли к выводу, что первичным, запускающим, механизмом является накопление в организме углекислого газа.

Накопление CO2 в организме в ходе расщепления в клетках жиров и белков дает сигнал мозгу о том, что углекислый газ нужно выводить из клеток — он «садится» на эритроциты и перемещается к альвеолам легких. На освободившиеся места в «поезде» эритроцитов «усаживается» O2 и разносится по организму. Поэтому современный взгляд на процесс дыхания таков: сначала выдыхается углекислый газ, а потом вдыхается кислород. При этом вместе с углекислым газом выдыхаются и излишки кислорода. Для дыхания необходимы оба газа, попеременно «седлающие» эритроциты. При этом венозная кровь окрашена с помощью углекислого газа в темно-красный цвет, а артериальная кровь с помощью кислорода — в ярко-красный.

Среднее соотношение между количеством углекислого газа и кислорода в организме здорового человека примерно 3:1 (6% CO2 и 2% O2).

Взаимодействие «снаружи» и «изнутри». Итак, углекислый газ необходим для жизнедеятельности человека. Важно и поддержание определенного уровня CO2 в организме. А его недостаток и избыток вредны. Слишком высокое накопление CO2 возможно в плохо проветриваемых помещениях: при большом проценте (более 0,08–0,1%) его уровень в организме также растет (последствия этой ситуации обсуждались выше). Нехватка углекислого газа в крови (менее 4%) тоже опасна (см. рис. 4).

В каких случаях может возникнуть такая нехватка? Типичный пример — учащенное дыхание: слишком много CO2 выдыхается и мало остается в организме. При недостатке углекислого газа кислород прочно «прикреплен» к эритроцитам. И даже когда кислорода в крови много, он оказывается связанным и плохо поступает в ткани организма. Если в такой ситуации дышать еще чаще, то это только усугубит ситуацию.

Приведем еще один пример важности более редкого дыхания. Стайерам во время бега рекомендуют в случае, когда уже не хватает сил, как можно дольше задержать дыхание для того, чтобы открылось «второе дыхание» и он мог бежать дальше.

Оказание первой помощи. Дыхание «рот в рот». При оказании первой доврачебной помощи человеку в случае исчезновения дыхания одним из действенных методов является искусственное дыхание методом «рот в рот» вместе с непрямым массажем сердца.

В этой ситуации имеется некоторая аналогия с поведением спасателя при остановке сердца: он должен повернуть пострадавшего на спину и нанести ему удар ребром руки по грудной клетке. Цель — сотрясение грудной клетки, что должно привести к запуску остановившегося сердца.

Так что роль CO2 при остановке дыхания несколько иная, чем при обычном, спокойном дыхании.

Способы увеличения концентрации выдыхаемого углекислого газа. Человек в повседневной жизни «в автоматическом режиме» делает примерно 15 циклов вдох-выдох в минуту (каждый цикл имеет длительность приблизительно 4 секунды). Обычное отношение длительности вдоха и выдоха 1 : 1,3.

Смысл основных дыхательных гимнастик заключается в повышении содержания в крови углекислого газа за счет задержки, ослабления, замедления или искусственного затруднения дыхания. При этом повышение концентрации CO2 (до определенного предела, около 8%) улучшает усвоение кислорода организмом человека. В разных методиках это достигается или за счет задержки дыхания после вдоха либо после выдоха, или за счет удлиненного выдоха, или за счет удлиненного вдоха, или их комбинаций. Иными словами, нужно, чтобы фаза выдоха существенно превышала вдох.

Наиболее последовательной из современных методик является система Бутейко — поверхностное дыхание с задержкой. Она направлена на уменьшение потребления кислорода и насыщение организма углекислым газом. По этой системе усилием воли вдох занимает 2 секунды, выдох — 4 секунды, за которым следует 4-х секундная задержка дыхания. Всего цикл длится 10 секунд, укладываясь в 6 циклов в минуту.

В практике йоги правильным считается весьма продолжительный выдох с отношением длительности вдоха и выдоха 1 : 5. Утверждается, что йог в состоянии глубокой медитации может «обходиться» всего двумя-тремя циклами вдох-выдох в минуту. Первая реакция на это — не может быть! Но далее неожиданно выясняется, что очень редкое дыхание йогов может быть связано с повышенной ролью у них кожного дыхания.

И действительно, в этом что-то есть. Площадь кожи человека, покрытая 5 миллионами волосков, составляет 1,5–2 м2. А суммарная площадь 600 миллионов альвеол в легких — около 100 м2. Грубо получается, что на уровне 1–2% кожа может выполнять дыхательную функцию. Измерения показали, что через кожу выделяется около 2% углекислого газа и поглощается примерно 1% кислорода. Более того, через кожу выводится из организма порядка 800 граммов водяных паров — даже больше, чем из легких!

Подтвеждение правильной интубации

На сегодняшний день рекомендации категоричны: капнография должна быть использована в качестве основного подтверждающего метода, что произведена интубация трахеи, а не пищевода. При попадании эндотрахельной трубки в пищевод может наблюдаться кратковременный подъем концентрации CO2 за счет находящегося в ротоглотке газа. Но затем за несколько дыхательных циклов концентрации СO2 снижается до нуля.

Контроль правильности выполнения сердечно-легочной реанимации

Много лет назад было показано, что если во время проведения сердечно-легочной реанимации (СЛР) PetСO2 оставался ниже 7-10 мм рт. ст., в подавляющем большинстве случаев полноценного восстановления функций ЦНС в постреанимационном периоде у пострадавшего не происходило. В настоящее время капнография рекомендована как важный компонент контроля правильности проводимых мероприятий на разных этапах СЛР.

Внутривенное введение гидрокарбоната натрия вызывает увеличение PetСO2, которое не имеет отношения к эффективности массажа сердца.

3. Резкое устойчивое повышение значений PetCO2 (обычно ≥40 мм рт. ст.) подтверждает восстановление спонтанного кровообращения;

4. Внезапное, в течение 5-10 дыхательных циклов, падение PetСO2 почти до нуля – характерный признак остановки кровообращения.

Возможные причины низкого PetСO2 во время СЛР

  • Погрешности в методике в правильности выполнения массажа сердца;
  • Гипервентиляция;
  • Интубация пищевода;
  • Смещение эндотрахеальной трубки;
  • Массивная ТЭЛА;
  • Тяжелая гиповолемия;
  • Напряженный пневмоторакс;
  • Тампонада сердца.

Взгляд снаружи

Эти данные соответствуют диапазону жизнедеятельности человека на уровне моря. По мере подъема в горы давление снижается, что наглядно отражают кривые атмосферного давления и парциального давления кислорода (рис. 1).

Содержание газов в выдыхаемом воздухе составляет

Оценка времени развития кислородной недостаточности при нахождении в замкнутом объеме. В качестве примера рассмотрим несколько ситуаций с людьми, находящимися в замкнутом объеме: один человек, застрявший в лифте объемом V = 2 м3; два человека в комнате с V = 30 м3; сто человек, застрявшие в остановившемся вагоне метро с V = 250 м3.

В каждом случае найдем, за какое время Δt в замкнутом объеме V в процессе спокойного дыхания людей концентрация кислорода снижается от первоначального уровня 21% до начала кислородной недостаточности, т.е. до 14%. Подчеркнем — спокойного, поскольку при панике это время сильно снижается. Спокойному дыханию соответствует потребление кислорода на уровне 0,25 литра в минуту. Поскольку 1 литр O2 соответствует 5 ккал энергии, то 0,25 л/мин сообщает организму за сутки 0,25 × 5 × 60 × 24 ккал = 1800 ккал энергии. Так как плотность человеческого организма около 1000 кг/м3, тело массой 70 кг занимает объем 0,07 м3, или 70 литров. Добавив одежду, получим оценку объема, вытесняемого из замкнутого помещения, в 100 литров, или 0,1 кубометра на человека.

Во всех указанных случаях (если нет паники) время развития кислородной недостаточности очень велико. Однако, такой вывод находится в противоречии с житейским опытом: в метро и застрявшем лифте бывает душно и даже после сна в комнате с закрытой форточкой наутро ощущается духота. По всей видимости, имеет место другой, более мощный механизм развития неблагоприятных ощущений в процессе дыхания при нахождении в замкнутом объеме, не связанный с потерей кислорода из воздуха. Оказывается, таким механизмом является накопление углекислого газа.

Концентрация углекислого газа в воздухе, пригодная для жизни. Диапазон допустимого содержания CO2 в воздухе составляет

Лифт. Свободный объем, занятый воздухом, равен 1,9 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет

Это уже ближе к житейским ощущениям и оправдывает присутствие вентиляции на потолке лифтов, необходимость проветривания комнат в домах, в школьных классах после каждого урока, а также наличие системы вентиляции в метро.

Таким образом, именно накопление углекислого газа в замкнутых помещениях в первую очередь действует угнетающе на человека. В чем это проявляется?

Еще одна проблема помещений без вентиляции — возможность расслоения воздуха на фракции. Поскольку углекислый газ в полтора раза тяжелее воздуха, он может опуститься ближе к полу и его концентрация там увеличится. Но процесс этот медленный, и любое движение воздуха перемешивает фракции.

Наконец, использование растений, казалось бы, должно помочь — ведь они выделяют кислород и поглощают углекислый газ. Однако, это происходит только днем, а вечером и ночью (когда свежий воздух особенно нужен) растения выделяют углекислый газ, усугубляя проблему с его накоплением.

Накопление угарного газа в замкнутом помещении. Казалось бы, откуда взяться угарному газу (СО) в замкнутом помещении, если нет рядом дровяной печки или камина с неидеальной вытяжкой? Но в литературе приводятся следующие данные: наряду с углекислым газом человек выдыхает также и угарный газ — в количестве примерно 1,6 мл/ч (при нормальных условиях); предельно допустимая для человека концентрация угарного газа составляет 1 мг/м3.

Этих данных достаточно, чтобы снова провести оценки времени накопления предельной концентрации угарного газа для людей в лифте, комнате, вагоне метро и школьном классе. Для этого перейдем от объема к массе образовывающегося угарного газа, воспользовавшись известным соотношением: один моль любого газа при нормальных условиях занимает объем 22,4 л. Для СО молярная масса равна 28 г, поэтому 1 мл СО имеет массу 1,25 мг, а значит, 1,6 мл/ч выдыхаемого СО одним человеком соответствует появлению в воздухе 2 мг/ч угарного газа.

В таблице 2 приведены значения времени накопления CO2 и СО до опасной концентрации, а также времени развития кислородной недостаточности в лифте, комнате, вагоне метро и школьном классе. Для детей принята половинная величина выдыхаемого СО и CO2.

Таблица 2. Сопоставление времени снижения концентрации O2, накопления СО и CO2

Содержание газов в выдыхаемом воздухе составляет

Видно, что накопление углекислого газа примерно на порядок опаснее накопления угарного газа и еще на порядок опаснее снижения концентрации кислорода.

Мощность систем вентиляции. Как оценить мощность систем вентиляции qвент, необходимую для поддержания нормального состава воздуха? Если отвлечься от переходных процессов установления и выравнивания потоков воздуха, то конечный результат выглядит очень просто:

Много это или мало? Как обеспечить такой приток свежего воздуха? Например, если приоткрыть дверь, то через каждый квадратный сантиметр щели при перепаде давлений по обе стороны двери Δp = 10 Па проходит в час один кубометр воздуха. Это означает, что при указанном Δp через сантиметровую щель в двери высотой два метра проходит 200 м3 воздуха за час. Отметим, что принятый уровень перепада давлений 10 Па довольно мал (это 10−4 от атмосферного) и вполне может быть достигнут. Еще более мощный эффект вентиляции оказывает проветривание при открытии окон и дверей в течение хотя бы нескольких минут.

В качестве примера рассмотрим ситуацию с кислородом и углекислым газом при спасении детей в пещере Таиланда, частично затопленной водой. В 2018 году весь мир следил за спасением футбольной команды из 12 школьников и их тренера, ушедших на экскурсию в пещеру Кхао Луанг и застрявших в ней на 18 дней (23 июня — 10 июля) из-за дождей, затопивших вход в пещеру. Они укрылись в воздушном кармане, полностью перекрытом водой и удаленном от выхода из пещеры на 5 километров. Задача заключалась в высвобождении ослабевших детей и тренера из пещеры. Ситуация осложнялась наличием узкой щели — на рисунке 2 она обозначена как «опасная точка», через которую предстояло выбираться. Особенности проплыва через щель показаны на рисунке 3. Спасателям пришлось непрерывно откачивать воду из пещеры. Поэтому в ней находилось большое количество спасателей, помогавших откачивать воду и готовить детей к выходу.

Содержание газов в выдыхаемом воздухе составляет

Содержание газов в выдыхаемом воздухе составляет

Содержание газов в выдыхаемом воздухе составляет

В этой ситуации оказались важны все отмеченные выше особенности поведения кислорода и углекислого газа в замкнутом объеме. Для борьбы с постепенным уменьшением количества кислорода в пещере была организована доставка кислорода с помощью специального трубопровода. Было решено, что накопление углекислого газа в пещере представляет существенно большую опасность, чем нехватка кислорода. Закачкой кислорода по трубопроводу в верхнюю часть пещеры вытесняли углекислый газ. Учитывалось также расслоение воздуха на фракции — CO2 скапливался в нижней части пещеры. Вот почему дети и тренер скрылись в верхней ее части.

Поиски ребят и подготовительные работы заняли почти две недели. За это время известный изобретатель и организатор исследований Илон Маск (космические корабли, электрокары) успел из запчастей к ракете изготовить миниатюрную подводную лодку на одного человека и доставить ее в Таиланд. Но из-за узкой щели от ее использования отказались.

Ситуация с каждым днем становилась все более сложной. Необходимо было постоянное присутствие людей, занятых на откачке воды из пещеры (иначе пещера полностью заполнилась бы водой) и установке труб для подачи кислорода. Более десятка аквалангистов доставляли в пещеру воду, еду и кислородные баллоны. Там постоянно присутствовали врачи и те, кто готовили спасательную операцию. При дыхании этих взрослых спасателей состав воздуха ухудшался еще стремительнее. Наступил момент, когда из-за накопления углекислого газа дальше ждать было нельзя. Множество кислородных баллонов было расставлено по всему маршруту из пещеры к выходу (каждый баллон рассчитан на работу только в течение часа). Тысяча спасателей снаружи, включая сто дайверов, начали операцию. В первый день 13 дайверов спасли четырех подростков. Во второй день 18 дайверов (и 70 аквалангистов сопровождения) спасли еще четверых. Наконец, в третий день были спасены оставшиеся четверо детей и их тренер, а также 4 человека, остававшиеся в пещере. Молодцы!

Оцените статью
Анемометры
Добавить комментарий