Температура газов газового котла

Температура газов газового котла Анемометр

3. Температура горения

В теплотехнике различаются следующие температуры горения газов: жаропроизводительность, калориметрическую, теоретическую и действительную (расчетную). Жаропроизводительность tж — максимальная температура продуктов полного сгорания газа в адиабатических условиях с коэффициентом избытка воздуха α = 1,0 и при температуре газа и воздуха, равной 0°C:

tж = Qн /(ΣVcp) (8.11)

где Qн — низшая теплота сгорания газа, кДж/м3; ΣVcp — сумма произведений объемов диоксида углерода, водяного пара и азота, образовавшихся при сгорании 1 м3 газа (м3/м3), и их средних объемных теплоемкостей при постоянном давлении в пределах температур от 0°С до tж (кДж/(м3•°С).

В силу непостоянства теплоемкости газов жаропроизводительность определяется методом последовательных приближений. В качестве начального параметра берется ее значение для природного газа (≈2000°С), при α = 1,0 определяются объемы компонентов продуктов сгорания, по табл. 8.

3 находится их средняя теплоемкость и затем по формуле (8.11) считается жаропроизводительность газа. Если в результате подсчета она окажется ниже или выше принятой, то задается другая температура и расчет повторяется. Жаропроизводительность распространенных простых и сложных газов при их горении в сухом воздухе приведена в табл. 8.4. При сжигании газа в атмосферном воздухе, содержащем около 1 вес. % влаги, жаропроизводительность снижается на 25–30°С.

Калориметрическая температура горения tK — температура, определяемая без учета диссоциации водяных паров и диоксида углерода, но с учетом фактической начальной температуры газа и воздуха. Она отличается от жаропроизводительности tж тем, что температура газа и воздуха, а также коэффициент избытка воздуха α принимаются по их действительным значениям. Определить tK можно по формуле:

tК = (Qн qфиз)/(ΣVcp) (8.12)

где qфиз — теплосодержание (физическая теплота) газа и воздуха, отсчитываемое от 0°С, кДж/м3.

Природные и сжиженные углеводородные газы перед сжиганием обычно не нагревают, и их объем по сравнению с объемом воздуха, идущего на горение, невелик. Поэтому при определении калориметрической температуры теплосодержание газов можно не учитывать. При сжигании газов с низкой теплотой сгорания (генераторные, доменные и др.) их теплосодержание (в особенности нагретых до сжигания) оказывает весьма существенное влияние на калориметрическую температуру.

Зависимость калориметрической температуры природного газа среднего состава в воздухе с температурой 0°С и влажностью 1% от коэффициента избытка воздуха а приведена в табл. 8.5, для сжиженного углеводородного газа при его сжигании в сухом воздухе — в табл. 8.7. Данными табл. 8.5–8.

7 можно с достаточной точностью руководствоваться при установлении калориметрической температуры горения других природных газов, сравнительно близких по составу, и углеводородных газов практически любого состава. При необходимости получить высокую температуру при сжигании газов с малыми коэффициентами избытка воздуха, а также для повышения КПД печей, на практике подогревают воздух, что приводит к росту калориметрической температуры (см. табл. 8.6).

Теоретическая температура горения tT — максимальная температура, определяемая аналогично калориметрической tK, но с поправкой на эндотермические (требующие теплоты) реакции диссоциации диоксида углерода и водяного пара, идущие с увеличением объема:

СО2 ‹–› СО 0,5О2 — 283 мДж/моль (8.13)

Н2О ‹–› Н2 0,5О2 — 242 мДж/моль (8.14) При высоких температурах диссоциация может привести к образованию атомарного водорода, кислорода и гидроксильных групп ОН. Кроме того, при сжигании газа всегда образуется некоторое количество оксида азота. Все эти реакции эндотермичны и приводят к снижению температуры горения. Теоретическая температура горения может быть определена по следующей формуле:

tT = (Qн qфиз – qдис)/(ΣVcp) (8.15)

где qдис — суммарные затраты теплоты на диссоциацию СО2 и Н2О в продуктах сгорания, кДж/м3; ΣVcp — сумма произведения объема и средней теплоемкости продуктов сгорания с учетом диссоциации на 1 м3 газа.

Как видно из табл. 8.8, при температуре до 1600°С степень диссоциации может не учитываться, и теоретическую температуру горения может принять равной калориметрической. При более высокой температуре степень диссоциации может существенно снижать температуру в рабочем пространстве.

На практике особой необходимости в этом нет, теоретическую температуру горения необходимо определять только для высокотемпературных печей, работающих на предварительно нагретом воздухе (например, мартеновских). Для котельных установок в этом нужды нет.

Действительная (расчетная) температура продуктов сгорания tд — температура, которая достигается в ­реальных условиях в самой горячей точке факела. Она ниже теоретической и зависит от потерь теплоты в окружающую среду, степени отдачи теплоты из зоны горения излучением, растянутости процесса горения во времени и др.

Действительные усредненные температуры в топках печей и котлов определяются по тепловому балансу или приближенно по теоретической или калориметрической температуре горения в зависимости от температуры в топках с введением в них экспериментально установленных поправочных коэффициентов:

tд = tтη (8.16)

где η— т.н. пирометрический коэффициент, укладывающийся в пределах: – для качественно выполненных термических и нагревательных печей с теплоизоляцией — 0,75–0,85; – для герметичных печей без теплоизоляции — 0,70–0,75; – для экранированных топок котлов — 0,60–0,75.

В практике надо знать не только приведенные выше адиабатные температуры горения, но и максимальные температуры, возникающие в пламени. Их приближенные значения обычно устанавливают экспериментально методами спектрографии. Максимальные температуры, возникающие в свободном пламени на расстоянии 5–10 мм от вершины конусного фронта горения, приведены в табл. 8.9.

Таблица 8.3. Средняя объемная теплоемкость газов, кДж/(м3•°С)

Температура, °СCO2N2O2COCh5h3h3O (водяные пары)воздух
сухойвлажный на 1 м3 сухого газа
01,59811,29701,30871,30621,57081,28521,49901,29911,3230
1001,71861,29911,32091,30621,65901,29781,51031,30451,3285
2001,80181,30451,33981,31461,77241,30201,52671,31421,3360
3001,87701,31121,36081,32301,89841,30621,54731,32171,3465
4001,98581,32131,38221,33562,02861,31041,57041,33351,3587
5002,00301,33271,40241,34822,15041,31041,59431,34691,3787
6002,05591,34531,42171,36502,27641,31461,61951,36121,3873
7002,10341,35871,35491,37762,38981,31881,64641,37551,4020
8002,14621,37171,45491,39442,50321,32301,67371,38891,4158
9002,18571,38571,46921,40702,60401,33141,70101,40201,4293
10002,22101,39651,48221,41962,70481,33561,72831,41411,4419
11002,25251,40871,49021,43222,79301,33981,75561,42631,4545
12002,28191,41961,50631,44482,88121,34821,78251,43721,4658
13002,30791,43051,51541,45321,35661,80851,44821,4771
14002,33231,44061,52501,46581,36501,83411,45821,4876
15002,35451,45031,53431,47421,38181,85851,46751,4973
16002,37511,45871,54271,88241,47631,5065
17002,39441,46711,55111,90551,48431,5149
18002,41251,47461,55901,92781,49181,5225
19002,42891,48221,56661,96981,49941,5305
20002,44941,48891,57371,50781,96941,53761,5376
21002,45911,49521,58091,9891
22002,47251,50111,59432,0252
2300
2,48601,50701,59432,0252
24002,49771,51661,60022,0389
25002,50911,51751,60452,0593
Про анемометры:  Методические указания МУ 2.6.1.2398-08 "Радиационный контроль и санитарно-эпидемиологическая оценка земельных участков под строительство жилых домов, зданий и сооружений общественного и производственного назначения в части обеспечения радиационной безопасности" (утв. Главным государственным санитарным врачом РФ 2 июля 2008 г.) | ГАРАНТ

Таблица 8.4. Жаропроизводительность газов в сухом воздухе

Простой газЖаропроизводительность, °ССложный газ усредненного составаПриближенная жаропроизводительность, °С
Водород2235Природный газовых месторождений2040
Оксид углерода2370Природный нефтяных месторождений2080
Метан2043Коксовый2120
Этан2097Высокотемпературной перегонки сланцев1980
Пропан2110Парокислородного дутья под давлением2050
Бутан2118Генераторный из жирных углей1750
Пентан2119Генераторный паровоздушного дутья из тощих топлив1670
Этилен2284Сжиженный (50% С3Н4 50% С4Н10)2115
Ацетилен2620Водяной2210

Таблица 8.5. Калориметрическая и теоретическая температуры горения природного газа в воздухе с t = 0°С и влажностью 1%* в зависимости от коэффициента избытка воздуха α

Коэффициент избытка воздуха αКалориметрическая температура горения tк, °СТеоретическая температура горения tт, °СКоэффициент избытка воздуха αКалориметрическая температура горения tк, °С
1,0202219201,331620
1,02199019001,361600
1,03197018801,401570
1,05194018701,431540
1,06192018601,461510
1,08190018501,501470
1,10188018401,531440
1,12185018201,571410
1,14182017901,611380
1,16180017701,661350
1,18178017601,711320
1,20176017501,761290
1,2217301,821260
1,2517001,871230
1,2816701,941200
1,3016502,001170

Таблица 8.6. Калориметрическая температура горения природного газа tк, °С, в зависимости от коэффициента избытка сухого воздуха и его температуры (округленные значения)

Коэффициент избытка воздуха αТемпература сухого воздуха, °С
20100200300400500600700800
0,5138014301500154516801680174018101860
0,6161016501715178018401900196020222150
0,7173017801840191519702040210022002250
0,8188019402022206021302200226023302390
0,9198020302090215022202290236024202500
1,0205021202200225023202385245025102560
1,2181018601930200020702140220022802350
1,4161016601740180028701950203021002160
1,6145015101560164017301800186019502030
1,8132013701460152015901670174018301920
2,0122012701360142014901570164017201820

Таблица 8.7. Калориметрическая температура горения tк технического пропана в сухом воздухе с t = 0°С в зависимости от коэффициента избытка воздуха α

Коэффициент избытка воздуха αКалориметрическая температура горения tк, °СКоэффициент избытка воздуха αКалориметрическая температура горения tк, °С
1,021101,451580
1,0220801,481560
1,0420501,501540
1,0520301,551500
1,0720221,601470
1,1019701,651430
1,1219501,701390
1,1519101,751360
1,2018401,801340
1,2517801,851300
1,2717501,901270
1,3017301,951240
1,3516702,001210
1,4016302,101170

Таблица 8.8. Степень диссоциации водяного пара h3O и диоксида углерода CO2 в зависимости от парциального давления

Температура, °СПарциальное давление, МПа
0,0040,0060,0080,0100,0120,0140,0160,0180,0200,0250,0300,040
Водяной пар h3O
16000,850,750,650,600,580,560,540,520,500,480,460,42
17001,451,271,161,081,020,950,900,850,80,760,730,67
18002,402,101,901,801,701,601,531,461,401,301,251,15
19004,053,603,253,02,852,702,652,502,402,202,101,9
20005,755,054,604,304,03,803,553,503,403,152,952,65
21008,557,506,806,356,05,705,455,255,104,804,554,10
220012,310,89,909,908,808,357,957,657,406,906,505,90
230016,015,013,712,912,211,611,110,710,49,69,18,4
240022,520,018,417,216,315,615,014,413,913,012,211,2
250028,525,623,522,120,920,019,318,618,016,815,914,6
300070,666,763,861,659,658,056,555,454,351,950,047,0
Диоксид углерода CO2
15000,50,50,50,50,50,50,40,40,40,40,4
16002,01,81,61,51,451,41,351,31,251,21,1
17003,83,33,02,82,62,52,42,32,22,01,9
18006,35,55,04,64,44,24,03,83,73,53,3
190010,18,98,17,67,26,86,56,36,15,65,3
200016,514,613,412,511,811,210,810,410,09,48,8
210023,921,319,618,317,316,515,915,314,913,913,1
220035,131,529,227,526,125,024,123,322,621,220,1
230044,740,737,935,934,332,931,830,930,028,226,9
240056,051,848,846,544,643,141,840,639,637,535,8
250066,362,259,356,955,053,452,050,749,747,345,4
300094,993,993,192,391,790,690,189,688,587,686,8
Про анемометры:  Взрыв ГБО в машине: статистика и почему оно взрывается на авто?

Таблица 8.9. Максимальные температуры, возникающие в свободном пламени, °С

ГазГазовоздушная смесь, близкая по составу к стехиометрическойГазокиcлородная смесь
h320452660
CO21002920
Ch518702740
C2H61890
C3H819202780
C4h201890
C2h323203000

fas.su

Ставим газовый котел

По статистике, из общего количества эксплуатируемых в России, как под Москвой, так и в отдаленных регионах, индивидуальных котлов около половины работают на газе, треть на дизельном топливе, приблизительно 10% – на электричестве и примерно 5% – на твердом топливе.

Котлы отопления, работающие на пропане и природном газе

Выбирая место для котла при проектировании дома, следует руководствоваться требованиями СНиП II-35-76 «Котельные установки» и сводом правил по проектированию СП 41-104-2000, которые содержат нормы организации работы таких систем.

Помещение для установки котла должно быть не менее четырех квадратных метров; высота потолков в нем – не менее 2,5 м, ширина внешней двери – не менее 80 см. Необходимо окно для естественного освещения и отверстие для притока наружного воздуха. При проектировании и строительстве дымоходов для обеспечения тяги и исключения задувания целесообразно выводить верхний срез дымохода выше конька крыши.

Надо обустроить канал естественной вентиляции в верхней части помещения, а также иметь источник электропитания, размещенный на отдельном автомате защиты сети. По действующим строительным нормам, в помещении, где находится пропановый котел, следует установить газоанализатор, предупреждающий об утечке, и аварийный электроклапан для экстренного отключения подачи газа. Все оборудование подлежит ежегодному обслуживанию специалистами, с тем чтобы снизить риск нештатных ситуаций до минимума.

Мощность газового котла необходимо вычислить еще на стадии проектирования дома, поскольку от нее зависит диаметр дымохода и еще целый ряд параметров различных инженерных систем. Мощность определяется из расчета: 1 кВт на 10 кв. м при высоте потолка 2,5 м.

То есть для дома площадью 100 кв. м нужен прибор мощностью не менее 10 кВт. На нагрев водопроводной воды уходит примерно 25% мощности. Но расчет этот очень приблизительный, на практике он не всегда себя оправдывает, поэтому лучше, если оборудование подберут специалисты, которые могут просчитать теплопотери дома по соответствующим методикам.

Газовый котел на пропане и природном газе: критерии выбора

При выборе газового котла необходимо учесть целый ряд факторов. Прежде всего это материал, из которого он изготовлен. Газовые котлы могут быть как стальными, так и чугунными. Стальной примерно в два раза легче чугунного той же мощности и емкости. Однако срок службы стального составляет 10–15 лет, в то время как чугунный работает до 50 лет.

Опять же, стальной может ржаветь, особенно при отключении системы или резком снижении температуры. Тогда конденсат оседает на его поверхности, что способствует коррозии. Для больших домов (свыше 400 кв. м) специалисты рекомендуют именно чугунные устройства.

Еще имеет смысл обратить внимание на величину сопротивления топочной камеры. Фактически это избыточное давление, при котором следует подавать в топку газ. По этому показателю можно судить о том, насколько совершенна топка котла. У хорошего устройства сопротивление топочной камеры 1–1,5 мБар, у не очень хорошего оно может достигать 8 мБар. То есть несовершенные топки требуют большего давления газа.

В наших условиях лучше работают котлы с вентиляторными, а не с атмосферными горелками. Однако котел с вентиляторной горелкой дороже.

Стабильная и длительная работа газового оборудования во многом зависит от качества электроснабжения. Специалисты рекомендуют использовать стабилизатор напряжения или сетевой фильтр. Есть автоматы, защищающие от перенапряжения в сети, – они просто отключаются, если напряжение превышает определенную величину.

Но не стоит паниковать при отключении оборудования из-за перебоев в поставке электроэнергии. Отсутствие напряжения в сети не вызывает блокировку газового котла, после возобновления электропитания его системы автоматически возвращаются в нужный режим работы. Благодаря тепловой инерции дома зимой системе отопления не грозит замораживание в течение нескольких десятков часов.

Для экономного расхода газа лучше выбрать оборудование с электрическим запалом, а не с пьезорозжигом, постоянно горящий запальный фитиль которого «ждет», когда котел запустят в работу, и впустую переводит газ. В приборах с электрическим розжигом горелка поджигается автоматически при открывании крана горячей воды и гаснет после его закрывания.

В целях экономии используют специальные программаторы, которые позволяют рационально расходовать топливо. Словом, при выборе нужно учитывать множество мелочей и технических «прибамбасов», которые продаются в комплекте или могут быть подключены к данной модели.

Устройство ионизационного контроля горения, которое позволяет при необходимости мгновенно блокировать подачу газа. При использовании ионизационного контроля с электророзжигом постоянно горящий фитиль запальника отсутствует, что позволяет еще больше экономить газ.

Помните, что газовый котел должен монтироваться с дымоходом и в хорошо проветриваемом помещении с отдельным выходом на улицу. Необходимо, чтобы дверь в помещение свободно открывалась: для горения фитиля и горелки требуется приток кислорода. В зависимости от модели и размера прибор нужно устанавливать на расстоянии 30–50 см от стен. Дымоход должен быть с минимумом колен и изгибов, а его внутренний диаметр не может быть меньше диаметра горловины котла.

В современных устройствах, работающих на газе, температура дымовых газов на выходе низкая: 100–120°С. При горении газа образуются водяной пар, углекислый газ, сернистый ангидрид и другие химические соединения, которые, поднимаясь по дымоходу, остывают.

При снижении температуры до точки росы (55°С) водяной пар, присутствующий в газовой смеси, конденсируется. В результате образуется очень агрессивная смесь кислот, которая, стекая вниз, быстро разъедает стенки дымохода. До температуры «точки росы» отходящие газы охлаждаются обычно на высоте 4–5 м от горловины котла. Поэтому дымоходы, длина которых больше, делают из нержавеющей стали и утепляют.

Газовые котлы подразделяются на напольные и настенные. Настенные можно назвать мини-котельными, поскольку в их корпусе находятся не только горелка и теплообменник, но и циркуляционные насосы, расширительный бак, манометр, термометр и система безопасности.

Про анемометры:  Расстановка точек над датчиками газа серии MQ – глубокое понимание даташита и настройка / Хабр

Газовые котлы бывают с естественной и принудительной вентиляцией. Те, в которых удаление газа происходит с помощью встроенного вентилятора, идеальны для помещений без дымохода, так как продукты сгорания могут выводиться через обычное отверстие в стене.

Котел на пропане и природном газе: проблемы безопасности

Нормативные документы по эксплуатации котельных и безопасной эксплуатации котлов содержат ряд требований и ограничений, исключающих или сводящих к минимуму чрезвычайные ситуации. Поскольку полное сгорание газа возможно только при определенном соотношении воздуха и топлива, одним из условий является организация притока воздуха к камере сгорания.

В котле примерно 20 кВт для полного сгорания 2,5 кубометра газа в час (именно столько требуется для достижения номинальной мощности) должен быть обеспечен приток воздуха примерно 30 кубометров в час. При недостатке воздуха топливо не сгорает полностью и в результате образуется угарный газ, опасный для здоровья человека. Горение газа при недостатке воздуха повышает потребление топлива.

При эксплуатации наиболее опасно самопроизвольное затухание горелки и, как следствие, поступление газа в помещение. Причинами затухания могут быть: падение давления газа в сети ниже допустимого, отсутствие тяги в дымоходе, отключение питающего напряжения, погасание запальника. Такие ситуации требуют немедленного прекращения подачи газа к горелке.

В современных отопительных приборах для этого предназначен целый ряд автоматов: датчик контроля наличия пламени, датчик контроля тяги, устройство блокировки котла при отключении газа или понижении давления ниже допустимого, устройство отключения при отсутствии электропитания, устройство отключения при снижении объема теплоносителя. Все эти приборы входят в систему обеспечения безопасности.

Проблему обеспечения безопасного функционирования газового котла следует рассматривать в рамках эксплуатации всей системы отопления. В нее входят также трубопроводы, насосы, запорно-регулировочные устройства, средства автоматики и контроля, которые создают оптимальные условия надежной и безаварийной работы оборудования.

Современный котел газовый на пропане должен иметь целый комплект устройств контроля и безопасности работы. В этот комплект входят электронная система самодиагностики, ионизационный контроль наличия пламени, система защиты от блокировки насоса, защитный термостат от перегрева воды в первичном теплообменнике.

Список, как видим, внушительный, и если бы все это купить, установить да еще заставить функционировать пришлось домовладельцу, он вряд ли справился бы. К счастью, о защитных системах заботятся производители газового котельного оборудования. Большинство ведущих компаний оснащают свою технику всеми вышеперечисленными устройствами.

А при подключении к газовому котлу цифрового программатора у хозяина дома появляется возможность не только дистанционно управлять системой отопления, но и автоматически диагностировать ее узлы и выявлять неисправности с отображением информации на дисплее, что также повышает безопасность эксплуатации.

При подборе газового отопительного прибора для загородного дома необходимо учесть три величины: теплопотери здания; количество тепла, необходимое для приготовления горячей воды (количество точек водоразбора); количество тепла, необходимое для подогрева приточного воздуха (при наличии принудительной вентиляции).

Сумма этих величин определяет мощность устройства. Следует предусмотреть резерв в размере 10–15% тепловой мощности. Превышение необходимой тепловой мощности приводит к крайне негативным последствиям: удорожанию системы отопления; неэффективной работе котловой системы; образованию конденсата в дымоходах; сбоям и быстрому износу элементов системы автоматики и т. п.

Отопление на пропане и природном газе

Все современные бытовые котлы могут работать как на природном газе (метане), так и на сжиженном (пропан-бутане). Они подразделяются на настенные термоблоки и напольные котлы. Современные настенные газовые термоблоки, в свою очередь, подразделяются на водогрейные термоблоки и конденсатные модули.

Последние отличаются более высоким коэффициентом использования энергии, и поэтому более экономичны при эксплуатации. Тепловая мощность обычных термоблоков находится в пределах от 8 до 32 кВт, конденсатных – от 4 до 60 кВт. Одним из основных преимуществ настенных термоблоков является их компактность и отсутствие необходимости организации отдельного помещения для котельной (часто их монтируют в помещении кухни как один из элементов навесной мебели).

Напольные бывают стальные и чугунные. Диапазон мощностей — от 15 до 150 кВт. Для установки таких котлов требуется отдельное помещение. Одним из достоинств чугунных устройств является большее сопротивление коррозии и возможность заказа в разобранном виде, что позволяет доставлять его через узкие дверные проемы в котельную.

Выбор газового котла для отопления и горячего водоснабжения – ответственная задача, которую должны решать специалисты. Но потребитель должен знать некоторые простые правила подбора, которые не заменят проектных расчетов, но уберегут от грубых ошибок:

  • мощность для отопления разумно сочетать с необходимой мощностью для подогрева воды;
  • двухконтурный котел (подготовка горячей воды во втором контуре теплообменника котла или во вторичном теплообменнике) дешевле, с бойлером – дороже, но комфортнее в использовании;
  • нет смысла брать прибор с двойным или тройным запасом мощности, лучше всего, если его мощность на 30% больше расчетной нагрузки;
  • настенные газовые приборы с закрытой камерой сгорания и специальной «коаксиальной» трубой (воздух для горения с улицы, дым на улицу) выпускаются мощностью от 14 до 45 кВт и могут объединяться в каскад до 500 кВт;
  • современное устройство может быть оснащено датчиком наружной температуры для погодозависимого регулирования и программатором комнатной температуры;
  • при выборе лучше отдать предпочтение прибору с функцией самодиагностики;
  • применение настенных конденсатных устройств оправдано лишь в том случае, если в качестве способа отопления используется «теплый пол»;
  • в простых системах отопления (1–2 контура) выгоднее применять настенный прибор, в сложных системах (3 контура и больше) – напольный; теплообменники настенных изготавливаются из меди, напольных – из чугуна или стали;
  • в районах, где часто отключают электричество, можно использовать специальные преобразователи, которые обеспечат автономную работу устройства до трех суток;
  • устройства, произведенные в европейских странах и имеющие российский и европейский сертификаты соответствия, безопасны для человека и оборудованы всеми необходимыми уровнями защиты от неблагоприятных внешних факторов, тем более от проникновения газов в помещение;
  • предпочтение лучше отдать оборудованию марки, хорошо зарекомендовавшей себя в регионе, и фирме, имеющей обученных инженеров сервиса.

Вадим САХАРОВ

Оцените статью
Анемометры
Добавить комментарий