Что означает АСУ и как расшифровывается аббревиатура
Представим, что в мире появился предприниматель, который желает построить современный энергетический центр — бизнес для когенерации, производства электрической и тепловой энергии на базе газопоршневых и газотурбинных установок. Первым делом он, конечно же, обратится к специалистам проектной организации, которые, в свою очередь, предложат ему готовое и наглядное решение — перечень оборудования, необходимого для запуска проекта.
Необходимых устройств будет очень много: генераторы, насосы, фильтры, комплексы водоподготовки, теплообменники, а также детали вентиляции и отопления. Для того чтобы энергоцентр работал консолидировано, как технологическая единица, его владельцу придется создать схему администрирования всех участков производственной цепочки. Именно на этом этапе в дело вступают наработки, протестированные еще во времена СССР профессором Н. И. Ведутой.
Готовые решения для всех направлений
Ускорь работу сотрудников склада при помощи мобильной автоматизации. Навсегда устраните ошибки при приёмке, отгрузке, инвентаризации и перемещении товара.
Мобильность, точность и скорость пересчёта товара в торговом зале и на складе, позволят вам не потерять дни продаж во время проведения инвентаризации и при приёмке товара.
Обязательная маркировка товаров – это возможность для каждой организации на 100% исключить приёмку на свой склад контрафактного товара и отследить цепочку поставок от производителя.
Скорость, точность приёмки и отгрузки товаров на складе — краеугольный камень в E-commerce бизнесе. Начни использовать современные, более эффективные мобильные инструменты.
Повысь точность учета имущества организации, уровень контроля сохранности и перемещения каждой единицы. Мобильный учет снизит вероятность краж и естественных потерь.
Повысь эффективность деятельности производственного предприятия за счет внедрения мобильной автоматизации для учёта товарно-материальных ценностей.
Первое в России готовое решение для учёта товара по RFID-меткам на каждом из этапов цепочки поставок.
Исключи ошибки сопоставления и считывания акцизных марок алкогольной продукции при помощи мобильных инструментов учёта.
Получение сертифицированного статуса партнёра «Клеверенс» позволит вашей компании выйти на новый уровень решения задач на предприятиях ваших клиентов..
Используй современные мобильные инструменты для проведения инвентаризации товара. Повысь скорость и точность бизнес-процесса.
Показать все решения
Структура и функции АСУТП;
Рис.2. Структура АСУТП.
На рисунке 2 приведена примерная структура современной АСУТП.
1. Объект управления представляет собой комплекс технологического оборудования.
2. Датчики и исполнительные механизмы – устройства, предназначенные для преобразования технологических параметров в информационные показатели и обратно.
Датчик – устройство для преобразования физической величины технологического процесса в стандартный электрический сигнал, передаваемый далее в контроллер.
Исполнительный механизм – устройство для преобразования электрического сигнала, поступающего от контроллера, в то или иное физическое воздействие (например: изменение положения заслонки, открывание – закрывание клапана и т.д.).
Существует огромное множество типов датчиков и исполнительных механизмов.
3. Контроллер. Данное понятие широко распространено в вычислительной технике. Вообще, контроллер (от англ. to control – управлять) – это некое устройство, выполняющее функцию связи между ЭВМ и каким-либо внешним или периферийным объектом.
Применительно к АСУТП, контроллер – это электронное устройство с программным управлением и расширенными аппаратными возможностями измерения, управления и связи. Иначе говоря, контроллер представляет собой электронную схему, управляющую технологическим оборудованием, собирающую и анализирующую данные, на основе которых принимаются те или иные решения. Основное назначение контроллера – связь между уровнем датчиков и исполнительных механизмов и уровнем управляющих ЭВМ (серверов).
Конструктивно контроллер представляет собой отдельное устройство, имеющее собственное питание. Контроллер может, как правило, функционировать автономно. При этом контроллер выполняется защищенным от пыли, влаги, электромагнитных излучений.
Блок согласования сигналов осуществляет электрическое согласование датчиков и исполнительных механизмов с входом блока преобразования сигналов.
Блок преобразования сигналов преобразует аналоговый электрический сигнал, поступающий от датчиков, в цифровую форму и передает его центральному процессору, а также преобразует
Рис. 3. Примерная структура ПЛК.
управляющие сигналы процессора в форму, необходимую для управления исполнительными механизмами.
Процессор осуществляет управление всеми блоками контроллера, математическую обработку измеренных технологических параметров, организует хранение данных в блоке памяти, а также осуществляет передачу данных через интерфейс в локальную вычислительную сеть (ЛВС). В данном случае роль ЛВС играет промышленная локальная сеть.
Основные задачи, решаемые контроллером:
– измерение, опрос и управление оборудованием;
– первичное преобразование результатов измерений;
– хранение локального архива данных;
– быстрая и надежная доставка информации на следующий уровень автоматизации;
– обеспечение автономной и бесперебойной работы управляемого узла объекта автоматизации;
– автоматическое управление локальным узлом автоматизации.
Информация с локальных контроллеров может направляться в промышленную сеть непосредственно, либо через контроллеры верхнего уровня – концентраторы (см. рис 4).
Концентраторы – это коммуникационные контроллеры; они выполняют функции вторичной обработки информации (преобразование, накопление, сжатие), а также выполняют функции локального управления небольшими группами контроллеров, разгружая тем самым системы верхнего уровня.
Рис. 4. Способы подключения контроллеров к локальной сети.
Перечислим задачи, решаемые концентраторами:
– сбор данных с локальных контроллеров;
– обработка данных;
– поддержание единого времени во всей системе (синхронизация);
– локальная синхронизация работы контроллеров;
– хранение технологических данных;
– организация взаимодействия между локальными контроллерами;
– обмен информацией с верхним уровнем;
– работа в автономном режиме при нарушении связи с верхним уровнем;
– обеспечение резервирования каналов передачи данных.
К аппаратно-программным средствам контроллерного уровня управления предъявляются жесткие требования по надежности, времени реакции на поступающие сигналы и т.д. Программируемые логические контроллеры должны гарантированно откликаться на внешние события, поступающие от объекта за время, определенное для каждого события. Для критичных с этой точки зрения объектов рекомендуется использовать контроллеры с операционными системами реального времени (ОС РВ). Контроллеры под управлением ОС РВ функционируют в режиме жесткого реального времени.
Классы микропроцессорных комплексов
Рис. 5. Классы микропроцессорных комплексов.
1. Контроллер на базе персонального компьютера (PC based control). Это направление существенно развилось в последнее время, ввиду повышения надежности работы персональных компьютеров; наличия их модификаций в обычном и промышленном исполнении; их открытой архитектуры; легкости включения в них любых блоков ввода/вывода, выпускаемых рядом фирм; возможности использования уже наработанной широкой номенклатуры программного обеспечения (операционных систем реального времени, баз данных, пакетов прикладных программ контроля и управления). Основные сферы использования контроллеров на базе PC – специализированные системы автоматизации в медицине, в научных лабораториях, в средствах коммуникации, в промышленности для небольших достаточно замкнутых объектов. Общее число входов/выходов такого контроллера обычно не превосходит десятков, а выполняемыми функциями являются либо достаточно сложная обработка измерительной информации с расчетом нескольких управляющих команд, либо расчеты по специализированным формулам, аргументами которых являются измеряемые величины.
В общих терминах можно указать условия рациональной области применения контроллеров на базе PC в промышленности:
– при нескольких входах и выходах объекта надо производить большой объем вычислений за достаточно малый интервал времени (необходима большая вычислительная мощность);
– средства автоматизации работают в окружающей среде, не слишком отличающейся от условий работы обычных персональных компьютеров;
– нет необходимости в использовании жесткого малого времени цикла контроллера;
– реализуемые контроллером функции целесообразнее в силу их нестандартности программировать не на одном из специальных технологических языков, а на обычном языке программирования высокого уровня типа C++, Pascal;
– мощная поддержка работы операторов, реализуемая в обычных контроллерах: диагностика работы, устранение неисправности без остановки работы контроллера, модификация программного обеспечения во время работы системы автоматизации – не имеет большого значения для заданной конкретной задачи.
На рынке PC based control работает в России весьма успешно ряд зарубежных компаний: Octagon, Advantech, Analog Devices и др.
2. Локальный контроллер (PLC – Programmable Logic Controller). В настоящее время распространяются несколько типов локальных контроллеров:
– контроллер, встраиваемый в оборудование (агрегат, машину, прибор) и являющийся его неотъемлемой частью. Примеры такого “интеллектуального” оборудования: станки с программным управлением, автомашинисты, современные аналитические приборы:
– автономный контроллер, реализующий функции контроля и управления небольшим, достаточно изолированным технологическим узлом (объектом).
Контроллеры, обычно, могут иметь десятки входов/выходов от датчиков и исполнительных механизмов: их вычислительная мощность может быть разной (малые, средние и большие контроллеры): они реализуют типовые функции обработки измерительной информации, логического управления, регулирования. Многие из них имеют один или несколько физических портов для передачи информации в другие средства/системы автоматизации.
Примеры продукций зарубежных фирм, относящихся к этому классу программно-технических комплексов (ПТК), приведены ниже
• General Electric Fanuc Automation выпускает контроллеры серии 90 Micro;
• Schneider Electric выпускает контроллеры серии TSX Nano;
• Siemens выпускает контроллеры серии С7-620.
3. Сетевой комплекс контроллеров (PLC, Network). Этот класс ПТК является наиболее широко распространенным и внедряемым средством управления технологическими процессами во всех отраслях промышленности. Минимальный состав такого средства:
• ряд контроллеров;
• несколько дисплейных рабочих станций операторов;
• системная (промышленная) сеть, соединяющая контроллеры и рабочие станции между собой.
Контроллеры определенного сетевого комплекса имеют обычно ряд модификаций, отличающихся друг от друга мощностью, быстродействием, объемом памяти, возможностями резервирования, приспособлением к разным условиям окружающей среды, максимально возможным числом каналов входов и выходов. Это облегчает использование определенного сетевого комплекса для разных технологических объектов, поскольку позволяет наиболее точно подобрать контроллеры требуемых характеристик под разные отдельные узлы автоматизируемого агрегата и под разные функции контроля и управления.
Рассматриваемые сетевые комплексы контроллеров имеют верхние ограничения как по сложности выполняемых функций (обычно, типовые функции измерения, контроля, учета, регулирования, блокировки), так и по объему самого автоматизируемого объекта, в пределах десятков тысяч измеряемых и контролируемых величин (обычно, отдельный технологический агрегат, производственный участок).
Большинство работающих в СНГ зарубежных фирм поставляет сетевые комплексы контроллеров. Отметим, к примеру сетевые комплексы малых контроллеров (порядка сотен входов/выходов на контроллер):
• комплексы серий контроллеров DL 205, DL 305 фирмы Koyo Electronics;
• комплексы серий контроллеров TSX Micro фирмы Schneider Electric;
• комплексы серии контроллеров SLC-500 фирмы Rockwell Automation;
• комплексы серии контроллеров CQM1 фирмы Omron.
Примеры сетевых комплексов больших контроллеров (порядка тысяч входов/выходов на контроллер) возьмем из продукции этих же фирм·
• комплексы серии контроллеров DL 405 фирмы Коуо Electronics;
• комплексы серий контроллеров TSX Premium фирмы Schneider Electric;
• комплексы серии контроллеров PLC-5 фирмы Rockwell Automation;
• комплексы серии контроллеров С200 фирмы Omron.
4. Распределенные маломасштабные системы управления (DCS – Distributed Control Systems, Smaller Scale).
Этот класс микропроцессорных средств частично пересекается с классом сетевых комплексов контроллеров, но в среднем превосходит большинство сетевых комплексов контроллеров по мощности и/или гибкости структуры, а следовательно, и по объему и сложности выполняемых функций. В целом он еще имеет ряд ограничений по объему автоматизируемого производства и по реализуемым функциям.
Основные отличия данных средств от сетевых комплексов контроллеров заключаются в несколько большем разнообразии модификаций контроллеров, развитую многоуровневой сетевой структуре, в большей мощности центральных процессоров контроллеров, в широком использовании отдельных конструктивов удаленных блоков ввода/вывода, рассчитанных на работу в различных условиях окружающей среды; в более развитой и гибкой связи с полевыми приборами и с корпоративной сетью предприятия. Зачастую они имеют несколько уровней системных сетей, соединяющих контроллеры между собою и с рабочими станциями операторов (например, нижний уровень, используемый для связи контроллеров и рабочей станции отдельного компактно расположенного технологического узла и верхний уровень, реализующий связи средств управления отдельных узлов друг с другом и с рабочей станцией диспетчера всего автоматизируемого участка производства). В ряде случаев развитие сетевой структуры идет в направлении создания ряда полевых сетей, соединяющих отдельные контроллеры с удаленными от них блоками ввода/вывода и интеллектуальными приборами (датчиками и исполнительными устройствами). Такие достаточно простые и дешевые сети позволяют передавать информацию между контроллерами и полевыми интеллектуальными приборами в цифровом виде по одной витой паре, что резко сокращает длину кабельных сетей на предприятии и уменьшает влияние возможных помех, поскольку исключается передача низковольтной аналоговой информации на значительные расстояния.
В целом маломасштабные распределенные системы управления охватывают отдельные цеха и участки производства и, в дополнении к обычным функциям контроля и управления, часто могут реализовывать более сложные и объемные алгоритмы управления (например, задачи статической и динамической оптимизации работы автоматизируемого объекта). При этом сами сложные алгоритмы в зависимости от их объема и требуемой динамики выполнения реализуются либо в самих контроллерах, либо в вычислительных мощностях пультов операторов.
Следует отметить, что, используя нечеткость границ классификации ПТК и их изменчивость во времени, связанную с непрерывной модернизацией отдельных составляющих ПТК. некоторые фирмы, в рекламных целях, называют свои достаточно ограниченные по мощности и возможностям сетевые комплексы контроллеров распределенными системами управления.
Ряд распространяемых в СНГ зарубежными фирмами ПТК можно отнести к данному классу средств. Примеры маломасштабных распределенных систем:
• ControlLogix разработки фирмы Rockwell Automation;
• Simatic S7-400 разработки фирмы Siemens;
• TSX Quantum разработки фирмы Schneider Electric.
5. Полномасштабные распределенные системы управления (DCS, Full Scale).
Данный класс ПТК имеет все особенности вышеперечисленных классов микропроцессорных средств управления и дополнительно имеет ряд из перечисленных ниже свойств, влияющих на возможности полномасштабного использования этих средств на предприятиях:
a) Развитая сетевая структура.
– наличие всех трех уровней сетей (информационная, системная, полевая) с имеющимися вариантами сетей отдельных уровней;
– использование мощных системных сетей, позволяющих подсоединять к одной шине сотни узлов (контроллеров и пультов) и распределять эти узлы на значительные (многокилометровые) расстояния;
– высокие скорости основных сетей и поддержка ими приоритетной передачи важнейших сообщений/команд;
– широкое и проработанное в масштабах данной системы использование информационных сетей (обычно, сети Ethernet) для связи рабочих станций операторов друг с другом, для их связи с серверами баз данных, для взаимодействия данного ПТК с корпоративной сетью предприятия, для возможности построения необходимой иерархии управляющих центров (планирование, диспетчеризация, оперативное управление);
б) Широкий диапазон мощностей входящих в систему контроллеров.
– вариантность по числу обслуживаемых входов/выходов (от сотен до десятков тысяч опрашиваемых датчиков);
– наличие модификаций, различающихся мощностью основного микропроцессора, быстродействием, объемами памяти разного типа, возможностями резервирования, степенью защиты от неблагоприятных условий окружающей среды;
– возможность в некоторых мощных модификациях контроллеров реализовать многие современные высокоэффективные, но сложные и объемные алгоритмы контроля, диагностики, моделирования, управления.
в) Разнообразие вариантов блоков ввода/вывода.
– наличие встроенных в контроллер и удаленных блоков ввода/вывода, рассчитанных на практически любые типы датчиков и исполнительных механизмов;
– модификации удаленных блоков ввода/вывода для разнообразных условий промышленной окружающей среды;
– варианты «интеллектуальных» блоков ввода/вывода, реализующих, в том числе, простейшие алгоритмы контроля и управления;
г) Широта модификаций рабочих станций.
– возможный выбор вариантов рабочих станций по мощности и назначению: стационарные и переносные пульты операторов технологических процессов, диспетчерские рабочие станции, контролирующие рабочие станции руководящего персонала, инженерные станции;
– работа взаимодействующих рабочих станций управления в клиент/серверном режиме;
– конструктивное оформление пультов операторов с учетом эргономических требований.
д) Современность программного обеспечения системы.
– развитые сетевые SCADA-программы, имеющие модификации для различных уровней управления;
– набор технологических языков, обеспечивающих задачи контроля, логического управления, регулирования и имеющих мощные библиотеки типовых программных модулей, включающих в себя ряд эффективных современных модулей типа «Advance Control»;
– наличие в составе программного обеспечения системы ряда прикладных пакетов программ, реализующих функции эффективного управления отдельными агрегатами (многосвязное регулирование, нейрорегуляторы и регуляторы на нечеткой логике оптимизация и т. д.), функции диспетчерского управления участками производства (компьютерная поддержка принятия управленческих решений), функции технического учета и планирования производства в целом;
– пакет программ автоматизации проектирования и документирования системы автоматизации.
е) Развитость верхнего уровня управления производством.
– проработка средств хранения и обмена информацией с другими системами автоматизации разных уровней управления и разного назначения;
– наличие программных и технических средств построения ряда уровней управления производством: планирования, диспетчеризации, оперативного управления участками, динамического управления отдельными агрегатами;
– включение в комплекс ряда функций по обслуживанию производства (типа управления складами, обслуживания оборудования, контроля за движением материальных потоков).
Примеры фирм: АББ – Symphony; Honeywell – ТРС и PlantScape; Valmet – Damatic XDi; Yokogava -Centum CS, Foxboro – I/A Series, Emerson – DeltaV и др.
4. Промышленная локальная сеть. Обычно выделяют, по назначению и функциям коммуникации, двух видов:
– промышленные сети, связывающие контроллеры между собою и с рабочими станциями операторов,
– полевые каналы и сети, связывающие контроллеры с удаленными (выносными) блоками ввода/вывода и с интеллектуальными приборами.
Эти коммуникации не имеют четкой разделяющей их границы, некоторые сети могут использоваться для обоих указанных целей, поэтому они обычно объединяются общим наименованием – Fieldbus, что в буквальном переводе обозначает “полевая шина”, а обычно в русском языке принято называть “промышленная сеть”. Промышленную локальную сеть называют также промышленной шиной.
Шина – это средство обеспечения взаимодействия близко расположенных объектов. Характерной особенностью шины как устройства является тот факт, что все взаимодействующие компоненты подключаются к шине одинаковым образом. Шины тем или иным образом присутствуют на всех уровнях автоматизации. В настоящее время наиболее распространены следующие топологии сетей.
1) Общая шина.
Рис. 6. Топология сети «Общая шина».
– возможно подключение / отключение устройств во время работы;
– опасность потери связи при одиночном обрыве;
– присутствие общего трафика во всей системе;
– широко используется для сильно распределенных объектов (дешевизна).
Рис. 7. Топология сети «Кольцо».
– хорошая пропускная способность;
– высокая стоимость;
– нерациональное использование сетевого трафика;
– потеря синхронизации всей сети в случае отказа хотя бы одного из узлов.
Рис. 8. Топология сети «Звезда».
– дополнительная защита сети от выхода узлов из строя;
– опасность аварии при выходе из строя устройства связи;
– оптимизация трафика.
Промышленная сеть обладает рядом специфических особенностей, выделяющих ее в отдельный класс, отличный от информационных сетей:
– работа в режиме реального времени;
– необходимость предсказуемости времени передачи сообщений и гарантия их доставки по назначению;
– отсутствие передаваемых больших массивов информации;
– обязательная повышенная надежность передачи данных в промышленной среде (в частности, при электромагнитных помехах);
– предпочтительная работа на недорогих физических средах;
– возможность больших расстояний между узлами сети;
– упрочненная механическая конструкция аппаратуры сети.
Если выделить из промышленных сетей подкласс чисто полевых сетей, то они призваны подключать к контроллерам расположенные непосредственно по месту нахождения оборудования блоки ввода/вывода, а также интеллектуальные датчики и исполнительные механизмы. Для их распространения требуется, чтобы каждое подключаемое к сети устройство (в том числе, любой прибор) имело вычислительный ресурс, т. е. было бы интеллектуальным. Тогда подключение приборов к контроллерам становится цифровым, децентрализованным; они объединяются между собою цифровой, двунаправленной, последовательной коммуникационной сетью; при этом каждый прибор будет обслуживать двунаправленную связь. Подкласс чисто полевых сетей по сравнению с общими промышленными сетями отличается значениями основных характеристик сетей: меньшей длиной сети, меньшей скоростью, меньшим объемом передаваемых данных за цикл, меньшей стоимостью сетевых компонентов.
Последнее время появился международный стандарт на промышленную и полевую управляющие сети – стандарт IEC 61158. По этому стандарту следующие сети признаны стандартными промышленными управляющими сетями:
– Foundation Fieldbus;
Следует подчеркнуть, что из всех этих сетей подавляющее распространение в мире получили сети Profibus и Foundation Fieldbus.
5. Уровень АРМ подробно рассматривается во втором разделе данного пособия, посвященном SCADA-системам.
6. Сервер (управляющая ЭВМ). На уровне управляющих ЭВМ решаются следующие задачи:
– управление технологическими контроллерами;
– ведение архивов технологической информации;
– обеспечение работы автоматизированных рабочих мест (АРМов).
На рисунке 2 показана структура, при которой задачи управления и ведения архивов разделены между двумя вычислительными машинами. В реальности, уровень управляющих ЭВМ может быть представлен различными архитектурами, от одиночной вычислительной машины до больших вычислительных систем (мейнфреймов), объединенных в локальную сеть рабочих станций и серверов. Очевидно, что для обеспечения функционирования уровня управляющих ЭВМ необходимо специализированное программное обеспечение. В качестве такого программного обеспечения используются системы SCADA.
Использование систем SCADA (Supervisory Control and Data Acquisition) – (системы диспетчерского управления и сбора данных) является в настоящее время основным и наиболее перспективным методом управления сложными динамическими системами. Именно на принципах диспетчерского управления строятся крупные автоматизированные системы в ряде отраслей промышленности и народного хозяйства.
Всю совокупность программного обеспечения SCADA-систем можно подразделить на две большие группы.
1) Серверное ПО. Данное ПО предназначено для:
– обеспечения процесса управления технологическим оборудованием;
– ведения архивов данных;
– обеспечения двусторонней связи АРМов и технологического оборудования.
2) Прикладное ПО. Данное ПО выполняет следующие функции:
– реализация АРМ на локальных рабочих станциях;
– обеспечение пользовательского интерфейса.
Также прикладное ПО предоставляет средства проектирования АРМов, алгоритмов управления, связей с технологическими контроллерами и т.д.
Что называется автоматизированной системой управления — какие функции выполняет АСУ
Функционал программы может варьироваться в зависимости от того, каких именно результатов хочет добиться ее составитель. Все возможности проекта прописываются в ТЗ, после предварительного анализа основополагающих целей, имеющихся ресурсов и ожидаемого эффекта. К опциям модуля относятся:
- прогнозирование — оформление разнообразных краткосрочных (промежуточных) и длительных планов;
- контроль и исследования — создание комплекса для анализа продуктивности отдельных людей и решений;
- координация — администрирование и отладка тех или иных процессов, входящих, например, в единую технологическую цепочку.
Все функции должны носить строго прикладной характер и составляться по регламентам, прописанным в ГОСТ. Конкретные действия, необходимые для достижения определенной цели, меняются в зависимости от типа прорабатываемой управленческой структуры (не стоит забывать о том, что АСУ могут быть объединены в подсистемы по пяти ключевым признакам).
Функционирование при организации управляющих воздействий
Несмотря на то что рассматриваемая методика характеризуется универсальностью, ее основным назначением является именно менеджмент. В этом плане функционал программы выглядит так:
- вычисление и анализ информации — контроль, хранение, поиск, демонстрация и преобразование разнообразных существенных данных;
- обмен сведений — доведение выведенных экспертами стратегий до объекта, нуждающегося в непосредственном регулировании, обмен аналитическими выкладками между руководителями;
- принятие решений — фактически создание информативных блоков, на основе всестороннего изучения предложенных прогнозов и опциональных оперативных сводок.
Все остальные функции проекта несут, скорее, второстепенный характер. Центральные задачи программы касаются именно управленческих схем, которые должны повышать общую эффективность путем работы с отдельно взятыми технологическими процессами.
Принцип действия и структура АСУ ТП
Принцип действия АСУ ТП основан на измерении параметров технологического процесса с помощью интеллектуальных средств измерения и последующем управлении технологическим процессом. На нижнем или полевом уровне АСУ ТП расположены датчики, полевое оборудование, исполнительные механизмы. С датчиков, которые фиксируют контролируемые параметры, поступает сигнал на промышленные контроллеры. ПЛК (программируемые логические контроллеры) относят к среднему уровню АСУ ТП, именно здесь выполняются задачи автоматического регулирования, логико-командного управления, пуска/остановки оборудования и машин, аварийной защиты и отключения. С контроллеров информация передается на верхний уровень управления объектом – к диспетчеру. Верхний уровень АСУ ТП содержит базу серверов, инженерных и операторских (рабочих) станций.
Функции АСУ ТП:
- Управление и контроль,
- Анализ и планирование,
- Сбор, учет, хранение данных,
- Автоматическая защита,
- Мониторинг и регулирование.
В свою очередь, диспетчер ведет постоянное наблюдение за процессом производства и управляет работой агрегатов в дистанционном режиме. Также на верхнем уровне формируется отчетность, обрабатывается и архивируется информация на сервере системы. Все данные, поступающие на операторские станции, отображаются в режиме реального времени на экране сотрудника. Числовые и графические данные представляются в виде удобной мнемосхемы объекта управления. В зависимости от полученных данных, контроллер системы вырабатывает соответствующие сигналы управления для исполнительных механизмов. Кроме этого, контроллер различает выход заданных параметров за предельные значения, сигнализируя об отказах оборудования, каких-либо отклонениях процесса, а в некоторых случаях блокирует работу установки для исключения аварии.
С внедрением АСУ ТП совершенствуются методы планирования, противоаварийной защиты и контроля, поэтому предприятию удается достигнуть высоких качественных показателей технологических процессов. Автоматизированная система создает необходимые условия для наиболее эффективного и экономичного использования ресурсов производства, роста производительности труда, снижения затрат, повышения конкурентоспособности и получения максимальной прибыли. Внедрение АСУ ТП обеспечивает увеличение выхода выпускаемой продукции, стабилизацию производственных показателей, снижение материальных затрат, поддержание рациональных и безопасных технологических режимов, улучшение качественных показателей продукта.
Состав АСУ
Чтобы лучше понять, что называют автоматизированной системой управления, стоит перечислить ее ключевые составляющие. Комплекс имеет информационное, программное, техническое, организационное, метрологическое, правовое, лингвистическое обеспечение. От автоматических СУ его отличает то, что здесь сохраняются те опции, которые не могут подвергнуться механизации, компьютеризации или перепрофилированию. Возможность управлять передается операторам — людям, ответственным за определенные этапы технологической цепочки.