Типы температур

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Из того, что температура – это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для , поскольку замерзание атмосферной воды существенно всё меняет.

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

Про анемометры:  Анемометры АСЦ-3М купить в Москве | NEOPOD

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F – 32), то есть изменение температуры на 1 °F соответствует изменению на 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Сравнение температурных шкал

¹ Нормальная температура человеческого тела — 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F – это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.

Сопоставление шкал Фаренгейта и Цельсия

(oF – шкала Фаренгейта, oC – шкала Цельсия)

Для перевода градусов цельсия в кельвины необходимо пользоваться формулой T=t+T0 где T- температура в кельвинах, t- температура в градусах цельсия, T0=273.15 кельвина. По размеру градус Цельсия равен Кельвину.

Типы температур

В быту и на производстве мы часто обращаемся к “температуре” и “измерение температуры” “термометрами”:

– меряем температуру тела;

– смотрим на уличный термометр за окном, чтобы решить как одеться;

Обычно под температурой мы понимаем просто степень нагретости тела: горячо – жарко, холодно – тепло.

Для точного измерения температуры в рамках какого-либо технологического процесса необходимо создать измерительную систему с учетом всех влияющих факторов. Тот же процесс инкубации яиц, чтобы вывести яйца в инкубаторе необходимо регулировать температуру.

Из четырёх величин Международной системы единиц (СИ), неразрывно связанных с человеческой деятельностью: массой, длиной, временем и температурой, последняя оставалась полной загадкой для человечества вплоть до 18 века.

Но и сегодня , кто пользуется различными средствами измерения температуры, , же они .

То же давление легко воспринимается, так как оно связано с силой и может быть без труда определено количественно. С температурой невозможно связать количественную величину.

Теория (кратко).

В быту мы оцениваем температуру по ощущениям: горячо, тепло, холодно. Казалось бы, если одно тело горячее другого, то и его температура должна быть больше. Но это не так. Попробуйте взять в разогретой сауне в руку деревянный ковшик и металлический ковшик. Совершенно разные ощущения, хотя температура одна. Но если мы хотим сравнить температуру одинаковых по своей природе объектов, то можем сделать это с высокой точностью.

Совершенно обратная ситуация с влажностью воздуха: очень трудно определить влажность воздуха по своим ощущениям. Однако эта характеристика прекрасно понимается в количественном выражении – это количество молекул воды в единице объёма.

Существуют несколько определений температуры. Одно из них наиболее близкое людям, занимающимся практическими измерениями и исходит из нулевого закона термодинамики:

если два тела находятся в состоянии теплового равновесия, то они имеют одинаковую температуру.

Таким образом, если мы обеспечим хороший тепловой контакт термометра с измеряемой средой, то по прошествии некоторого времени, необходимого для установления теплового равновесия, температуры термометра и среды будут одинаковы. Естественно, что данный вывод будет верен, только если наша система изолирована от других тел и не совершается никакой работы.

Ну а само понимание физической природы температуры приходит только после изучения статистической механики, где температура представлена как мера кинетической энергии тела.

Для корректного изложения вопросов измерения температуры необходимо дать ее точное физическое определение.

— физическая величина, количественно характеризующая меру средней кинетической энергии теплового движения молекул какого-либо тела или вещества.

Из определения следует, что она не может быть колличественно измерена непосредственно и судить о ней можно по изменению других физических свойств тел (объема, давления, электрического сопротивления, термоЭДС, интенсивности излучения и т.д.).

В зависимости от диапазона измеряемых температур различают две основные группы методов измерения:

Кроме того, в системах, не требующих высокой точности измерений, в определенном диапазоне температур полупроводниковые датчики температуры на диодах, транзисторах  и специальных интегральных микросхемах.

Историческая справка.

Первое достоверно известное устройство для измерения температуры было создано Г. Галилеем около 1595 г. Этот прибор (термоскоп) использовал явление изменения объема газа при нагревании и охлаждении. Однако этот прибор (и последующие аналоги) имел большой недостаток: его шкала была относительной и показания не могли быть выражены в численной форме.

Крупным шагом в развитии термометрии было введение изобретателем ртутного термометра Г.Фаренгейтом (G. Fahrenheit) в начале 18 века первой температурной шкалы, названной его именем, опирающейся на две опорные точки. В качестве нижней опорной точки (0°F) он использовал температуру замерзания солевого раствора, самую низкую воспроизводимую в то время, а в качестве верхней точки температуру тела человека (96°F – в старину было удобнее считать дюжинами). Сам изобретатель определял вторую эталонную точку как температуру под мышкой здорового англичанина.

Привычная нам десятичная температурная шкала была предложена А. Цельсием (A. Celsius) в 1742 году. В качестве опорных точек для нее используются температура плавления льда (0°C) и температура кипения воды (100°C).

Наконец, в начале 19 века английским ученым лордом Кельвином (Kelvin) была предложена универсальная абсолютная термодинамическая температурная шкала, ставшая стандартной в современной термометрии. Одновременно Кельвин обосновал понятие абсолютного нуля температуры.

Перевести температуру из одной шкалы в другую можно с помощью следующих простых соотношений:

T(°C)= (T(°F) – 32)*5/9

T(K)=T(°C) + 273,15

0°C соответствует 32°F и 273,15 К,

а 100°C — 212°F и 373,15 К.

Выбор между этими опорными точками 100 делений у шкалы Цельсия и 180 делений у шкалы Фаренгейта является чисто условным (как, впрочем, и выбор самих опорных точек).

Для обеспечения единства измерений температуры в качестве международного стандарта в 1968 году принята Международная Практическая Температурная Шкала МПТШ68 (в настоящее время в качестве стандарта принята уточненная в 1990 году версия шкалы ITS90), использующая в качестве опорных точек температуры изменения агрегатного состояния определенных веществ, которые могут быть воспроизведены. Кроме того, стандарт определяет типы образцовых средств измерения во всем диапазоне температур.

Перечень основных фиксированных точек МПТШ68

Принято считать, что первый термометр, работающий на расширении воздуха, был изобретён Галилеем примерно в 1592 г. А в 1641 году появился первый, реально работающий спиртовой стеклянный термометр, созданный герцогом Тосканским. С этого момента началось быстрое развитие термометрии. В начале 18-ого века Фаренгейт первым изготовил ртутный стеклянный термометр и предложил температурную шкалу, в которой одной из фиксированных точек служила температура человеческого тела, которую он принял за 96 градусов, а другой – температура таяния льда -32 градуса. Ну а кульминационной точкой в развитии практической термометрии явилось принятие в 1927 году Международной температурной шкалы МТШ-27. В дальнейшем температурная шкала совершенствовалась и расширялась практически до 0 К.

Температура – параметр, который можно измерить только косвенно, по изменению других физических параметров. Термометрию различают на первичную и вторичную. В первичной термометрии температура явно описывается через другие физические параметры, например для газовых термометров это давление и объём. Примерами вторичных термометров являются термометры сопротивления и термопары. В промышленности термометры сопротивления и термопары являются основными средствами контроля температуры, закрывая диапазон измерения от минус 200 до + 2500⁰С и более.

В последнее время платиновые термосопротивления активно начали вытеснять медные и . Связано это с появлением на рынке недорогих платиновых плёночных термочувствительных элементов, которые в отличие от медных являются более стабильными и работают в более широком диапазоне температур. А по сравнению с термопарами – обеспечивают более высокую точность измерения и не требуют использования дорогого термокомпенсационного кабеля.

Однако в России медные термометры до сих пор находят широкое применение. Одно из основных преимуществ меди – это очень хорошая линейная зависимость её сопротивления от температуры в диапазоне от минус 50 до + 200⁰С и более высокая чем у платины чувствительность. Свыше 200⁰С медь начинает очень быстро окисляться на воздухе, поэтому обычно верхний предел измерения для медных термосопротивлений устанавливается до 180⁰С. При производстве используется проволока диаметром от 30 до 80 мкм. При дальнейшем уменьшении диаметра стоимость проволоки резко возрастает, а изготовление термосопротивления с заданными параметрами становится проблематичным.

Большое значение имеет схема соединения проводников термосопротивления. Различают три основных схемы: 2-х, 3-х и 4-х проводную.

Типы температур

При двухпроводной схеме к сопротивлению ЧЭ добавляется сопротивление внешних проводов, что приводит к появлению дополнительной погрешности измерения. Ясно, что такой способ можно использовать только для ЧЭ с большим сопротивлением. Из наиболее употребляемых – это Pt1000. Легко подсчитать, что для обеспечения точности измерения 0,1⁰С общее сопротивление внешних проводников не должно быть больше 3,8 Ом.

Четырёхпроводная схема используется в основном только для точных измерений и в эталонных приборах. Данная схема позволяет автоматически компенсировать влияние на результат измерения не только сопротивления проводников, но и ЭДС в местах контактов.

Советы при выборе и монтаже термометров сопротивления

Типы температур

Типы температур

При монтаже датчика температуры нужно максимально увеличить его тепловой контакт с контролируемой средой и одновременно уменьшить отток тепла от места подключения. Необходимо помнить, что чувствительный элемент имеет конечную длину, поэтому глубина погружения датчика должна быть как минимум на несколько диаметров зонда больше, чем длина ЧЭ. При монтаже датчиков контроля поверхности очень важно место соединения предварительно смазать каким-либо вязким веществом. Также важно обеспечить тепловой контакт кабеля с контролируемым объектом, чтобы минимизировать отвод тепла от ЧЭ датчика по кабелю. Ещё лучше, если и датчик и подводящий кабель будут закрыты хорошим теплоизолятором, например пенополиуретаном, или пенополиэтиленом.

Датчики температуры воздуха лучше устанавливать в тех местах помещения, которые наиболее важны для контроля. При плохой конвекции воздуха в помещении градиент температуры может составить до 5-ти и более градусов.

При экспресс контроле температуры поверхности теплоёмкость датчика должна быть минимальной. Дело в том, что самое большое зло при контактном способе измерения температуры поверхности состоит в том, что датчик уменьшает температуру поверхности в месте установки. Процесс восстановления начальной температуры может идти очень долго, что зачастую приводит к неправильным результатам и выводам. Примером может служить ситуация с «занижением» показаний медицинских электронных термометров.

По сравнению с термометрами сопротивления термопары обладают рядом очень больших преимуществ и таких же больших недостатков. По большому счёту эти два класса приборов очень органично дополняют друг друга. И задача киповца – определить, какой датчик температуры ему нужен для той или иной задачи.

Термопары имеют очень большой диапазон рабочих температур. При этом, чем больше максимальная рабочая температура термопары, тем меньше её чувствительность. С этим фактом связан большой ассортимент применяемых термопар. При помощи термопар можно измерять температуру очень маленьких объектов. Для этого достаточно сварить между собой две термоэлектродные проволоки маленького диаметра. Естественно, что такая термопара имеет и очень незначительную инерционность. Термопара из недрагоценных металлов малой длины дешевле термосопротивления. Однако при увеличении длины стоимость её значительно возрастает. В то же время термопары значительно уступают термосопротивлениям в точности измерения. Связано это с рядом причин. Сигнал с термопары значительно более нелинеен. Для получения абсолютной измеренной температуры необходимо знать температуру холодного спая термопары. А это означает, что общая погрешность измерения сложится из двух: погрешности измерения разности температур рабочего и холодного спая термопары и погрешности измерения температуры холодного спая. На практике же всё ещё сложнее. Очень непросто измерить с хорошей точностью температуру выводов термопары на входе вторичного прибора. На практике эта погрешность составляет около 1⁰С. При измерении высоких температур значение данной погрешности несколько нивелируется.

Советы по выбору и применению термопар

Для использования в диапазоне до +200⁰С лучше применять платиновые или медные термосопротивления. В случае контроля температуры очень небольшого объекта малой теплоёмкости можно использовать термопару медь-константан, которая замечательна тем, что очень легко сваривается над поверхностью раствора медного купороса, имеет самую высокую чувствительность и очень низкую стоимость.

Для измерения температуры вплоть до +1700⁰С применяют термопары, изготовленные из драгоценных металлов платиновой группы. Они отличаются высокой стабильностью параметров, но имеют крайне низкую чувствительность при низких температурах и очень высокую стоимость. Наиболее высокотемпературные термопары – вольфрам-рениевые. Но они не могут работать в окислительной атмосфере при температуре уже выше 500⁰С. Оболочку этих датчиков необходимо наполнять инертным газом. Так как герметичный корпус для высоких температур изготовить проблематично, то для продолжительной работы по внутренней полости этих термопар постоянно пропускают инертный газ.

Для контроля температуры поверхности или воздуха лучше применять гибкую термопару без защитного чехла. Для контроля поверхности нужно обеспечить хороший тепловой контакт с поверхностью не только рабочего конца термопары, но и термоэлектродов на расстоянии не менее 50 мм, чтобы уменьшить теплоотвод от места контроля. При использовании термопары при высокой температуре в окислительной или агрессивной атмосфере может наблюдаться деградация параметров, связанная с окислением и изменением химического состава термоэлектродов. Необходимо периодически контролировать качество термопары хотя бы по её полному сопротивлению постоянному току. Для использования в экстремальных условиях в течение непродолжительного времени существуют ТП разового применения и ТП кратковременного применения.

Статья рассматривает виды температур. Сравнивает три основных температурных шкалы: Фаренгейта, Цельсия и Кельвина. Знакомит с взаимосвязью между энергией, теплом и температурой. Принцип термометров объясняется, начиная с термоскопа Галилея в 1597 году. В нем обсуждается, как разные системы используют разные ссылки для количественной оценки тепловой энергии.

Измерение температуры – сравнительно новая концепция. Ранние ученые поняли разницу между «горячо» и «холодно». Но у них не было никакого способа , чтобы количественно оценить различные степени тепла до семнадцатого века. В 1597 году итальянский астроном Галилео Галилей изобрел простой водный термоскоп. Устройство, которое состояло из длинной стеклянной трубки, перевернутой в герметичный сосуд. В нём находился воздух и вода. Когда сосуд нагревали, воздух расширялся и выталкивал жидкость вверх по трубке. Уровень воды в трубке можно было сравнить при разных температурах, чтобы показать относительные изменения по мере добавления или удаления тепла. Однако у термоскопа не было простого способа напрямую определить температуру.

Несколько лет спустя итальянский врач и изобретатель Санторио Санторио улучшил конструкцию Галилея, добавив к термоскопу числовую шкалу. Эти ранние термоскопы привели к развитию термометров, заполненных жидкостью, которые обычно используются сегодня. Современные термометры работают на основе тенденции некоторых жидкостей расширяться при нагревании. Поскольку жидкость внутри градусника поглощает тепло , она расширяется, занимая больший объем и заставляя уровень жидкости внутри трубки повышаться. Когда жидкость охлаждается, она сжимается, занимая меньший объем и вызывая падение уровня жидкости.

Температура – это мера количества тепловой энергии, которой обладает объект. Поскольку температура является относительным измерением, для точного её измерения необходимо использовать шкалы, основанные на контрольных точках.

Сегодня для измерения температуры в мире обычно используются три основные шкалы: Фаренгейта (° F), Цельсия (° C) и Кельвина (K). Каждая из них использует различный набор делений, основанный на разных контрольных точках, как подробно описано ниже.

По Фаренгейту

Даниэль Габриэль Фаренгейт (1686-1736) был немецким физиком, которому приписывают изобретение спиртового термометра в 1709 году и ртутного термометра в 1714 году. Температурная шкала Фаренгейта была разработана в 1724 году. Смесь лед-вода-соль была установлена ​​на 0 градусов. Температура смеси ледяной воды (без соли) была установлена ​​на уровне 30 градусов. А температура человеческого тела была установлена ​​на уровне 96 градусов. Используя эту градацию, Фаренгейт измерил температуру кипящей воды как 212 ° F по своей шкале. Позже он отрегулировал точку замерзания воды с 30 ° F до 32 ° F, таким образом сделав интервал между точками замерзания и кипения воды равным 180 градусам (и сделав температуру тела знакомой 98,6 ° F). Шкала Фаренгейта до сих пор широко используется в США.

По Цельсию

Андерс Цельсий (1701-1744) был шведским астрономом, которому приписывают изобретение шкалы Цельсия в 1742 году. Цельсий выбрал точку плавления льда (температура 0) и точку кипения воды в качестве двух эталонных температур, чтобы обеспечить простой и последовательный метод измерения термометра.

Калибровка (шкала температур). Цельсий разделил разницу температур между точками замерзания и кипения воды на 100 градусов (отсюда и название сенти , что означает сто, и степень, то есть степени). После смерти Цельсия шкала сенти была переименована в шкалу Цельсия, и точка замерзания воды была установлена ​​на 0 ° C. А точка кипения воды – на 100 ° C. Шкала Цельсия имеет приоритет над шкалой Фаренгейта в научных исследованиях, потому что она более совместима с форматом десятичной основы Международной системы (СИ) метрических измерений. Кроме того, измерение Цельсия обычно используется в большинстве стран мира, кроме США.

Кельвин

Лорд Уильям Кельвин (1824–1907) был шотландским физиком, который изобрел шкалу Кельвина (K) в 1854 году. Она основана на идее абсолютного нуля, теоретической температуры, при которой все молекулярное движение прекращается и никакая различимая энергия не может быть измерена. В теории, нулевая точка на шкале Кельвина является минимально возможной температурой, которая существует во вселенной: -273.15ºC.

Шкала Кельвина использует ту же единицу деления по шкале Цельсия. Однако он сбрасывает нулевую точку на абсолютный ноль: -273,15 ° C. Таким образом, температура замерзания воды составляет 273,15 К (градуировки на шкале называются Кельвинами, и ни термин «градус», ни символ º не используются), а 373,15 К – точка кипения воды.

Шкала Кельвина, как и шкала Цельсия, является стандартной единицей измерения СИ. Обычно используется в научных измерениях. Поскольку на  Кельвина нет отрицательных чисел (так как теоретически ничто не может быть холоднее абсолютного нуля), очень удобно использовать значения Кельвина при измерении экстремально низких температур в научных исследованиях . (Три шкалы сравниваются на рисунке 1.)

Рисунок 1: Сравнение трех различных температурных шкал.

Хотя это может показаться запутанным, каждая из трех обсуждаемых температурных шкал позволяет нам измерять тепловую энергию немного по-разному. Измерение температуры в любой из трех шкал можно легко преобразовать в другую шкалу, используя приведенные ниже простые формулы.

Таблица 1: Преобразование температуры

Оцените статью
Анемометры
Добавить комментарий